use Hole_filling weights

The API of the weight of Surface_mesh being documented
I needed to duplicate some small parts of the code
in /PMP/include/CGAL/internal/Hole_filling/Weight.h
This commit is contained in:
Sébastien Loriot 2015-12-10 22:48:21 +01:00
parent 77daf37540
commit c8ea231751
4 changed files with 151 additions and 346 deletions

View File

@ -63,6 +63,44 @@ public:
// The potential problem with previous one (Cotangent_value) is that it does not produce symmetric results
// (i.e. for v0, v1, v2 and v2, v1, v0 returned cot weights can be slightly different)
// This one provides stable results.
template<class PolygonMesh>
struct Cotangent_value_Meyer_impl
{
typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
template <class VertexPointMap>
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, const VertexPointMap& ppmap)
{
typedef typename Kernel_traits<
typename boost::property_traits<VertexPointMap>::value_type >::Kernel::Vector_3 Vector;
Vector a = get(ppmap, v0) - get(ppmap, v1);
Vector b = get(ppmap, v2) - get(ppmap, v1);
double dot_ab = a*b;
// rewritten for safer fp arithmetic
//double dot_aa = a.squared_length();
//double dot_bb = b.squared_length();
//double divider = CGAL::sqrt( dot_aa * dot_bb - dot_ab * dot_ab );
Vector cross_ab = CGAL::cross_product(a, b);
double divider = CGAL::sqrt(cross_ab*cross_ab);
if(divider == 0 /*|| divider != divider*/)
{
CGAL::collinear(get(ppmap, v0), get(ppmap, v1), get(ppmap, v2)) ?
CGAL_warning(!"Infinite Cotangent value with degenerate triangle!") :
CGAL_warning(!"Infinite Cotangent value due to floating point arithmetic!");
return dot_ab > 0 ? (std::numeric_limits<double>::max)() :
-(std::numeric_limits<double>::max)();
}
return dot_ab / divider;
}
};
template<class PolygonMesh
, class VertexPointMap = typename boost::property_map<PolygonMesh, CGAL::vertex_point_t>::type>
class Cotangent_value_Meyer
@ -90,30 +128,7 @@ public:
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
{
Vector a = get(ppmap, v0) - get(ppmap, v1);
Vector b = get(ppmap, v2) - get(ppmap, v1);
double dot_ab = a*b;
// rewritten for safer fp arithmetic
//double dot_aa = a.squared_length();
//double dot_bb = b.squared_length();
//double divider = CGAL::sqrt( dot_aa * dot_bb - dot_ab * dot_ab );
Vector cross_ab = CGAL::cross_product(a, b);
double divider = CGAL::sqrt(cross_ab*cross_ab);
if(divider == 0 /*|| divider != divider*/)
{
CGAL::collinear(get(ppmap, v0), get(ppmap, v1), get(ppmap, v2)) ?
CGAL_warning(!"Infinite Cotangent value with degenerate triangle!") :
CGAL_warning(!"Infinite Cotangent value due to floating point arithmetic!");
return dot_ab > 0 ? (std::numeric_limits<double>::max)() :
-(std::numeric_limits<double>::max)();
}
return dot_ab / divider;
return Cotangent_value_Meyer_impl<PolygonMesh>()(v0,v1,v2,ppmap);
}
};
@ -248,6 +263,20 @@ public:
}
};
template<class PolygonMesh,
class CotangentValue = Cotangent_value_Meyer_impl<PolygonMesh> >
struct Cotangent_value_minimum_zero_impl : CotangentValue
{
typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
template <class VertexPointMap>
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, const VertexPointMap& ppmap)
{
double value = CotangentValue::operator()(v0, v1, v2,ppmap);
return (std::max)(0.0, value);
}
};
template<class PolygonMesh
, class VertexPointMap = typename boost::property_map<PolygonMesh, CGAL::vertex_point_t>::type
, class CotangentValue
@ -362,6 +391,46 @@ public:
// Cotangent weight calculator
// Cotangent_value: as suggested by -[Sorkine07] ARAP Surface Modeling-
// Cotangent_value_area_weighted: as suggested by -[Mullen08] Spectral Conformal Parameterization-
template< class PolygonMesh,
class CotangentValue = Cotangent_value_minimum_zero_impl<PolygonMesh> >
struct Cotangent_weight_impl : CotangentValue
{
typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
// Returns the cotangent weight of specified halfedge_descriptor
// Edge orientation is trivial
template<class VertexPointMap>
double operator()(halfedge_descriptor he, PolygonMesh& pmesh, const VertexPointMap& ppmap)
{
vertex_descriptor v0 = target(he, pmesh);
vertex_descriptor v1 = source(he, pmesh);
// Only one triangle for border edges
if (is_border_edge(he, pmesh))
{
halfedge_descriptor he_cw = opposite( next(he, pmesh) , pmesh );
vertex_descriptor v2 = source(he_cw, pmesh);
if (is_border_edge(he_cw, pmesh) )
{
halfedge_descriptor he_ccw = prev( opposite(he, pmesh) , pmesh );
v2 = source(he_ccw, pmesh);
}
return ( CotangentValue::operator()(v0, v2, v1, ppmap)/2.0 );
}
else
{
halfedge_descriptor he_cw = opposite( next(he, pmesh) , pmesh );
vertex_descriptor v2 = source(he_cw, pmesh);
halfedge_descriptor he_ccw = prev( opposite(he, pmesh) , pmesh );
vertex_descriptor v3 = source(he_ccw, pmesh);
return ( CotangentValue::operator()(v0, v2, v1, ppmap)/2.0 +
CotangentValue::operator()(v0, v3, v1, ppmap)/2.0 );
}
}
};
template<class PolygonMesh
, class VertexPointMap = typename boost::property_map<PolygonMesh, vertex_point_t>::type
, class CotangentValue
@ -424,6 +493,28 @@ public:
};
// Single cotangent from -[Chao10] Simple Geometric Model for Elastic Deformation
template<class PolygonMesh,
class CotangentValue = Cotangent_value_Meyer_impl<PolygonMesh> >
struct Single_cotangent_weight_impl : CotangentValue
{
typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
// Returns the cotangent of the opposite angle of the edge
// 0 for border edges (which does not have an opposite angle)
template <class VertexPointMap>
double operator()(halfedge_descriptor he, PolygonMesh& pmesh, const VertexPointMap& ppmap)
{
if(is_border(he, pmesh)) { return 0.0;}
vertex_descriptor v0 = target(he, pmesh);
vertex_descriptor v1 = source(he, pmesh);
vertex_descriptor v_op = target(next(he, pmesh), pmesh);
return CotangentValue::operator()(v0, v_op, v1, ppmap);
}
};
template<class PolygonMesh
, class VertexPointMap = typename boost::property_map<PolygonMesh, CGAL::vertex_point_t>::type
, class CotangentValue = Cotangent_value_Meyer<PolygonMesh, VertexPointMap> >

View File

@ -2,6 +2,7 @@
#include <map>
#include <cmath>
#include <CGAL/property_map.h>
#include <CGAL/algorithm.h>
struct Custom_point_3{
// Required by File_scanner_OFF

View File

@ -21,10 +21,12 @@
#define CGAL_SURFACE_MESH_DEFORMATION_H
#include <CGAL/config.h>
#include <CGAL/internal/Surface_modeling/Weights.h>
#include <CGAL/Default.h>
#include <CGAL/tuple.h>
#include <CGAL/Polygon_mesh_processing/internal/Hole_filling/Weights.h>
#include <CGAL/Simple_cartesian.h>
#include <vector>
#include <list>
#include <utility>
@ -56,19 +58,41 @@ enum Deformation_algorithm_tag
/// @cond CGAL_DOCUMENT_INTERNAL
namespace internal {
template<class HalfedgeGraph, Deformation_algorithm_tag deformation_algorithm_tag>
struct Weight_calculator_selector {
typedef Uniform_weight<HalfedgeGraph> weight_calculator;
};
struct Weight_calculator_selector;
template<class HalfedgeGraph>
struct Weight_calculator_selector<HalfedgeGraph, CGAL::SPOKES_AND_RIMS> {
typedef Single_cotangent_weight<HalfedgeGraph> weight_calculator;
typedef Single_cotangent_weight_impl<HalfedgeGraph> weight_calculator;
};
template<class HalfedgeGraph>
struct Weight_calculator_selector<HalfedgeGraph, CGAL::ORIGINAL_ARAP> {
typedef Cotangent_weight<HalfedgeGraph> weight_calculator;
typedef Cotangent_weight_impl<HalfedgeGraph> weight_calculator;
};
// property map that create a Simple_cartesian<double>::Point_3
// on the fly in order the deformation class to be used
// with points with minimal requirements
template <class Vertex_point_map>
struct SC_on_the_fly_pmap: public Vertex_point_map{
typedef boost::readable_property_map_tag category;
typedef CGAL::Simple_cartesian<double>::Point_3 value_type;
typedef value_type reference;
typedef typename boost::property_traits<Vertex_point_map>::key_type key_type;
SC_on_the_fly_pmap(Vertex_point_map base):
Vertex_point_map(base) {}
friend value_type
get(const SC_on_the_fly_pmap map, key_type k)
{
typename boost::property_traits<Vertex_point_map>::reference base=
get(static_cast<const Vertex_point_map&>(map), k);
return value_type(base[0], base[1], base[2]);
}
};
}//namespace internal
/// @endcond
@ -367,13 +391,14 @@ public:
private:
void init() {
typedef internal::SC_on_the_fly_pmap<Vertex_point_map> Wrapper;
// compute halfedge weights
halfedge_iterator eb, ee;
hedge_weight.reserve(2*num_edges(m_halfedge_graph));
for(cpp11::tie(eb, ee) = halfedges(m_halfedge_graph); eb != ee; ++eb)
{
hedge_weight.push_back(
this->weight_calculator(*eb, m_halfedge_graph, vertex_point_map));
this->weight_calculator(*eb, m_halfedge_graph, Wrapper(vertex_point_map)));
}
#ifdef CGAL_DEFORM_MESH_USE_EXPERIMENTAL_SR_ARAP
m_sr_arap_alpha=2;
@ -761,6 +786,7 @@ public:
*/
void overwrite_initial_geometry()
{
typedef internal::SC_on_the_fly_pmap<Vertex_point_map> Wrapper;
if(roi.empty()) { return; } // no ROI to overwrite
region_of_solution(); // the roi should be preprocessed since we are using original_position vec
@ -781,13 +807,13 @@ public:
std::size_t id_e = id(he);
if(is_weight_computed[id_e]) { continue; }
hedge_weight[id_e] = weight_calculator(he, m_halfedge_graph, vertex_point_map);
hedge_weight[id_e] = weight_calculator(he, m_halfedge_graph, Wrapper(vertex_point_map));
is_weight_computed[id_e] = true;
halfedge_descriptor e_opp = opposite(he, m_halfedge_graph);
std::size_t id_e_opp = id(e_opp);
hedge_weight[id_e_opp] = weight_calculator(e_opp, m_halfedge_graph, vertex_point_map);
hedge_weight[id_e_opp] = weight_calculator(e_opp, m_halfedge_graph, Wrapper(vertex_point_map));
is_weight_computed[id_e_opp] = true;
}
}

View File

@ -1,313 +0,0 @@
// Copyright (c) 2014 GeometryFactory
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Ilker O. Yaz
#ifndef CGAL_SURFACE_MODELING_WEIGHTS_H
#define CGAL_SURFACE_MODELING_WEIGHTS_H
/// @cond CGAL_DOCUMENT_INTERNAL
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/Simple_cartesian.h>
namespace CGAL {
namespace internal {
namespace Surface_modeling{
typedef CGAL::Simple_cartesian<double>::Vector_3 Vector;
} //end of namespace Surface_modeling
template<class Point>
Surface_modeling::Vector to_vector(const Point& b, const Point& a) {
return Surface_modeling::Vector(a[0] - b[0], a[1] - b[1], a[2] - b[2]);
}
// Returns the cotangent value of half angle v0 v1 v2
// using formula in -[Meyer02] Discrete Differential-Geometry Operators for- page 19
// The potential problem with previous one (Cotangent_value) is that it does not produce symmetric results
// (i.e. for v0, v1, v2 and v2, v1, v0 returned cot weights can be slightly different)
// This one provides stable results.
template<class HalfedgeGraph>
class Cotangent_value_Meyer
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::vertex_descriptor vertex_descriptor;
typedef HalfedgeGraph Halfedge_graph;
template<class VertexPointMap>
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, VertexPointMap vpm)
{
const Surface_modeling::Vector& a = to_vector(get(vpm, v1), get(vpm, v0));
const Surface_modeling::Vector& b = to_vector(get(vpm, v1), get(vpm, v2));
double dot_ab = a*b;
Surface_modeling::Vector cross_ab = CGAL::cross_product(a, b);
double divider = std::sqrt(cross_ab*cross_ab);
if(divider == 0 /*|| divider != divider*/)
{
this->collinear(get(vpm, v0), get(vpm, v1), get(vpm, v2)) ?
CGAL_warning(!"Infinite Cotangent value with degenerate triangle!") :
CGAL_warning(!"Infinite Cotangent value due to floating point arithmetic!");
return dot_ab > 0 ? (std::numeric_limits<double>::max)() :
-(std::numeric_limits<double>::max)();
}
return dot_ab / divider;
}
///////////////////////////////////////////////////////////////////////////////////////
// WARNING: this two functions are just used when cotangent weight turns out to be +-inf,
// just for raising a proper warning message (i.e nothing functional)
template<class Point>
bool collinear(const Point&, const Point&, const Point&) {
return true;
}
template<class Kernel>
bool collinear(const CGAL::Point_3<Kernel>& a, const CGAL::Point_3<Kernel>& b, const CGAL::Point_3<Kernel>& c) {
return CGAL::collinear(a, b, c);
}
///////////////////////////////////////////////////////////////////////////////////////
};
// Returns the cotangent value of half angle v0 v1 v2 by clamping between [1, 89] degrees
// as suggested by -[Friedel] Unconstrained Spherical Parameterization-
template<class HalfedgeGraph, class CotangentValue = Cotangent_value_Meyer<HalfedgeGraph> >
class Cotangent_value_clamped : CotangentValue
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::vertex_descriptor vertex_descriptor;
typedef HalfedgeGraph Halfedge_graph;
template<class VertexPointMap>
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, VertexPointMap vpm)
{
const double cot_1 = 57.289962;
const double cot_89 = 0.017455;
double value = CotangentValue::operator()(v0, v1, v2, vpm);
return (std::max)(cot_89, (std::min)(value, cot_1));
}
};
template<class HalfedgeGraph, class CotangentValue = Cotangent_value_Meyer<HalfedgeGraph> >
class Cotangent_value_minimum_zero : CotangentValue
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::vertex_descriptor vertex_descriptor;
template<class VertexPointMap>
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, VertexPointMap vpm)
{
double value = CotangentValue::operator()(v0, v1, v2, vpm);
return (std::max)(0.0, value);
}
};
///////////////////////////// Halfedge Weight Calculators ///////////////////////////////////
// Cotangent weight calculator
// Cotangent_value: as suggested by -[Sorkine07] ARAP Surface Modeling-
// Cotangent_value_area_weighted: as suggested by -[Mullen08] Spectral Conformal Parameterization-
template<class HalfedgeGraph,
class CotangentValue = Cotangent_value_minimum_zero<HalfedgeGraph> >
class Cotangent_weight : CotangentValue
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<HalfedgeGraph>::vertex_descriptor vertex_descriptor;
typedef HalfedgeGraph Halfedge_graph;
// Returns the cotangent weight of specified halfedge_descriptor
// Edge orientation is trivial
template<class VertexPointMap>
double operator()(halfedge_descriptor he, HalfedgeGraph& halfedge_graph, VertexPointMap vpm)
{
vertex_descriptor v0 = target(he, halfedge_graph);
vertex_descriptor v1 = source(he, halfedge_graph);
// Only one triangle for border edges
if ( is_border(he, halfedge_graph) ||
is_border(opposite(he, halfedge_graph), halfedge_graph) )
{
halfedge_descriptor he_cw = opposite( next(he, halfedge_graph), halfedge_graph );
vertex_descriptor v2 = source(he_cw, halfedge_graph);
if ( is_border(he_cw, halfedge_graph) ||
is_border(opposite(he_cw, halfedge_graph), halfedge_graph) )
{
halfedge_descriptor he_ccw = prev( opposite(he, halfedge_graph), halfedge_graph );
v2 = source(he_ccw, halfedge_graph);
}
return ( CotangentValue::operator()(v0, v2, v1, vpm)/2.0 );
}
else
{
halfedge_descriptor he_cw = opposite( next(he, halfedge_graph), halfedge_graph );
vertex_descriptor v2 = source(he_cw, halfedge_graph);
halfedge_descriptor he_ccw = prev( opposite(he, halfedge_graph), halfedge_graph );
vertex_descriptor v3 = source(he_ccw, halfedge_graph);
return ( CotangentValue::operator()(v0, v2, v1, vpm)/2.0 + CotangentValue::operator()(v0, v3, v1, vpm)/2.0 );
}
}
};
// Single cotangent from -[Chao10] Simple Geometric Model for Elastic Deformation
template<class HalfedgeGraph,
class CotangentValue = Cotangent_value_Meyer<HalfedgeGraph> >
class Single_cotangent_weight : CotangentValue
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<HalfedgeGraph>::vertex_descriptor vertex_descriptor;
typedef HalfedgeGraph Halfedge_graph;
// Returns the cotangent of the opposite angle of the halfedge
// 0 for border edges (which does not have an opposite angle)
template<class VertexPointMap>
double operator()(halfedge_descriptor he, HalfedgeGraph& halfedge_graph, VertexPointMap vpm)
{
if(is_border(he, halfedge_graph)) { return 0.0;}
vertex_descriptor v0 = target(he, halfedge_graph);
vertex_descriptor v1 = source(he, halfedge_graph);
vertex_descriptor v_op = target(next(he, halfedge_graph), halfedge_graph);
return CotangentValue::operator()(v0, v_op, v1, vpm);
}
};
// Mean value calculator described in -[Floater04] Mean Value Coordinates-
// WARNING: Need to be updated to use point pmap
template<class HalfedgeGraph>
class Mean_value_weight
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<HalfedgeGraph>::vertex_descriptor vertex_descriptor;
typedef HalfedgeGraph Halfedge_graph;
// Returns the mean-value coordinate of specified halfedge_descriptor
// Returns different value for different halfedge orientation (which is a normal behaviour according to formula)
double operator()(halfedge_descriptor he, HalfedgeGraph& halfedge_graph)
{
vertex_descriptor v0 = target(he, halfedge_graph);
vertex_descriptor v1 = source(he, halfedge_graph);
Surface_modeling::Vector vec(v1->point(), v0->point());
double norm = std::sqrt( vec.squared_length() );
// Only one triangle for border edges
if ( is_border(he, halfedge_graph) ||
is_border( opposite(he, halfedge_graph), halfedge_graph) )
{
halfedge_descriptor he_cw = opposite( next(he, halfedge_graph), halfedge_graph );
vertex_descriptor v2 = source(he_cw, halfedge_graph);
if ( is_border(he_cw, halfedge_graph) ||
is_border(opposite(he_cw, halfedge_graph), halfedge_graph) )
{
halfedge_descriptor he_ccw = prev( opposite(he, halfedge_graph), halfedge_graph );
v2 = source(he_ccw, halfedge_graph);
}
return ( half_tan_value_2(v1, v0, v2)/norm);
}
else
{
halfedge_descriptor he_cw = opposite( next(he, halfedge_graph), halfedge_graph );
vertex_descriptor v2 = source(he_cw, halfedge_graph);
halfedge_descriptor he_ccw = prev( opposite(he, halfedge_graph), halfedge_graph );
vertex_descriptor v3 = source(he_ccw, halfedge_graph);
return ( half_tan_value_2(v1, v0, v2)/norm + half_tan_value_2(v1, v0, v3)/norm);
}
}
private:
// Returns the tangent value of half angle v0_v1_v2/2
double half_tan_value(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
{
Surface_modeling::Vector vec0(v2->point(), v1->point());
Surface_modeling::Vector vec1(v0->point(), v2->point());
Surface_modeling::Vector vec2(v1->point(), v0->point());
double e0_square = vec0.squared_length();
double e1_square = vec1.squared_length();
double e2_square = vec2.squared_length();
double e0 = std::sqrt(e0_square);
double e2 = std::sqrt(e2_square);
double cos_angle = ( e0_square + e2_square - e1_square ) / 2.0 / e0 / e2;
cos_angle = (std::max)(-1.0, (std::min)(1.0, cos_angle)); // clamp into [-1, 1]
double angle = acos(cos_angle);
return ( tan(angle/2.0) );
}
// My deviation built on Meyer_02
double half_tan_value_2(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
{
Surface_modeling::Vector a(v1->point(), v0->point());
Surface_modeling::Vector b(v1->point(), v2->point());
double dot_ab = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
double dot_aa = a.squared_length();
double dot_bb = b.squared_length();
double dot_aa_bb = dot_aa * dot_bb;
double cos_rep = dot_ab;
double sin_rep = std::sqrt(dot_aa_bb - dot_ab * dot_ab);
double normalizer = std::sqrt(dot_aa_bb); // |a|*|b|
return (normalizer - cos_rep) / sin_rep; // formula from [Floater04] page 4
// tan(Q/2) = (1 - cos(Q)) / sin(Q)
}
};
template< class HalfedgeGraph,
class PrimaryWeight = Cotangent_weight<HalfedgeGraph>,
class SecondaryWeight = Mean_value_weight<HalfedgeGraph> >
class Hybrid_weight : public PrimaryWeight, SecondaryWeight
{
public:
typedef typename boost::graph_traits<HalfedgeGraph>::halfedge_descriptor halfedge_descriptor;
typedef HalfedgeGraph Halfedge_graph;
double operator()(halfedge_descriptor he, HalfedgeGraph& halfedge_graph)
{
double weight = PrimaryWeight::operator()(he, halfedge_graph);
//if(weight < 0) { std::cout << "Negative weight" << std::endl; }
return (weight >= 0) ? weight : SecondaryWeight::operator()(he, halfedge_graph);
}
};
// Trivial uniform weights (created for test purposes)
template<class HalfedgeGraph>
class Uniform_weight
{
public:
typedef HalfedgeGraph Halfedge_graph;
typedef typename boost::graph_traits<HalfedgeGraph>::halfedge_descriptor halfedge_descriptor;
double operator()(halfedge_descriptor /*he*/, HalfedgeGraph& /*halfedge_graph*/)
{ return 1.0; }
};
}//namespace internal
/// @endcond
}//namespace CGAL
#endif //CGAL_SURFACE_MODELING_WEIGHTS_H