From cace705a557f08f88ea6da751a58bcd167b37f40 Mon Sep 17 00:00:00 2001 From: Sylvain Pion Date: Thu, 3 Dec 2009 15:29:20 +0000 Subject: [PATCH] Remove some spurious "const". --- .../Triangulation_3_ref/Triangulation_3.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/Triangulation_3/doc_tex/Triangulation_3_ref/Triangulation_3.tex b/Triangulation_3/doc_tex/Triangulation_3_ref/Triangulation_3.tex index 6fc1ddcf8bd..0fa19a8f48c 100644 --- a/Triangulation_3/doc_tex/Triangulation_3_ref/Triangulation_3.tex +++ b/Triangulation_3/doc_tex/Triangulation_3_ref/Triangulation_3.tex @@ -255,11 +255,11 @@ an edge (resp. facet) \ccc{infinite} if it is incident to the infinite vertex. \ccHeading{Geometric access functions} \ccThree{Tetrahedron}{t.tetrahedron()}{} -\ccMethod{Tetrahedron tetrahedron(const Cell_handle c) const;} +\ccMethod{Tetrahedron tetrahedron(Cell_handle c) const;} {Returns the tetrahedron formed by the four vertices of \ccc{c}. \ccPrecond{\ccVar.\ccc{dimension()} $=3$ and the cell is finite.}} \ccGlue -\ccMethod{Triangle triangle(const Cell_handle c, int i) const;} +\ccMethod{Triangle triangle(Cell_handle c, int i) const;} {Returns the triangle formed by the three vertices of facet \ccc{(c,i)}. The triangle is oriented so that its normal points to the inside of cell \ccc{c}. @@ -274,7 +274,7 @@ in dimension~3, $i = 3$ in dimension~2, and the facet is finite.}} {Returns the line segment formed by the vertices of \ccc{e}. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and \ccc{e} is finite.}} \ccGlue -\ccMethod{Segment segment(const Cell_handle c, int i, int j) const;} +\ccMethod{Segment segment(Cell_handle c, int i, int j) const;} {Same as the previous method for edge \ccc{(c,i,j)}. \ccPrecond{As above and $i\neq j$. Moreover $i,j \in \{0,1,2,3\}$ in dimension~3, $i,j \in \{0,1,2\}$ in dimension~2, $i,j \in \{0,1\}$ in @@ -282,14 +282,14 @@ dimension~1.}} \ccHeading{Tests for Finite and Infinite Vertices and Faces} -\ccMethod{bool is_infinite(const Vertex_handle v) const;} +\ccMethod{bool is_infinite(Vertex_handle v) const;} {\ccc{true}, iff vertex \ccc{v} is the infinite vertex.} \ccGlue -\ccMethod{bool is_infinite(const Cell_handle c) const;} +\ccMethod{bool is_infinite(Cell_handle c) const;} {\ccc{true}, iff \ccc{c} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $=3$.}} \ccGlue -\ccMethod{bool is_infinite(const Cell_handle c, int i) const;} +\ccMethod{bool is_infinite(Cell_handle c, int i) const;} {\ccc{true}, iff the facet \ccc{i} of cell \ccc{c} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$ and $i\in\{0,1,2,3\}$ in @@ -299,7 +299,7 @@ dimension~3, $i=3$ in dimension~2.}} {\ccc{true} iff facet \ccc{f} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$.}} \ccGlue -\ccMethod{bool is_infinite(const Cell_handle c, int i, int j) const;} +\ccMethod{bool is_infinite(Cell_handle c, int i, int j) const;} {\ccc{true}, iff the edge \ccc{(i,j)} of cell \ccc{c} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and $i\neq j$. Moreover