Automatic documentation by generate_reference_manual version 1.2

This commit is contained in:
Laurent Saboret 2009-04-16 14:45:42 +00:00
parent 3697a848b8
commit cb4a60cc50
21 changed files with 28 additions and 28 deletions

View File

@ -92,7 +92,7 @@ Kernel's \ccc{Vector_3} class.
\ccConstructor{Lightweight_vector_3(Null_vector = NULL_VECTOR);}
{
Vector is (0,0,0) by default.
Vector is (0, 0, 0) by default.
}
\ccGlue
\ccConstructor{Lightweight_vector_3(const Vector& vector);}

View File

@ -69,7 +69,7 @@ Kernel's \ccc{Vector_3} class.
\ccConstructor{OrientableNormal_3(Null_vector = NULL_VECTOR);}
{
Normal vector is (0,0,0) by default. Normal is oriented by default.
Normal vector is (0, 0, 0) by default. Normal is oriented by default.
}
\ccGlue
\ccConstructor{OrientableNormal_3(const Vector& vector, bool oriented = true);}

View File

@ -101,7 +101,7 @@ Kernel's \ccc{Vector_3} class.
\ccConstructor{Orientable_normal_3(Null_vector = NULL_VECTOR, bool oriented = true);}
{
Normal vector is (0,0,0) by default. Normal is oriented by default.
Normal vector is (0, 0, 0) by default. Normal is oriented by default.
}
\ccGlue
\ccConstructor{Orientable_normal_3(const Vector& vector, bool oriented = true);}

View File

@ -75,7 +75,7 @@ Model of \ccc{Kernel::Vector_3} or of \ccc{OrientableNormal_3}.
\ccConstructor{PointWithNormal_3(const Origin& o = ORIGIN);}
{
Point is (0,0,0) by default. Normal is (0,0,0) by default.
Point is (0, 0, 0) by default. Normal is (0, 0, 0) by default.
}
\ccGlue
\ccConstructor{PointWithNormal_3(FT x, FT y, FT z, const Normal& normal = NULL_VECTOR);}

View File

@ -110,7 +110,7 @@ Model of \ccc{Kernel::Vector_3} or of \ccc{OrientableNormal_3}.
\ccConstructor{Point_with_normal_3(const Origin& o = ORIGIN);}
{
Point is (0,0,0) by default. Normal is (0,0,0) by default. Normal is oriented by default.
Point is (0, 0, 0) by default. Normal is (0, 0, 0) by default. Normal is oriented by default.
}
\ccGlue
\ccConstructor{Point_with_normal_3(FT x, FT y, FT z, const Normal& normal = NULL_VECTOR);}

View File

@ -28,7 +28,7 @@ The class \ccc{Barycentric_mapping_parameterizer_3} implements Tutte Barycentric
One-to-one mapping is guaranteed if the surface's border is mapped to a convex polygon.
This class is a Strategy \cite{cgal:ghjv-dpero-95} called by the main parameterization algorithm \ccc{Fixed_border_parameterizer_3::parameterize}(). \ccc{Barycentric_mapping_parameterizer_3}:\begin{itemize}
\item provides default \ccc{BorderParameterizer_3} and \ccc{SparseLinearAlgebraTraits_d} template parameters that make sense.\item implements \ccc{compute_w_ij}() to compute \ccc{w_ij} = (i,j) coefficient of matrix A for j neighbor vertex of i based on Tutte Barycentric Mapping method.\item implements an optimized version of \ccc{is_one_to_one_mapping}().\end{itemize}
\item provides default \ccc{BorderParameterizer_3} and \ccc{SparseLinearAlgebraTraits_d} template parameters that make sense.\item implements \ccc{compute_w_ij}() to compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i based on Tutte Barycentric Mapping method.\item implements an optimized version of \ccc{is_one_to_one_mapping}().\end{itemize}
%END-AUTO(\ccDefinition)
@ -116,7 +116,7 @@ Constructor.
\ccMethod{virtual NT compute_w_ij(const Adaptor& , Vertex_const_handle, Vertex_around_vertex_const_circulator);}
{
[protected, virtual] \\
Compute \ccc{w_ij} = (i,j) coefficient of matrix A for j neighbor vertex of i.
Compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i.
Tutte Barycentric Mapping algorithm is the most simple one: \ccc{w_ij} = 1 for j neighbor vertex of i.
}
\ccGlue

View File

@ -76,7 +76,7 @@ Construction and destruction are undefined.
\ccMethod{Error_code parameterize_border(Adaptor& mesh);}
{
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}. Return false on error.
Assign to mesh's border vertices a 2D position (i.e. a (u, v) pair) on border's shape. Mark them as {\em parameterized}. Return false on error.
}
\ccGlue
\ccMethod{bool is_border_convex();}

View File

@ -26,7 +26,7 @@ for fixed border parameterization methods.
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccDefinition)
This class parameterizes the border of a 3D surface onto a circle, with an arc-length parameterization: (u,v) values are proportional to the length of border edges. \ccc{Circular_border_parameterizer_3} implements most of the border parameterization algorithm. This class implements only \ccc{compute_edge_length}() to compute a segment's length.
This class parameterizes the border of a 3D surface onto a circle, with an arc-length parameterization: (u, v) values are proportional to the length of border edges. \ccc{Circular_border_parameterizer_3} implements most of the border parameterization algorithm. This class implements only \ccc{compute_edge_length}() to compute a segment's length.
%END-AUTO(\ccDefinition)
@ -99,7 +99,7 @@ class \ccc{Circular_border_arc_length_parameterizer_3};
{
[protected, virtual] \\
Compute the length of an edge.
Arc-length border parameterization: (u,v) values are proportional to the length of border edges.
Arc-length border parameterization: (u, v) values are proportional to the length of border edges.
}
\ccGlue

View File

@ -100,7 +100,7 @@ Export \ccc{ParameterizationMesh_3} template parameter.
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
{
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
Assign to mesh's border vertices a 2D position (i.e. a (u, v) pair) on border's shape. Mark them as {\em parameterized}.
}
\ccGlue
\ccMethod{bool is_border_convex();}

View File

@ -118,7 +118,7 @@ Constructor.
\ccMethod{virtual NT compute_w_ij(const Adaptor& mesh, Vertex_const_handle main_vertex_v_i, Vertex_around_vertex_const_circulator neighbor_vertex_v_j);}
{
[protected, virtual] \\
Compute \ccc{w_ij} = (i,j) coefficient of matrix A for j neighbor vertex of i.
Compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i.
}
\ccGlue

View File

@ -131,7 +131,7 @@ Constructor.
\ccMethod{Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code parameterize(Adaptor& mesh);}
{
[virtual] \\
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
\ccCommentHeading{Preconditions}\begin{itemize}
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh.\item the mesh border must be mapped onto a convex polygon. \end{itemize}
}
@ -169,7 +169,7 @@ Compute the line i of matrix A for i inner vertex:\begin{itemize}
\ccMethod{void set_mesh_uv_from_system(Adaptor& mesh, const Vector& Xu, const Vector& Xv);}
{
[protected] \\
Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
Copy Xu and Xv coordinates into the (u, v) pair of each surface vertex.
}
\ccGlue
\ccMethod{Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code check_parameterize_postconditions(const Adaptor& mesh, const Matrix& A, const Vector& Bu, const Vector& Bv);}

View File

@ -130,7 +130,7 @@ Constructor.
\ccMethod{LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code parameterize(Adaptor& mesh);}
{
[virtual] \\
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
\ccCommentHeading{Preconditions}\begin{itemize}
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
}

View File

@ -67,7 +67,7 @@ Number type to represent coordinates.
\ccGlue
\ccNestedType{Point_2}
{
2D point that represents (u,v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
2D point that represents (u, v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
}
\ccGlue
\ccNestedType{Point_3}

View File

@ -94,7 +94,7 @@ Get/set oriented edge's seaming flag, i.e. position of the oriented edge w.r.t.
\ccGlue
\ccMethod{Point_2 get_corners_uv(Vertex_const_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex) const;}
{
Get/set the 2D position (= (u,v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined.
Get/set the 2D position (= (u, v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined.
}
\ccGlue
\ccMethod{void set_corners_uv(Vertex_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex, const Point_2& uv);}

View File

@ -103,7 +103,7 @@ Number type to represent coordinates.
\ccGlue
\ccNestedType{Point_2}
{
2D point that represents (u,v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
2D point that represents (u, v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
}
\ccGlue
\ccNestedType{Point_3}

View File

@ -23,7 +23,7 @@
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccDefinition)
\ccc{Parameterization_polyhedron_adaptor_3} is an adaptor class to access to a Polyhedron 3D mesh using the \ccc{ParameterizationPatchableMesh_3} interface. Among other things, this concept defines the accessor to the (u,v) values computed by parameterizations methods.
\ccc{Parameterization_polyhedron_adaptor_3} is an adaptor class to access to a Polyhedron 3D mesh using the \ccc{ParameterizationPatchableMesh_3} interface. Among other things, this concept defines the accessor to the (u, v) values computed by parameterizations methods.
Note that these interfaces are decorators that add {\em on the fly} the necessary fields to unmodified CGAL data structures (using STL maps). For performance reasons, it is recommended to use CGAL data structures enriched with the proper fields.
@ -105,7 +105,7 @@ Number type to represent coordinates.
\ccGlue
\ccNestedType{Point_2}
{
2D point that represents (u,v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
2D point that represents (u, v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
}
\ccGlue
\ccNestedType{Point_3}
@ -442,7 +442,7 @@ Get/set oriented edge's seaming flag, i.e. position of the oriented edge w.r.t.
\ccGlue
\ccMethod{Point_2 get_corners_uv(Vertex_const_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex) const;}
{
Get/set the 2D position (= (u,v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined. (stored in incident halfedges).
Get/set the 2D position (= (u, v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined. (stored in incident halfedges).
}
\ccGlue
\ccMethod{void set_corners_uv(Vertex_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex, const Point_2& uv);}

View File

@ -96,7 +96,7 @@ Construction and destruction are undefined.
\ccMethod{Error_code parameterize(Adaptor& mesh);}
{
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
\ccCommentHeading{Preconditions}\begin{itemize}
\item \ccc{mesh} must be a surface with one connected component and no hole.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
}

View File

@ -234,7 +234,7 @@ List of errors detected by this package.
\ccMethod{virtual Error_code parameterize(Adaptor& mesh);}
{
[pure virtual] \\
Compute a one-to-one mapping from a 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
Compute a one-to-one mapping from a 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
\ccCommentHeading{Preconditions}\begin{itemize}
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
}

View File

@ -23,7 +23,7 @@
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccDefinition)
This class parameterizes the border of a 3D surface onto a square, with an arc-length parameterization: (u,v) values are proportional to the length of border edges.
This class parameterizes the border of a 3D surface onto a square, with an arc-length parameterization: (u, v) values are proportional to the length of border edges.
\ccc{Square_border_parameterizer_3} implements most of the border parameterization algorithm. This class implements only \ccc{compute_edge_length}() to compute a segment's length.
@ -98,7 +98,7 @@ class \ccc{Square_border_arc_length_parameterizer_3};
{
[protected, virtual] \\
Compute the length of an edge.
Arc-length border parameterization: (u,v) values are proportional to the length of border edges.
Arc-length border parameterization: (u, v) values are proportional to the length of border edges.
}
\ccGlue

View File

@ -102,7 +102,7 @@ Export \ccc{ParameterizationMesh_3} template parameter.
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
{
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
Assign to mesh's border vertices a 2D position (i.e. a (u, v) pair) on border's shape. Mark them as {\em parameterized}.
}
\ccGlue
\ccMethod{bool is_border_convex();}

View File

@ -36,7 +36,7 @@ of Floater Mean Value Coordinates.
\ccFunction{template<class ParameterizationMesh_3> Parameterizer_traits_3<ParameterizationMesh_3>::Error_code parameterize(ParameterizationMesh_3& mesh);}
{
Compute a one-to-one mapping from a 3D triangle surface \ccc{mesh} to a 2D circle, using Floater Mean Value Coordinates algorithm. A one-to-one mapping is guaranteed.
The mapping is piecewise linear on the input mesh triangles. The result is a (u,v) pair of parameter coordinates for each vertex of the input mesh.
The mapping is piecewise linear on the input mesh triangles. The result is a (u, v) pair of parameter coordinates for each vertex of the input mesh.
\ccCommentHeading{Preconditions}\begin{itemize}
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
\ccCommentHeading{Parameters}
@ -45,7 +45,7 @@ The mapping is piecewise linear on the input mesh triangles. The result is a (u,
\ccGlue
\ccFunction{template<class ParameterizationMesh_3, class ParameterizerTraits_3> Parameterizer_traits_3<ParameterizationMesh_3>::Error_code parameterize(ParameterizationMesh_3& mesh, ParameterizerTraits_3 parameterizer);}
{
Compute a one-to-one mapping from a 3D triangle surface \ccc{mesh} to a simple 2D domain. The mapping is piecewise linear on the triangle mesh. The result is a pair (u,v) of parameter coordinates for each vertex of the input mesh.
Compute a one-to-one mapping from a 3D triangle surface \ccc{mesh} to a simple 2D domain. The mapping is piecewise linear on the triangle mesh. The result is a pair (u, v) of parameter coordinates for each vertex of the input mesh.
One-to-one mapping may be guaranteed or not, depending on the chosen \ccc{ParametizerTraits_3} algorithm.
\ccCommentHeading{Preconditions}\begin{itemize}
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh.\item the mesh border must be mapped onto a convex polygon (for fixed border parameterizations). \end{itemize}