mirror of https://github.com/CGAL/cgal
Automatic documentation by generate_reference_manual version 1.2
This commit is contained in:
parent
3697a848b8
commit
cb4a60cc50
|
|
@ -92,7 +92,7 @@ Kernel's \ccc{Vector_3} class.
|
|||
|
||||
\ccConstructor{Lightweight_vector_3(Null_vector = NULL_VECTOR);}
|
||||
{
|
||||
Vector is (0,0,0) by default.
|
||||
Vector is (0, 0, 0) by default.
|
||||
}
|
||||
\ccGlue
|
||||
\ccConstructor{Lightweight_vector_3(const Vector& vector);}
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ Kernel's \ccc{Vector_3} class.
|
|||
|
||||
\ccConstructor{OrientableNormal_3(Null_vector = NULL_VECTOR);}
|
||||
{
|
||||
Normal vector is (0,0,0) by default. Normal is oriented by default.
|
||||
Normal vector is (0, 0, 0) by default. Normal is oriented by default.
|
||||
}
|
||||
\ccGlue
|
||||
\ccConstructor{OrientableNormal_3(const Vector& vector, bool oriented = true);}
|
||||
|
|
|
|||
|
|
@ -101,7 +101,7 @@ Kernel's \ccc{Vector_3} class.
|
|||
|
||||
\ccConstructor{Orientable_normal_3(Null_vector = NULL_VECTOR, bool oriented = true);}
|
||||
{
|
||||
Normal vector is (0,0,0) by default. Normal is oriented by default.
|
||||
Normal vector is (0, 0, 0) by default. Normal is oriented by default.
|
||||
}
|
||||
\ccGlue
|
||||
\ccConstructor{Orientable_normal_3(const Vector& vector, bool oriented = true);}
|
||||
|
|
|
|||
|
|
@ -75,7 +75,7 @@ Model of \ccc{Kernel::Vector_3} or of \ccc{OrientableNormal_3}.
|
|||
|
||||
\ccConstructor{PointWithNormal_3(const Origin& o = ORIGIN);}
|
||||
{
|
||||
Point is (0,0,0) by default. Normal is (0,0,0) by default.
|
||||
Point is (0, 0, 0) by default. Normal is (0, 0, 0) by default.
|
||||
}
|
||||
\ccGlue
|
||||
\ccConstructor{PointWithNormal_3(FT x, FT y, FT z, const Normal& normal = NULL_VECTOR);}
|
||||
|
|
|
|||
|
|
@ -110,7 +110,7 @@ Model of \ccc{Kernel::Vector_3} or of \ccc{OrientableNormal_3}.
|
|||
|
||||
\ccConstructor{Point_with_normal_3(const Origin& o = ORIGIN);}
|
||||
{
|
||||
Point is (0,0,0) by default. Normal is (0,0,0) by default. Normal is oriented by default.
|
||||
Point is (0, 0, 0) by default. Normal is (0, 0, 0) by default. Normal is oriented by default.
|
||||
}
|
||||
\ccGlue
|
||||
\ccConstructor{Point_with_normal_3(FT x, FT y, FT z, const Normal& normal = NULL_VECTOR);}
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ The class \ccc{Barycentric_mapping_parameterizer_3} implements Tutte Barycentric
|
|||
One-to-one mapping is guaranteed if the surface's border is mapped to a convex polygon.
|
||||
|
||||
This class is a Strategy \cite{cgal:ghjv-dpero-95} called by the main parameterization algorithm \ccc{Fixed_border_parameterizer_3::parameterize}(). \ccc{Barycentric_mapping_parameterizer_3}:\begin{itemize}
|
||||
\item provides default \ccc{BorderParameterizer_3} and \ccc{SparseLinearAlgebraTraits_d} template parameters that make sense.\item implements \ccc{compute_w_ij}() to compute \ccc{w_ij} = (i,j) coefficient of matrix A for j neighbor vertex of i based on Tutte Barycentric Mapping method.\item implements an optimized version of \ccc{is_one_to_one_mapping}().\end{itemize}
|
||||
\item provides default \ccc{BorderParameterizer_3} and \ccc{SparseLinearAlgebraTraits_d} template parameters that make sense.\item implements \ccc{compute_w_ij}() to compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i based on Tutte Barycentric Mapping method.\item implements an optimized version of \ccc{is_one_to_one_mapping}().\end{itemize}
|
||||
|
||||
%END-AUTO(\ccDefinition)
|
||||
|
||||
|
|
@ -116,7 +116,7 @@ Constructor.
|
|||
\ccMethod{virtual NT compute_w_ij(const Adaptor& , Vertex_const_handle, Vertex_around_vertex_const_circulator);}
|
||||
{
|
||||
[protected, virtual] \\
|
||||
Compute \ccc{w_ij} = (i,j) coefficient of matrix A for j neighbor vertex of i.
|
||||
Compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i.
|
||||
Tutte Barycentric Mapping algorithm is the most simple one: \ccc{w_ij} = 1 for j neighbor vertex of i.
|
||||
}
|
||||
\ccGlue
|
||||
|
|
|
|||
|
|
@ -76,7 +76,7 @@ Construction and destruction are undefined.
|
|||
|
||||
\ccMethod{Error_code parameterize_border(Adaptor& mesh);}
|
||||
{
|
||||
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}. Return false on error.
|
||||
Assign to mesh's border vertices a 2D position (i.e. a (u, v) pair) on border's shape. Mark them as {\em parameterized}. Return false on error.
|
||||
}
|
||||
\ccGlue
|
||||
\ccMethod{bool is_border_convex();}
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ for fixed border parameterization methods.
|
|||
% The section below is automatically generated. Do not edit!
|
||||
%START-AUTO(\ccDefinition)
|
||||
|
||||
This class parameterizes the border of a 3D surface onto a circle, with an arc-length parameterization: (u,v) values are proportional to the length of border edges. \ccc{Circular_border_parameterizer_3} implements most of the border parameterization algorithm. This class implements only \ccc{compute_edge_length}() to compute a segment's length.
|
||||
This class parameterizes the border of a 3D surface onto a circle, with an arc-length parameterization: (u, v) values are proportional to the length of border edges. \ccc{Circular_border_parameterizer_3} implements most of the border parameterization algorithm. This class implements only \ccc{compute_edge_length}() to compute a segment's length.
|
||||
|
||||
%END-AUTO(\ccDefinition)
|
||||
|
||||
|
|
@ -99,7 +99,7 @@ class \ccc{Circular_border_arc_length_parameterizer_3};
|
|||
{
|
||||
[protected, virtual] \\
|
||||
Compute the length of an edge.
|
||||
Arc-length border parameterization: (u,v) values are proportional to the length of border edges.
|
||||
Arc-length border parameterization: (u, v) values are proportional to the length of border edges.
|
||||
}
|
||||
\ccGlue
|
||||
|
||||
|
|
|
|||
|
|
@ -100,7 +100,7 @@ Export \ccc{ParameterizationMesh_3} template parameter.
|
|||
|
||||
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
|
||||
{
|
||||
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
|
||||
Assign to mesh's border vertices a 2D position (i.e. a (u, v) pair) on border's shape. Mark them as {\em parameterized}.
|
||||
}
|
||||
\ccGlue
|
||||
\ccMethod{bool is_border_convex();}
|
||||
|
|
|
|||
|
|
@ -118,7 +118,7 @@ Constructor.
|
|||
\ccMethod{virtual NT compute_w_ij(const Adaptor& mesh, Vertex_const_handle main_vertex_v_i, Vertex_around_vertex_const_circulator neighbor_vertex_v_j);}
|
||||
{
|
||||
[protected, virtual] \\
|
||||
Compute \ccc{w_ij} = (i,j) coefficient of matrix A for j neighbor vertex of i.
|
||||
Compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i.
|
||||
}
|
||||
\ccGlue
|
||||
|
||||
|
|
|
|||
|
|
@ -131,7 +131,7 @@ Constructor.
|
|||
\ccMethod{Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code parameterize(Adaptor& mesh);}
|
||||
{
|
||||
[virtual] \\
|
||||
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
|
||||
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
|
||||
\ccCommentHeading{Preconditions}\begin{itemize}
|
||||
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh.\item the mesh border must be mapped onto a convex polygon. \end{itemize}
|
||||
}
|
||||
|
|
@ -169,7 +169,7 @@ Compute the line i of matrix A for i inner vertex:\begin{itemize}
|
|||
\ccMethod{void set_mesh_uv_from_system(Adaptor& mesh, const Vector& Xu, const Vector& Xv);}
|
||||
{
|
||||
[protected] \\
|
||||
Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
|
||||
Copy Xu and Xv coordinates into the (u, v) pair of each surface vertex.
|
||||
}
|
||||
\ccGlue
|
||||
\ccMethod{Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code check_parameterize_postconditions(const Adaptor& mesh, const Matrix& A, const Vector& Bu, const Vector& Bv);}
|
||||
|
|
|
|||
|
|
@ -130,7 +130,7 @@ Constructor.
|
|||
\ccMethod{LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code parameterize(Adaptor& mesh);}
|
||||
{
|
||||
[virtual] \\
|
||||
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
|
||||
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
|
||||
\ccCommentHeading{Preconditions}\begin{itemize}
|
||||
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -67,7 +67,7 @@ Number type to represent coordinates.
|
|||
\ccGlue
|
||||
\ccNestedType{Point_2}
|
||||
{
|
||||
2D point that represents (u,v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
|
||||
2D point that represents (u, v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
|
||||
}
|
||||
\ccGlue
|
||||
\ccNestedType{Point_3}
|
||||
|
|
|
|||
|
|
@ -94,7 +94,7 @@ Get/set oriented edge's seaming flag, i.e. position of the oriented edge w.r.t.
|
|||
\ccGlue
|
||||
\ccMethod{Point_2 get_corners_uv(Vertex_const_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex) const;}
|
||||
{
|
||||
Get/set the 2D position (= (u,v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined.
|
||||
Get/set the 2D position (= (u, v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined.
|
||||
}
|
||||
\ccGlue
|
||||
\ccMethod{void set_corners_uv(Vertex_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex, const Point_2& uv);}
|
||||
|
|
|
|||
|
|
@ -103,7 +103,7 @@ Number type to represent coordinates.
|
|||
\ccGlue
|
||||
\ccNestedType{Point_2}
|
||||
{
|
||||
2D point that represents (u,v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
|
||||
2D point that represents (u, v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
|
||||
}
|
||||
\ccGlue
|
||||
\ccNestedType{Point_3}
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@
|
|||
% The section below is automatically generated. Do not edit!
|
||||
%START-AUTO(\ccDefinition)
|
||||
|
||||
\ccc{Parameterization_polyhedron_adaptor_3} is an adaptor class to access to a Polyhedron 3D mesh using the \ccc{ParameterizationPatchableMesh_3} interface. Among other things, this concept defines the accessor to the (u,v) values computed by parameterizations methods.
|
||||
\ccc{Parameterization_polyhedron_adaptor_3} is an adaptor class to access to a Polyhedron 3D mesh using the \ccc{ParameterizationPatchableMesh_3} interface. Among other things, this concept defines the accessor to the (u, v) values computed by parameterizations methods.
|
||||
|
||||
Note that these interfaces are decorators that add {\em on the fly} the necessary fields to unmodified CGAL data structures (using STL maps). For performance reasons, it is recommended to use CGAL data structures enriched with the proper fields.
|
||||
|
||||
|
|
@ -105,7 +105,7 @@ Number type to represent coordinates.
|
|||
\ccGlue
|
||||
\ccNestedType{Point_2}
|
||||
{
|
||||
2D point that represents (u,v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
|
||||
2D point that represents (u, v) coordinates computed by parameterization methods. Must provide X() and Y() methods.
|
||||
}
|
||||
\ccGlue
|
||||
\ccNestedType{Point_3}
|
||||
|
|
@ -442,7 +442,7 @@ Get/set oriented edge's seaming flag, i.e. position of the oriented edge w.r.t.
|
|||
\ccGlue
|
||||
\ccMethod{Point_2 get_corners_uv(Vertex_const_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex) const;}
|
||||
{
|
||||
Get/set the 2D position (= (u,v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined. (stored in incident halfedges).
|
||||
Get/set the 2D position (= (u, v) pair) of corners at the {\em right} of the \ccc{prev_vertex} -$>$ vertex -$>$ \ccc{next_vertex} line. Default value is undefined. (stored in incident halfedges).
|
||||
}
|
||||
\ccGlue
|
||||
\ccMethod{void set_corners_uv(Vertex_handle vertex, Vertex_const_handle prev_vertex, Vertex_const_handle next_vertex, const Point_2& uv);}
|
||||
|
|
|
|||
|
|
@ -96,7 +96,7 @@ Construction and destruction are undefined.
|
|||
|
||||
\ccMethod{Error_code parameterize(Adaptor& mesh);}
|
||||
{
|
||||
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
|
||||
Compute a one-to-one mapping from a triangular 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
|
||||
\ccCommentHeading{Preconditions}\begin{itemize}
|
||||
\item \ccc{mesh} must be a surface with one connected component and no hole.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -234,7 +234,7 @@ List of errors detected by this package.
|
|||
\ccMethod{virtual Error_code parameterize(Adaptor& mesh);}
|
||||
{
|
||||
[pure virtual] \\
|
||||
Compute a one-to-one mapping from a 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface.
|
||||
Compute a one-to-one mapping from a 3D surface \ccc{mesh} to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u, v) pair image of each vertex of the 3D surface.
|
||||
\ccCommentHeading{Preconditions}\begin{itemize}
|
||||
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@
|
|||
% The section below is automatically generated. Do not edit!
|
||||
%START-AUTO(\ccDefinition)
|
||||
|
||||
This class parameterizes the border of a 3D surface onto a square, with an arc-length parameterization: (u,v) values are proportional to the length of border edges.
|
||||
This class parameterizes the border of a 3D surface onto a square, with an arc-length parameterization: (u, v) values are proportional to the length of border edges.
|
||||
|
||||
\ccc{Square_border_parameterizer_3} implements most of the border parameterization algorithm. This class implements only \ccc{compute_edge_length}() to compute a segment's length.
|
||||
|
||||
|
|
@ -98,7 +98,7 @@ class \ccc{Square_border_arc_length_parameterizer_3};
|
|||
{
|
||||
[protected, virtual] \\
|
||||
Compute the length of an edge.
|
||||
Arc-length border parameterization: (u,v) values are proportional to the length of border edges.
|
||||
Arc-length border parameterization: (u, v) values are proportional to the length of border edges.
|
||||
}
|
||||
\ccGlue
|
||||
|
||||
|
|
|
|||
|
|
@ -102,7 +102,7 @@ Export \ccc{ParameterizationMesh_3} template parameter.
|
|||
|
||||
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
|
||||
{
|
||||
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
|
||||
Assign to mesh's border vertices a 2D position (i.e. a (u, v) pair) on border's shape. Mark them as {\em parameterized}.
|
||||
}
|
||||
\ccGlue
|
||||
\ccMethod{bool is_border_convex();}
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ of Floater Mean Value Coordinates.
|
|||
\ccFunction{template<class ParameterizationMesh_3> Parameterizer_traits_3<ParameterizationMesh_3>::Error_code parameterize(ParameterizationMesh_3& mesh);}
|
||||
{
|
||||
Compute a one-to-one mapping from a 3D triangle surface \ccc{mesh} to a 2D circle, using Floater Mean Value Coordinates algorithm. A one-to-one mapping is guaranteed.
|
||||
The mapping is piecewise linear on the input mesh triangles. The result is a (u,v) pair of parameter coordinates for each vertex of the input mesh.
|
||||
The mapping is piecewise linear on the input mesh triangles. The result is a (u, v) pair of parameter coordinates for each vertex of the input mesh.
|
||||
\ccCommentHeading{Preconditions}\begin{itemize}
|
||||
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh. \end{itemize}
|
||||
\ccCommentHeading{Parameters}
|
||||
|
|
@ -45,7 +45,7 @@ The mapping is piecewise linear on the input mesh triangles. The result is a (u,
|
|||
\ccGlue
|
||||
\ccFunction{template<class ParameterizationMesh_3, class ParameterizerTraits_3> Parameterizer_traits_3<ParameterizationMesh_3>::Error_code parameterize(ParameterizationMesh_3& mesh, ParameterizerTraits_3 parameterizer);}
|
||||
{
|
||||
Compute a one-to-one mapping from a 3D triangle surface \ccc{mesh} to a simple 2D domain. The mapping is piecewise linear on the triangle mesh. The result is a pair (u,v) of parameter coordinates for each vertex of the input mesh.
|
||||
Compute a one-to-one mapping from a 3D triangle surface \ccc{mesh} to a simple 2D domain. The mapping is piecewise linear on the triangle mesh. The result is a pair (u, v) of parameter coordinates for each vertex of the input mesh.
|
||||
One-to-one mapping may be guaranteed or not, depending on the chosen \ccc{ParametizerTraits_3} algorithm.
|
||||
\ccCommentHeading{Preconditions}\begin{itemize}
|
||||
\item \ccc{mesh} must be a surface with one connected component.\item \ccc{mesh} must be a triangular mesh.\item the mesh border must be mapped onto a convex polygon (for fixed border parameterizations). \end{itemize}
|
||||
|
|
|
|||
Loading…
Reference in New Issue