diff --git a/Surface_mesher/doc/Surface_mesher/Concepts/SurfaceMeshTriangulation_3.h b/Surface_mesher/doc/Surface_mesher/Concepts/SurfaceMeshTriangulation_3.h index e7b1b9d0322..8ec09112946 100644 --- a/Surface_mesher/doc/Surface_mesher/Concepts/SurfaceMeshTriangulation_3.h +++ b/Surface_mesher/doc/Surface_mesher/Concepts/SurfaceMeshTriangulation_3.h @@ -346,7 +346,7 @@ all the cells (resp. facets) describing the hole, creates a new vertex a new cell (resp. facet) with `v` as vertex. Then `v->set_point(p)` is called and `v` is returned. -\pre `t.dimension() >= 2`, the set of cells (resp. facets in dimension 2) is connected, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`. +\pre `dimension() >= 2`, the set of cells (resp. facets in dimension 2) is connected, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`. */ template Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end, diff --git a/TDS_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h b/TDS_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h index ae4e294c525..c31a4fd8d46 100644 --- a/TDS_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h +++ b/TDS_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h @@ -118,7 +118,7 @@ typedef unspecified_type Cell_handle; /*! Can be `CGAL::Sequential_tag`, `CGAL::Parallel_tag`, or `Parallel_if_available_tag`. If it is `CGAL::Parallel_tag`, the following functions can be called concurrently: -`create_vertex`, `create_cell`, `delete_vertex`, `delete_cell`. +`create_vertex()`, `create_cell()`, `delete_vertex()`, `delete_cell()`. */ typedef unspecified_type Concurrency_tag; @@ -232,13 +232,13 @@ TriangulationDataStructure_3(const TriangulationDataStructure_3 & tds1); /*! Assignment operator. All vertices and cells are duplicated, and the former -data structure of `tds` is deleted. +data structure is deleted. */ TriangulationDataStructure_3& operator= (const TriangulationDataStructure_3 & tds1); /*! -`tds1` is copied into `tds`. If `v != Vertex_handle()`, -the vertex of `tds` corresponding to `v` is returned, +`tds1` is copied into `this`. If `v != Vertex_handle()`, +the vertex corresponding to `v` is returned, otherwise `Vertex_handle()` is returned. \pre The optional argument `v` is a vertex of `tds1`. */ @@ -266,19 +266,19 @@ otherwise `Vertex_handle()` is returned. \pre The optional argument `v` is a vertex of `tds_src` or is `Vertex_handle()`. */ template -Vertex_handle tds.copy_tds(const TDS_src& tds_src, typename TDS_src::Vertex_handle v, const ConvertVertex& convert_vertex, const ConvertCell& convert_cell); +Vertex_handle copy_tds(const TDS_src& tds_src, typename TDS_src::Vertex_handle v, const ConvertVertex& convert_vertex, const ConvertCell& convert_cell); /*! -Swaps `tds` and `tds1`. There is no copy of cells and vertices, +Swaps `this` and `tds1`. There is no copy of cells and vertices, thus this method runs in constant time. This method should be preferred to -`tds`=`tds1` or `tds`(`tds1`) when `tds1` is deleted after -that. +copy assignment (`*this = tds1`) or copy construction (`*this(tds1)`) +if `tds1` is deleted after the copy. */ void swap(TriangulationDataStructure_3 & tds1); /*! -Deletes all cells and vertices. `tds` is reset as a triangulation -data structure constructed by the default constructor. +Deletes all cells and vertices. The triangulation data structure is reset as if +constructed by the default constructor. */ void clear(); @@ -301,7 +301,7 @@ counted. size_type number_of_vertices() const; /*! -The number of cells. Returns 0 if `tds`.`dimension()`\f$ <3\f$. +The number of cells. Returns 0 if `dimension()`\f$ <3\f$. */ size_type number_of_cells() const; @@ -311,12 +311,12 @@ size_type number_of_cells() const; /// @{ /*! -The number of facets. Returns 0 if `tds`.`dimension()`\f$ <2\f$. +The number of facets. Returns 0 if `dimension()`\f$ <2\f$. */ size_type number_of_facets() const; /*! -The number of edges. Returns 0 if `tds`.`dimension()`\f$ <1\f$. +The number of edges. Returns 0 if `dimension()`\f$ <1\f$. */ size_type number_of_edges() const; @@ -339,19 +339,19 @@ void set_dimension(int n); /// @{ /*! -Tests whether `v` is a vertex of `tds`. +Tests whether `v` is a vertex of the triangulation data structure. */ bool is_vertex(Vertex_handle v) const; /*! -Tests whether `(c,i,j)` is an edge of `tds`. Answers `false` when -`dimension()` \f$ <1\f$ . +Tests whether `(c,i,j)` is an edge of the triangulation data structure. +Answers `false` when `dimension()` \f$ <1\f$ . \pre \f$ i,j \in\{0,1,2,3\}\f$ */ bool is_edge(Cell_handle c, int i, int j) const; /*! -Tests whether `(u,v)` is an edge of `tds`. If the edge is found, +Tests whether `(u,v)` is an edge of the triangulation data structure. If the edge is found, it computes a cell `c` having this edge and the indices `i` and `j` of the vertices `u` and `v`, in this order. */ @@ -359,19 +359,19 @@ bool is_edge(Vertex_handle u, Vertex_handle v, Cell_handle & c, int & i, int & j) const; /*! -Tests whether `(u,v)` is an edge of `tds`. +Tests whether `(u,v)` is an edge of the triangulation data structure. */ bool is_edge(Vertex_handle u, Vertex_handle v) const; /*! -Tests whether `(c,i)` is a facet of `tds`. Answers `false` when -`dimension()` \f$ <2\f$ . +Tests whether `(c,i)` is a facet of of the triangulation data structure. +Answers `false` when `dimension()` \f$ <2\f$ . \pre \f$ i \in\{0,1,2,3\}\f$ */ bool is_facet(Cell_handle c, int i) const; /*! -Tests whether `(u,v,w)` is a facet of `tds`. If the facet is found, +Tests whether `(u,v,w)` is a facet of the triangulation data structure. If the facet is found, it computes a cell `c` having this facet and the indices `i`, `j` and `k` of the vertices `u`, `v` and `w`, in this order. @@ -380,13 +380,13 @@ bool is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w, Cell_handle & c, int & i, int & j, int & k) const; /*! -Tests whether `c` is a cell of `tds`. Answers `false` when -`dimension()` \f$ <3\f$ . +Tests whether `c` is a cell of the triangulation data structure. +Answers `false` when `dimension()` \f$ <3\f$ . */ bool is_cell(Cell_handle c) const; /*! -Tests whether `(u,v,w,t)` is a cell of `tds`. If the cell +Tests whether `(u,v,w,t)` is a cell of the triangulation data structure. If the cell `c` is found, it computes the indices `i`, `j`, `k` and `l` of the vertices `u`, `v`, `w` and `t` in `c`, in this order. @@ -401,7 +401,7 @@ Cell_handle & c, int & i, int & j, int & k, int & l) const; /*! If `v` is a vertex of `f`, then `j` is the index of `v` in the cell `f.first`, and the method returns `true`. -\pre `tds`.dimension()=3 +\pre `dimension() == 3` */ bool has_vertex(const Facet & f, Vertex_handle v, int & j) const; @@ -429,17 +429,17 @@ bool has_vertex(Cell_handle c, int i, Vertex_handle v) const; /// @{ /*! - +\pre `dimension() == 3` */ bool are_equal(const Facet & f, const Facet & g) const; /*! - +\pre `dimension() == 3` */ bool are_equal(Cell_handle c, int i, Cell_handle n, int j) const; /*! -For these three methods: \pre `tds`.dimension()=3. +\pre `dimension() == 3` */ bool are_equal(const Facet & f, Cell_handle n, int j) const; @@ -602,15 +602,14 @@ described, and `begin->neighbor(i)` does not. Then this function deletes all the cells (resp. facets) describing the hole, creates a new vertex `v`, and for each facet (resp. edge) on the boundary of the hole, creates a new cell (resp. facet) with `v` as vertex. `v` is returned. -\pre `tds`.`dimension()` \f$ \geq2\f$, the set of cells (resp. facets) is connected, and its boundary is connected. +\pre `dimension()` \f$ \geq2\f$, the set of cells (resp. facets) is connected, and its boundary is connected. */ template Vertex_handle insert_in_hole(CellIt cell_begin, CellIt cell_end, Cell_handle begin, int i); /*! -Same as above, except that `newv` will be used as the new vertex, which -must have been allocated previously with e.g. `create_vertex`. +Same as above, except that `newv` will be used as the new vertex, which must have been allocated previously with, e.g., `create_vertex()`. */ template Vertex_handle insert_in_hole(CellIt cell_begin, CellIt cell_end, @@ -656,7 +655,8 @@ triangulation of the sphere \f$ S^d\f$ of \f$ \mathbb{R}^{d+1}\f$ onto the triangulation of the sphere \f$ S^{d-1}\f$ of \f$ \mathbb{R}^{d}\f$ formed by the link of `v` augmented with the vertex `v` itself, for \f$ d\f$==2,3; this one is placed on the facet `(c, i)` (see Fig. \ref TDS3dim_down). -\pre The dimension must be 2 or 3. The degree of `v` must be equal to the total number of vertices of the triangulation data structure minus 1. +\pre The dimension must be 2 or 3. +\pre The degree of `v` must be equal to the total number of vertices of the triangulation data structure minus 1. \anchor TDS3dim_down \image html tds-dim_down.png @@ -680,7 +680,7 @@ void decrease_dimension(Cell_handle c, int i); \cgalAdvancedBegin Changes the orientation of all cells of the triangulation data structure. \cgalAdvancedEnd -\pre `tds`.`dimension()` \f$ \geq1\f$. +\pre `dimension()` \f$ \geq1\f$. */ void reorient(); @@ -783,7 +783,7 @@ void delete_cells(CellIt first, CellIt last); /// @{ /*! -Returns `cells_end()` when `tds.dimension()` \f$ <3\f$. +Returns `cells_end()` when `dimension()` \f$ <3\f$. */ Cell_iterator cells_begin() const; @@ -794,7 +794,7 @@ Cell_iterator cells_end() const; /*! Low-level access to the cells, does not return `cells_end()` -when `tds.dimension()` \f$ <3\f$. +when `dimension()` \f$ <3\f$. */ Cell_iterator raw_cells_begin() const; @@ -804,7 +804,7 @@ Cell_iterator raw_cells_begin() const; Cell_iterator raw_cells_end() const; /*! -Returns `facets_end()` when `tds.dimension()` \f$ <2\f$. +Returns `facets_end()` when `dimension()` \f$ <2\f$. */ Facet_iterator facets_begin() const; @@ -814,7 +814,7 @@ Facet_iterator facets_begin() const; Facet_iterator facets_end() const; /*! -Returns `edges_end()` when `tds.dimension()` \f$ <1\f$. +Returns `edges_end()` when `dimension()` \f$ <1\f$. */ Edge_iterator edges_begin() const; @@ -840,7 +840,7 @@ Vertex_iterator vertices_end() const; /*! Starts at an arbitrary cell incident to `e`. -\pre `tds.dimension()` \f$ =3\f$ +\pre `dimension()` \f$ =3\f$ */ Cell_circulator incident_cells(const Edge & e) const; @@ -851,7 +851,7 @@ Cell_circulator incident_cells(Cell_handle c, int i, int j) const; /*! Starts at cell `start`. -\pre `tds.dimension()` \f$ =3\f$ and `start` is incident to `e`. +\pre `dimension()` \f$ =3\f$ and `start` is incident to `e`. */ Cell_circulator incident_cells(const Edge & e, Cell_handle start) const; @@ -865,9 +865,9 @@ const; Starts at an arbitrary facet incident to `e`. Only defined in dimension 3, though are defined also in dimension 2: -there are only two facets sahring an edge in dimension 2. +there are only two facets sharing an edge in dimension 2. -\pre `tds.dimension()` \f$ =3\f$ +\pre `dimension()` \f$ =3\f$ */ Facet_circulator incident_facets(Edge e) const; @@ -1049,7 +1049,7 @@ Writes `tds` into the stream `os` ostream& operator<< (ostream& os, const TriangulationDataStructure_3 & tds); /*! \ingroup PkgIOTDS3 -The tds streamed in `is`, of original type `TDS_src`, is written into the triangulation data structure. As the vertex and cell +The triangulation data structure streamed in `is`, of original type `TDS_src`, is written into the triangulation data structure. As the vertex and cell types might be different and incompatible, the creation of new cells and vertices is made thanks to the functors `convert_vertex` and `convert_cell`, that convert vertex and cell types. For each vertex `v_src` in `is`, the corresponding diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h index 4824bd7a081..b58f77de743 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h @@ -225,7 +225,7 @@ is called and `v` is returned. If the hole contains interior vertices, each of them is hidden by the insertion of `p` and is stored in the new cell which contains it. -\pre `rt`.`dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, not empty, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`. +\pre `dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, not empty, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`. */ template Vertex_handle insert_in_hole(const Weighted_point& p, @@ -320,7 +320,7 @@ of `c` is less than \f$ \pi/2\f$ or if these two spheres do not intersect. For an infinite cell this means that `p` does not satisfy either of the two previous conditions. -\pre `rt`.`dimension()` \f$ =3\f$. +\pre `dimension()` \f$ =3\f$. */ Bounded_side side_of_power_sphere(Cell_handle c, const Weighted_point & p) const; @@ -372,7 +372,7 @@ If the point `p` is collinear with the finite edge `e` of `ON_BOUNDARY` if \f$ \Pi({p}^{(w)}-{z(e)}^{(w)})=0\f$, `ON_UNBOUNDED_SIDE` if \f$ \Pi({p}^{(w)}-{z(e)}^{(w)})>0\f$ . -\pre `rt`.`dimension()` \f$ \geq2\f$. +\pre `dimension()` \f$ \geq2\f$. */ Bounded_side side_of_power_circle(const Facet & f, @@ -395,7 +395,7 @@ In dimension 1, returns `ON_BOUNDARY` if \f$ \Pi({p}^{(w)}-{z(c)}^{(w)})=0\f$, `ON_UNBOUNDED_SIDE` if \f$ \Pi({p}^{(w)}-{z(c)}^{(w)})>0\f$ . -\pre `rt`.`dimension()` \f$ = 1\f$. +\pre `dimension()` \f$ = 1\f$. */ Bounded_side side_of_power_segment(Cell_handle c, const Weighted_point & p) @@ -412,7 +412,7 @@ The default constructed handle is returned if the triangulation is empty. The optional argument `c` is a hint specifying where to start the search. -\pre `c` is a cell of `rt`. +\pre `c` is a cell of the regular triangulation. */ Vertex_handle nearest_power_vertex(const Bare_point& p, @@ -461,7 +461,7 @@ Compute the conflicts with `p`. among the internal or boundary facets of the conflict zone, and false otherwise. \pre The starting cell (resp.\ facet) `c` must be in conflict with `p`. -\pre `rt`.`dimension()` \f$ \geq2\f$, and `c` is in conflict with `p`. +\pre `dimension()` \f$ \geq2\f$, and `c` is in conflict with `p`. \return the `Triple` composed of the resulting output iterators. @@ -492,7 +492,7 @@ vertices_in_conflict(const Weighted_point& p, Cell_handle c, OutputIterator res) Similar to `find_conflicts()`, but reports the vertices which are on the boundary of the conflict zone of `p`, in the output iterator `res`. Returns the resulting output iterator. -\pre `rt`.`dimension()` \f$ \geq2\f$, and `c` is a cell containing `p`. +\pre `dimension()` \f$ \geq2\f$, and `c` is a cell containing `p`. */ template @@ -505,7 +505,7 @@ the interior of the conflict zone of `p`, in the output iterator `res`. The vertices that are on the boundary of the conflict zone are not reported. Returns the resulting output iterator. -\pre `rt`.`dimension()` \f$ \geq2\f$, and `c` is a cell containing `p`. +\pre `dimension()` \f$ \geq2\f$, and `c` is a cell containing `p`. */ template @@ -555,7 +555,7 @@ bool is_Gabriel(Vertex_handle v); /*! Returns the weighted circumcenter of the four vertices of c. -\pre `rt`.`dimension()`\f$ =3\f$ and `c` is not infinite. +\pre `dimension()`\f$ =3\f$ and `c` is not infinite. */ Bare_point dual(Cell_handle c) const; @@ -566,7 +566,7 @@ in dimension 3: either a segment, if the two cells incident to `f` are finite, or a ray, if one of them is infinite; in dimension 2: a point. -\pre `rt`.`dimension()` \f$ \geq2\f$ and `f` is not infinite. +\pre `dimension()` \f$ \geq2\f$ and `f` is not infinite. */ Object dual(Facet f) const; @@ -576,7 +576,7 @@ same as the previous method for facet `(c,i)`. Object dual(Cell_handle c, int i) const; /*! -Sends the set of duals to all the facets of `rt` into `os`. +Writes the set of duals to all the facets of the regular triangulation into `os`. */ template Stream & draw_dual(Stream & os); diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h index eeff918fe3d..b3dd1e2e1f4 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h @@ -1394,7 +1394,7 @@ The first cell incident to `vt` is the last valid value of the iterator. It is followed by `segment_traverser_cells_end()`. \pre `vs` and `vt` must be different vertices and neither can be the infinite vertex. -\pre `triangulation.dimension() >= 2` +\pre `t.dimension() >= 2` */ Segment_cell_iterator segment_traverser_cells_begin(Vertex_handle vs, Vertex_handle vt) const; @@ -1419,7 +1419,7 @@ The optional argument `hint` can reduce the time to construct the iterator if it is geometrically close to `ps`. \pre `ps` and `pt` must be different points. -\pre `triangulation.dimension() >= 2`. If the dimension is 2, both `ps` and `pt` must lie in the affine hull. +\pre `t.dimension() >= 2`. If the dimension is 2, both `ps` and `pt` must lie in the affine hull. */ Segment_cell_iterator segment_traverser_cells_begin(const Point& ps, const Point& pt, Cell_handle hint = Cell_handle()) const; @@ -1429,7 +1429,7 @@ returns the past-the-end iterator over the intersected cells. This iterator cannot be dereferenced. It indicates when the `Segment_cell_iterator` has passed the target. -\pre `triangulation.dimension() >= 2` +\pre `t.dimension() >= 2` */ Segment_cell_iterator segment_traverser_cells_end() const; @@ -1470,7 +1470,7 @@ The initial value of the iterator is `vs`. The iterator remains valid until `vt` is passed. \pre `vs` and `vt` must be different vertices and neither can be the infinite vertex. -\pre `triangulation.dimension() >= 2` +\pre `t.dimension() >= 2` */ Segment_simplex_iterator segment_traverser_simplices_begin(Vertex_handle vs, Vertex_handle vt) const; @@ -1486,7 +1486,7 @@ The iterator remains valid until the first simplex containing `pt` is passed. The optional argument `hint` can reduce the time to construct the iterator if it is close to `ps`. \pre `ps` and `pt` must be different points. -\pre `triangulation.dimension() >= 2`. If the dimension is 2, both `ps` and `pt` must lie in the affine hull. +\pre `t.dimension() >= 2`. If the dimension is 2, both `ps` and `pt` must lie in the affine hull. */ Segment_simplex_iterator segment_traverser_simplices_begin(const Point& ps, const Point& pt, Cell_handle hint = Cell_handle()) const; @@ -1496,7 +1496,7 @@ returns the past-the-end iterator over the intersected simplices. This iterator cannot be dereferenced. It indicates when the `Segment_simplex_iterator` has passed the target. -\pre `triangulation.dimension() >= 2` +\pre `t.dimension() >= 2` */ Segment_simplex_iterator segment_traverser_simplices_end() const;