Dispatch import functions to Polyhedron, T2, T3

This commit is contained in:
Andreas Fabri 2016-09-26 18:55:49 +02:00 committed by Laurent Rineau
parent f92e0751c8
commit cf8c1a6cdf
10 changed files with 437 additions and 331 deletions

View File

@ -41,38 +41,6 @@ template<class LCC>
typename LCC::Dart_handle import_from_plane_graph(LCC& lcc,
std::istream& ais);
/*!
\ingroup PkgLinearCellComplexConstructions
Imports `apoly` (a `Polyhedron_3`) into `lcc`. Objects are added in `lcc`,
existing darts are not modified.
Returns a dart created during the import.
\pre \ref CombinatorialMap::dimension "LCC::dimension"\f$ \geq\f$ 2 and
\ref Linear_cell_complex::ambient_dimension "LCC::ambient_dimension"==3.
\sa `CGAL::import_from_plane_graph<LCC>`
\sa `CGAL::import_from_triangulation_3<LCC,Triangulation>`
*/
template<class LCC,class Polyhedron>
typename LCC::Dart_handle import_from_polyhedron_3(LCC& lcc,
const Polyhedron &apoly);
/*!
\ingroup PkgLinearCellComplexConstructions
Imports `atr` (a `Triangulation_3`) into `lcc`.
Objects are added in `lcc`, existing darts are not modified.
Returns a dart created during the import.
\pre \ref CombinatorialMap::dimension "LCC::dimension"\f$ \geq\f$ 3 and
\ref Linear_cell_complex::ambient_dimension "LCC::ambient_dimension"==3.
\sa `CGAL::import_from_plane_graph<LCC>`
\sa `CGAL::import_from_polyhedron_3<LCC,Polyhedron>`
*/
template <class LCC,class Triangulation_>
typename LCC::Dart_handle import_from_triangulation_3(LCC& lcc,
const Triangulation_&atr);
} /* namespace CGAL */

View File

@ -0,0 +1,16 @@
/*!
\ingroup PkgLinearCellComplexConstructions
Imports `apoly` (a `Polyhedron_3`) into `lcc`. Objects are added in `lcc`,
existing darts are not modified.
Returns a dart created during the import.
\pre \ref CombinatorialMap::dimension "LCC::dimension"\f$ \geq\f$ 2 and
\ref Linear_cell_complex::ambient_dimension "LCC::ambient_dimension"==3.
\sa `CGAL::import_from_plane_graph<LCC>`
\sa `CGAL::import_from_triangulation_3<LCC,Triangulation>`
*/
template<class LCC,class Polyhedron>
typename LCC::Dart_handle import_from_polyhedron_3(LCC& lcc,
const Polyhedron &apoly);

View File

@ -0,0 +1,17 @@
/*!
\ingroup PkgLinearCellComplexConstructions
Imports `atr` (a `Triangulation_3`) into `lcc`.
Objects are added in `lcc`, existing darts are not modified.
Returns a dart created during the import.
\pre \ref CombinatorialMap::dimension "LCC::dimension"\f$ \geq\f$ 3 and
\ref Linear_cell_complex::ambient_dimension "LCC::ambient_dimension"==3.
\sa `CGAL::import_from_plane_graph<LCC>`
\sa `CGAL::import_from_polyhedron_3<LCC,Polyhedron>`
*/
template <class LCC,class Triangulation_>
typename LCC::Dart_handle import_from_triangulation_3(LCC& lcc,
const Triangulation_&atr);

View File

@ -2,6 +2,8 @@
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/import_from_triangulation_2.h>
#include <iostream>
#include <fstream>

View File

@ -2,6 +2,8 @@
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/import_from_triangulation_3.h>
#include <iostream>
#include <fstream>

View File

@ -22,8 +22,7 @@
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Triangulation_2.h>
#include <CGAL/Triangulation_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/IO/File_header_OFF.h>
#include <CGAL/IO/File_scanner_OFF.h>
@ -166,284 +165,6 @@ namespace CGAL {
return first;
}
/** Convert a given Triangulation_2 into a 2D linear cell complex.
* @param alcc the used linear cell complex.
* @param atr the Triangulation_2.
* @param aface_to_dart a pointer to a std::map associating to each
* triangle of atr a corresponding dart in alcc. Not used if NULL.
* @return A dart incident to the infinite vertex.
*/
template < class LCC, class Triangulation >
typename LCC::Dart_handle import_from_triangulation_2
(LCC& alcc, const Triangulation &atr,
std::map<typename Triangulation::Face_handle,
typename LCC::Dart_handle >* aface_to_dart=NULL)
{
CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==2 );
// Case of empty triangulations.
if (atr.number_of_vertices() == 0) return LCC::null_handle;
// Check the dimension.
if (atr.dimension() != 2) return LCC::null_handle;
CGAL_assertion(atr.is_valid());
typedef typename Triangulation::Vertex_handle TVertex_handle;
typedef typename Triangulation::All_vertices_iterator TVertex_iterator;
typedef typename Triangulation::All_faces_iterator TFace_iterator;
typedef typename std::map
< TFace_iterator, typename LCC::Dart_handle >::iterator itmap_tcell;
// Create vertices in the map and associate in a map
// TVertex_handle and vertices in the map.
std::map< TVertex_handle, typename LCC::Vertex_attribute_handle > TV;
for (TVertex_iterator itv = atr.all_vertices_begin();
itv != atr.all_vertices_end(); ++itv)
{
TV[itv] = alcc.create_vertex_attribute(itv->point());
}
// Create the triangles and create a map to link Cell_iterator
// and triangles.
TFace_iterator it;
std::map<typename Triangulation::Face_handle, typename LCC::Dart_handle> TC;
std::map<typename Triangulation::Face_handle, typename LCC::Dart_handle>*
mytc = (aface_to_dart==NULL?&TC:aface_to_dart);
itmap_tcell maptcell_it;
typename LCC::Dart_handle res=LCC::null_handle, dart=LCC::null_handle;
typename LCC::Dart_handle cur=LCC::null_handle, neighbor=LCC::null_handle;
for (it = atr.all_faces_begin(); it != atr.all_faces_end(); ++it)
{
/* if (it->vertex(0) != atr.infinite_vertex() &&
it->vertex(1) != atr.infinite_vertex() &&
it->vertex(2) != atr.infinite_vertex() &&
it->vertex(3) != atr.infinite_vertex())
*/
{
res = alcc.make_triangle(TV[it->vertex(0)],
TV[it->vertex(1)],
TV[it->vertex(2)]);
if ( dart==LCC::null_handle )
{
if ( it->vertex(0) == atr.infinite_vertex() )
dart = res;
else if ( it->vertex(1) == atr.infinite_vertex() )
dart = alcc.beta(res,1);
else if ( it->vertex(2) == atr.infinite_vertex() )
dart = alcc.beta(res,0);
}
for (unsigned int i=0; i<3; ++i)
{
switch (i)
{
case 0: cur = alcc.beta(res,1); break;
case 1: cur = alcc.beta(res,0); break;
case 2: cur = res; break;
}
maptcell_it = mytc->find(it->neighbor(i));
if (maptcell_it != mytc->end())
{
switch (atr.mirror_index(it,i) )
{
case 0: neighbor = alcc.beta(maptcell_it->second,1);
break;
case 1: neighbor = alcc.beta(maptcell_it->second,0);
break;
case 2: neighbor = maptcell_it->second; break;
}
alcc.template topo_sew<2>(cur, neighbor);
}
}
(*mytc)[it] = res;
}
}
CGAL_assertion(dart!=LCC::null_handle);
return dart;
}
/** Convert a given Triangulation_3 into a 3D linear cell complex.
* @param alcc the used linear cell complex.
* @param atr the Triangulation_3.
* @param avol_to_dart a pointer to a std::map associating to each
* tetrahedron of atr a corresponding dart in alcc. Not used if NULL.
* @return A dart incident to the infinite vertex.
*/
template < class LCC, class Triangulation >
typename LCC::Dart_handle import_from_triangulation_3
(LCC& alcc, const Triangulation &atr,
std::map<typename Triangulation::Cell_handle,
typename LCC::Dart_handle >* avol_to_dart=NULL)
{
CGAL_static_assertion( LCC::dimension>=3 && LCC::ambient_dimension==3 );
// Case of empty triangulations.
if (atr.number_of_vertices() == 0) return LCC::null_handle;
// Check the dimension.
if (atr.dimension() != 3) return LCC::null_handle;
CGAL_assertion(atr.is_valid());
typedef typename Triangulation::Vertex_handle TVertex_handle;
typedef typename Triangulation::Vertex_iterator TVertex_iterator;
typedef typename Triangulation::Cell_iterator TCell_iterator;
typedef typename std::map
< TCell_iterator, typename LCC::Dart_handle >::iterator itmap_tcell;
// Create vertices in the map and associate in a map
// TVertex_handle and vertices in the map.
std::map< TVertex_handle, typename LCC::Vertex_attribute_handle > TV;
for (TVertex_iterator itv = atr.vertices_begin();
itv != atr.vertices_end(); ++itv)
{
TV[itv] = alcc.create_vertex_attribute(itv->point());
}
// Create the tetrahedron and create a map to link Cell_iterator
// and tetrahedron.
TCell_iterator it;
std::map<typename Triangulation::Cell_handle, typename LCC::Dart_handle> TC;
std::map<typename Triangulation::Cell_handle, typename LCC::Dart_handle>*
mytc = (avol_to_dart==NULL?&TC:avol_to_dart);
itmap_tcell maptcell_it;
typename LCC::Dart_handle res=LCC::null_handle, dart=LCC::null_handle;
typename LCC::Dart_handle cur=LCC::null_handle, neighbor=LCC::null_handle;
for (it = atr.cells_begin(); it != atr.cells_end(); ++it)
{
/* if (it->vertex(0) != atr.infinite_vertex() &&
it->vertex(1) != atr.infinite_vertex() &&
it->vertex(2) != atr.infinite_vertex() &&
it->vertex(3) != atr.infinite_vertex())
*/
{
res = alcc.make_tetrahedron(TV[it->vertex(0)],
TV[it->vertex(1)],
TV[it->vertex(2)],
TV[it->vertex(3)]);
if ( dart==LCC::null_handle )
{
if ( it->vertex(0) == atr.infinite_vertex() )
dart = res;
else if ( it->vertex(1) == atr.infinite_vertex() )
dart = alcc.beta(res, 1);
else if ( it->vertex(2) == atr.infinite_vertex() )
dart = alcc.beta(res, 1, 1);
else if ( it->vertex(3) == atr.infinite_vertex() )
dart = alcc.beta(res, 2, 0);
}
for (unsigned int i = 0; i < 4; ++i)
{
switch (i)
{
case 0: cur = alcc.beta(res, 1, 2); break;
case 1: cur = alcc.beta(res, 0, 2); break;
case 2: cur = alcc.beta(res, 2); break;
case 3: cur = res; break;
}
maptcell_it = mytc->find(it->neighbor(i));
if (maptcell_it != mytc->end())
{
switch (atr.mirror_index(it,i) )
{
case 0: neighbor = alcc.beta(maptcell_it->second, 1, 2);
break;
case 1: neighbor = alcc.beta(maptcell_it->second, 0, 2);
break;
case 2: neighbor = alcc.beta(maptcell_it->second, 2); break;
case 3: neighbor = maptcell_it->second; break;
}
while (alcc.temp_vertex_attribute(neighbor) !=
alcc.temp_vertex_attribute(alcc.other_extremity(cur)) )
neighbor = alcc.beta(neighbor,1);
alcc.template topo_sew<3>(cur, neighbor);
}
}
(*mytc)[it] = res;
}
}
CGAL_assertion(dart!=LCC::null_handle);
return dart;
}
/** Import a given Polyhedron_3 into a Linear_cell_complex.
* @param alcc the linear cell complex where Polyhedron_3 will be converted.
* @param apoly the Polyhedron.
* @return A dart created during the convertion.
*/
template< class LCC, class Polyhedron >
typename LCC::Dart_handle import_from_polyhedron_3(LCC& alcc,
const Polyhedron &apoly)
{
CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==3 );
typedef typename Polyhedron::Halfedge_const_handle Halfedge_handle;
typedef typename Polyhedron::Facet_const_iterator Facet_iterator;
typedef typename Polyhedron::Halfedge_around_facet_const_circulator
HF_circulator;
typedef std::map < Halfedge_handle, typename LCC::Dart_handle>
Halfedge_handle_map;
typedef typename Halfedge_handle_map::iterator itmap_hds;
Halfedge_handle_map TC;
itmap_hds it;
typename LCC::Dart_handle d = LCC::null_handle, prev = LCC::null_handle;
typename LCC::Dart_handle firstFacet = LCC::null_handle, firstAll = LCC::null_handle;
// First traversal to build the darts and link them.
for (Facet_iterator i = apoly.facets_begin(); i != apoly.facets_end(); ++i)
{
HF_circulator j = i->facet_begin();
prev = LCC::null_handle;
do
{
d = alcc.create_dart();
TC[j] = d;
if (prev != LCC::null_handle) alcc.template link_beta<1>(prev, d);
else firstFacet = d;
it = TC.find(j->opposite());
if (it != TC.end())
alcc.template link_beta<2>(d, it->second);
prev = d;
}
while (++j != i->facet_begin());
alcc.template link_beta<1>(prev, firstFacet);
if (firstAll == LCC::null_handle) firstAll = firstFacet;
}
// Second traversal to update the geometry.
// We run one again through the facets of the HDS.
for (Facet_iterator i = apoly.facets_begin(); i != apoly.facets_end(); ++i)
{
HF_circulator j = i->facet_begin();
do
{
d = TC[j]; // Get the dart associated to the Halfedge
if (alcc.temp_vertex_attribute(d) == LCC::null_handle)
{
alcc.set_vertex_attribute
(d, alcc.create_vertex_attribute(j->opposite()->vertex()->point()));
}
}
while (++j != i->facet_begin());
}
return firstAll;
}
template < class LCC >
void load_off(LCC& alcc, std::istream& in)
@ -525,25 +246,7 @@ namespace CGAL {
B.end_surface();
}
/** Convert a Polyhedron_3 read into a flux into 3D linear cell complex.
* @param alcc the linear cell complex where Polyhedron_3 will be converted.
* @param ais the istream where read the Polyhedron_3.
* @return A dart created during the convertion.
*/
template < class LCC >
typename LCC::Dart_handle
import_from_polyhedron_3_flux(LCC& alcc, std::istream& ais)
{
if (!ais.good())
{
std::cout << "Error reading flux." << std::endl;
return LCC::null_handle;
}
CGAL::Polyhedron_3<typename LCC::Traits> P;
ais >> P;
return import_from_polyhedron_3<LCC, CGAL::Polyhedron_3
<typename LCC::Traits> > (alcc, P);
}
/** Export the alcc in off file format. If dimension>2, export all faces but only once.
*/

View File

@ -25,6 +25,8 @@
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/import_from_polyhedron_3.h>
#include <CGAL/import_from_triangulation_3.h>
#include "Linear_cell_complex_2_test.h"
#include <fstream>

View File

@ -0,0 +1,119 @@
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_IMPORT_FROM_POLYHEDRON_3_H
#define CGAL_IMPORT_FROM_POLYHEDRON_3_H
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>
namespace CGAL {
/** Import a given Polyhedron_3 into a Linear_cell_complex.
* @param alcc the linear cell complex where Polyhedron_3 will be converted.
* @param apoly the Polyhedron.
* @return A dart created during the convertion.
*/
template< class LCC, class Polyhedron >
typename LCC::Dart_handle import_from_polyhedron_3(LCC& alcc,
const Polyhedron &apoly)
{
CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==3 );
typedef typename Polyhedron::Halfedge_const_handle Halfedge_handle;
typedef typename Polyhedron::Facet_const_iterator Facet_iterator;
typedef typename Polyhedron::Halfedge_around_facet_const_circulator
HF_circulator;
typedef std::map < Halfedge_handle, typename LCC::Dart_handle>
Halfedge_handle_map;
typedef typename Halfedge_handle_map::iterator itmap_hds;
Halfedge_handle_map TC;
itmap_hds it;
typename LCC::Dart_handle d = LCC::null_handle, prev = LCC::null_handle;
typename LCC::Dart_handle firstFacet = LCC::null_handle, firstAll = LCC::null_handle;
// First traversal to build the darts and link them.
for (Facet_iterator i = apoly.facets_begin(); i != apoly.facets_end(); ++i)
{
HF_circulator j = i->facet_begin();
prev = LCC::null_handle;
do
{
d = alcc.create_dart();
TC[j] = d;
if (prev != LCC::null_handle) alcc.template link_beta<1>(prev, d);
else firstFacet = d;
it = TC.find(j->opposite());
if (it != TC.end())
alcc.template link_beta<2>(d, it->second);
prev = d;
}
while (++j != i->facet_begin());
alcc.template link_beta<1>(prev, firstFacet);
if (firstAll == LCC::null_handle) firstAll = firstFacet;
}
// Second traversal to update the geometry.
// We run one again through the facets of the HDS.
for (Facet_iterator i = apoly.facets_begin(); i != apoly.facets_end(); ++i)
{
HF_circulator j = i->facet_begin();
do
{
d = TC[j]; // Get the dart associated to the Halfedge
if (alcc.temp_vertex_attribute(d) == LCC::null_handle)
{
alcc.set_vertex_attribute
(d, alcc.create_vertex_attribute(j->opposite()->vertex()->point()));
}
}
while (++j != i->facet_begin());
}
return firstAll;
}
/** Convert a Polyhedron_3 read into a flux into 3D linear cell complex.
* @param alcc the linear cell complex where Polyhedron_3 will be converted.
* @param ais the istream where read the Polyhedron_3.
* @return A dart created during the convertion.
*/
template < class LCC >
typename LCC::Dart_handle
import_from_polyhedron_3_flux(LCC& alcc, std::istream& ais)
{
if (!ais.good())
{
std::cout << "Error reading flux." << std::endl;
return LCC::null_handle;
}
CGAL::Polyhedron_3<typename LCC::Traits> P;
ais >> P;
return import_from_polyhedron_3<LCC, CGAL::Polyhedron_3
<typename LCC::Traits> > (alcc, P);
}
} // namespace CGAL
#endif // CGAL_IMPORT_FROM_POLYHEDRON_3_H

View File

@ -0,0 +1,136 @@
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_IMPORT_FROM_TRIANGULATION_2_H
#define CGAL_IMPORT_FROM_TRIANGULATION_2_H
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Triangulation_2.h>
#include <map>
namespace CGAL {
/** Convert a given Triangulation_2 into a 2D linear cell complex.
* @param alcc the used linear cell complex.
* @param atr the Triangulation_2.
* @param aface_to_dart a pointer to a std::map associating to each
* triangle of atr a corresponding dart in alcc. Not used if NULL.
* @return A dart incident to the infinite vertex.
*/
template < class LCC, class Triangulation >
typename LCC::Dart_handle import_from_triangulation_2
(LCC& alcc, const Triangulation &atr,
std::map<typename Triangulation::Face_handle,
typename LCC::Dart_handle >* aface_to_dart=NULL)
{
CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==2 );
// Case of empty triangulations.
if (atr.number_of_vertices() == 0) return LCC::null_handle;
// Check the dimension.
if (atr.dimension() != 2) return LCC::null_handle;
CGAL_assertion(atr.is_valid());
typedef typename Triangulation::Vertex_handle TVertex_handle;
typedef typename Triangulation::All_vertices_iterator TVertex_iterator;
typedef typename Triangulation::All_faces_iterator TFace_iterator;
typedef typename std::map
< TFace_iterator, typename LCC::Dart_handle >::iterator itmap_tcell;
// Create vertices in the map and associate in a map
// TVertex_handle and vertices in the map.
std::map< TVertex_handle, typename LCC::Vertex_attribute_handle > TV;
for (TVertex_iterator itv = atr.all_vertices_begin();
itv != atr.all_vertices_end(); ++itv)
{
TV[itv] = alcc.create_vertex_attribute(itv->point());
}
// Create the triangles and create a map to link Cell_iterator
// and triangles.
TFace_iterator it;
std::map<typename Triangulation::Face_handle, typename LCC::Dart_handle> TC;
std::map<typename Triangulation::Face_handle, typename LCC::Dart_handle>*
mytc = (aface_to_dart==NULL?&TC:aface_to_dart);
itmap_tcell maptcell_it;
typename LCC::Dart_handle res=LCC::null_handle, dart=LCC::null_handle;
typename LCC::Dart_handle cur=LCC::null_handle, neighbor=LCC::null_handle;
for (it = atr.all_faces_begin(); it != atr.all_faces_end(); ++it)
{
/* if (it->vertex(0) != atr.infinite_vertex() &&
it->vertex(1) != atr.infinite_vertex() &&
it->vertex(2) != atr.infinite_vertex() &&
it->vertex(3) != atr.infinite_vertex())
*/
{
res = alcc.make_triangle(TV[it->vertex(0)],
TV[it->vertex(1)],
TV[it->vertex(2)]);
if ( dart==LCC::null_handle )
{
if ( it->vertex(0) == atr.infinite_vertex() )
dart = res;
else if ( it->vertex(1) == atr.infinite_vertex() )
dart = alcc.beta(res,1);
else if ( it->vertex(2) == atr.infinite_vertex() )
dart = alcc.beta(res,0);
}
for (unsigned int i=0; i<3; ++i)
{
switch (i)
{
case 0: cur = alcc.beta(res,1); break;
case 1: cur = alcc.beta(res,0); break;
case 2: cur = res; break;
}
maptcell_it = mytc->find(it->neighbor(i));
if (maptcell_it != mytc->end())
{
switch (atr.mirror_index(it,i) )
{
case 0: neighbor = alcc.beta(maptcell_it->second,1);
break;
case 1: neighbor = alcc.beta(maptcell_it->second,0);
break;
case 2: neighbor = maptcell_it->second; break;
}
alcc.template topo_sew<2>(cur, neighbor);
}
}
(*mytc)[it] = res;
}
}
CGAL_assertion(dart!=LCC::null_handle);
return dart;
}
} // namespace CGAL
#endif // CGAL_IMPORT_FROM_TRIANGULATION_2_H

View File

@ -0,0 +1,141 @@
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_IMPORT_FROM_TRIANGULATION_3_H
#define CGAL_IMPORT_FROM_TRIANGULATION_3_H
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Triangulation_3.h>
namespace CGAL {
/** Convert a given Triangulation_3 into a 3D linear cell complex.
* @param alcc the used linear cell complex.
* @param atr the Triangulation_3.
* @param avol_to_dart a pointer to a std::map associating to each
* tetrahedron of atr a corresponding dart in alcc. Not used if NULL.
* @return A dart incident to the infinite vertex.
*/
template < class LCC, class Triangulation >
typename LCC::Dart_handle import_from_triangulation_3
(LCC& alcc, const Triangulation &atr,
std::map<typename Triangulation::Cell_handle,
typename LCC::Dart_handle >* avol_to_dart=NULL)
{
CGAL_static_assertion( LCC::dimension>=3 && LCC::ambient_dimension==3 );
// Case of empty triangulations.
if (atr.number_of_vertices() == 0) return LCC::null_handle;
// Check the dimension.
if (atr.dimension() != 3) return LCC::null_handle;
CGAL_assertion(atr.is_valid());
typedef typename Triangulation::Vertex_handle TVertex_handle;
typedef typename Triangulation::Vertex_iterator TVertex_iterator;
typedef typename Triangulation::Cell_iterator TCell_iterator;
typedef typename std::map
< TCell_iterator, typename LCC::Dart_handle >::iterator itmap_tcell;
// Create vertices in the map and associate in a map
// TVertex_handle and vertices in the map.
std::map< TVertex_handle, typename LCC::Vertex_attribute_handle > TV;
for (TVertex_iterator itv = atr.vertices_begin();
itv != atr.vertices_end(); ++itv)
{
TV[itv] = alcc.create_vertex_attribute(itv->point());
}
// Create the tetrahedron and create a map to link Cell_iterator
// and tetrahedron.
TCell_iterator it;
std::map<typename Triangulation::Cell_handle, typename LCC::Dart_handle> TC;
std::map<typename Triangulation::Cell_handle, typename LCC::Dart_handle>*
mytc = (avol_to_dart==NULL?&TC:avol_to_dart);
itmap_tcell maptcell_it;
typename LCC::Dart_handle res=LCC::null_handle, dart=LCC::null_handle;
typename LCC::Dart_handle cur=LCC::null_handle, neighbor=LCC::null_handle;
for (it = atr.cells_begin(); it != atr.cells_end(); ++it)
{
/* if (it->vertex(0) != atr.infinite_vertex() &&
it->vertex(1) != atr.infinite_vertex() &&
it->vertex(2) != atr.infinite_vertex() &&
it->vertex(3) != atr.infinite_vertex())
*/
{
res = alcc.make_tetrahedron(TV[it->vertex(0)],
TV[it->vertex(1)],
TV[it->vertex(2)],
TV[it->vertex(3)]);
if ( dart==LCC::null_handle )
{
if ( it->vertex(0) == atr.infinite_vertex() )
dart = res;
else if ( it->vertex(1) == atr.infinite_vertex() )
dart = alcc.beta(res, 1);
else if ( it->vertex(2) == atr.infinite_vertex() )
dart = alcc.beta(res, 1, 1);
else if ( it->vertex(3) == atr.infinite_vertex() )
dart = alcc.beta(res, 2, 0);
}
for (unsigned int i = 0; i < 4; ++i)
{
switch (i)
{
case 0: cur = alcc.beta(res, 1, 2); break;
case 1: cur = alcc.beta(res, 0, 2); break;
case 2: cur = alcc.beta(res, 2); break;
case 3: cur = res; break;
}
maptcell_it = mytc->find(it->neighbor(i));
if (maptcell_it != mytc->end())
{
switch (atr.mirror_index(it,i) )
{
case 0: neighbor = alcc.beta(maptcell_it->second, 1, 2);
break;
case 1: neighbor = alcc.beta(maptcell_it->second, 0, 2);
break;
case 2: neighbor = alcc.beta(maptcell_it->second, 2); break;
case 3: neighbor = maptcell_it->second; break;
}
while (alcc.temp_vertex_attribute(neighbor) !=
alcc.temp_vertex_attribute(alcc.other_extremity(cur)) )
neighbor = alcc.beta(neighbor,1);
alcc.template topo_sew<3>(cur, neighbor);
}
}
(*mytc)[it] = res;
}
}
CGAL_assertion(dart!=LCC::null_handle);
return dart;
}
} // namespace CGAL
#endif CGAL_IMPORT_FROM_TRIANGULATION_3_H