* Fix Triangle_3_line_3_intersection.h (implementation inspired from Triangle_3_line_3_do_intersect.h)

* Add test for triangle_3/line_3 intersection (should be enriched maybe) in file aabb_intersection.cpp
* Test exact_exact kernel in aabb_do_intersect_test.cpp
This commit is contained in:
Stéphane Tayeb 2009-10-09 14:09:14 +00:00
parent 0fd89aaccf
commit cfa88ab257
4 changed files with 468 additions and 71 deletions

View File

@ -31,85 +31,371 @@
namespace CGAL {
namespace internal {
template <class K>
Object
t3l3_intersection_coplanar_aux(const typename K::Point_3& a,
const typename K::Point_3& b,
const typename K::Point_3& c,
const typename K::Line_3& l,
const bool negative_side,
const K& k)
{
// This function is designed to clip pq into the triangle abc.
// Point configuration should be as follows
//
// +q
// | +a
// |
// +c | +b
// |
// +p
//
// We know that c is isolated on the negative side of pq
typedef typename K::Point_3 Point_3;
typename K::Intersect_3 intersection =
k.intersect_3_object();
typename K::Construct_line_3 line =
k.construct_line_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
// Let's get the intersection points
Object l_bc_obj = intersection(l,line(b,c));
const Point_3* l_bc = object_cast<Point_3>(&l_bc_obj);
if ( NULL == l_bc )
{
CGAL_kernel_assertion(false);
return Object();
}
Object l_ca_obj = intersection(l,line(c,a));
const Point_3* l_ca = object_cast<Point_3>(&l_ca_obj);
if ( NULL == l_ca )
{
CGAL_kernel_assertion(false);
return Object();
}
if ( negative_side )
return make_object(segment(*l_bc, *l_ca));
else
return make_object(segment(*l_ca, *l_bc));
}
template <class K>
Object
intersection_coplanar(const typename K::Triangle_3 &t,
const typename K::Line_3 &l,
const K & k )
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(l) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Construct_line_3 line =
k.construct_line_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
const Point_3 & p = point_on(l,0);
const Point_3 & q = point_on(l,1);
const Point_3 & A = vertex_on(t,0);
const Point_3 & B = vertex_on(t,1);
const Point_3 & C = vertex_on(t,2);
int k0 = 0;
int k1 = 1;
int k2 = 2;
// Determine the orientation of the triangle in the common plane
if (coplanar_orientation(A,B,C) != POSITIVE)
{
// The triangle is not counterclockwise oriented
// swap two vertices.
std::swap(k1,k2);
}
const Point_3& a = vertex_on(t,k0);
const Point_3& b = vertex_on(t,k1);
const Point_3& c = vertex_on(t,k2);
// Test whether the segment's supporting line intersects the
// triangle in the common plane
const Orientation pqa = coplanar_orientation(p,q,a);
const Orientation pqb = coplanar_orientation(p,q,b);
const Orientation pqc = coplanar_orientation(p,q,c);
switch ( pqa ) {
// -----------------------------------
// pqa POSITIVE
// -----------------------------------
case POSITIVE:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
// the triangle lies in the positive halfspace
// defined by the segment's supporting line.
return Object();
case NEGATIVE:
// c is isolated on the negative side
return t3l3_intersection_coplanar_aux(a,b,c,l,true,k);
case COLLINEAR:
return make_object(c);
}
case NEGATIVE:
if ( POSITIVE == pqc )
// b is isolated on the negative side
return t3l3_intersection_coplanar_aux(c,a,b,l,true,k);
else
// a is isolated on the positive side (here mb c could be use as
// an endpoint instead of computing an intersection is some cases)
return t3l3_intersection_coplanar_aux(b,c,a,l,false,k);
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
return make_object(b);
case NEGATIVE:
// a is isolated on the positive side (here mb b could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(b,c,a,l,false,k);
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[b,c] have the same direction
return make_object(segment(b,c));
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
// -----------------------------------
// pqa NEGATIVE
// -----------------------------------
case NEGATIVE:
switch ( pqb ) {
case POSITIVE:
if ( POSITIVE == pqc )
// a is isolated on the negative side
return t3l3_intersection_coplanar_aux(b,c,a,l,true,k);
else
// b is isolated on the positive side (here mb c could be use as
// an endpoint instead of computing an intersection, in some cases)
return t3l3_intersection_coplanar_aux(c,a,b,l,false,k);
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// c is isolated on the positive side
return t3l3_intersection_coplanar_aux(a,b,c,l,false,k);
case NEGATIVE:
// the triangle lies in the negative halfspace
// defined by the segment's supporting line.
return Object();
case COLLINEAR:
return make_object(c);
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a is isolated on the negative side (here mb b could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(b,c,a,l,true,k);
case NEGATIVE:
return make_object(b);
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[c,b] have the same direction
return make_object(segment(c,b));
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
// -----------------------------------
// pqa COLLINEAR
// -----------------------------------
case COLLINEAR:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
return make_object(a);
case NEGATIVE:
// b is isolated on the positive side (here mb a could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(c,a,b,l,false,k);
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[c,a] have the same direction
return make_object(segment(c,a));
}
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// b is isolated on the negative side (here mb a could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(c,a,b,l,true,k);
case NEGATIVE:
return make_object(a);
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[a,c] have the same direction
return make_object(segment(a,c));
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a,b,p,q are aligned, [p,q]&[a,b] have the same direction
return make_object(segment(a,b));
case NEGATIVE:
// a,b,p,q are aligned, [p,q]&[b,a] have the same direction
return make_object(segment(b,a));
case COLLINEAR:
// case pqc == COLLINEAR is impossible since the triangle is
// assumed to be non flat
CGAL_kernel_assertion(false);
return Object();
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
default:// should not happen.
CGAL_kernel_assertion(false);
return Object();
}
}
template <class K>
Object
intersection(const typename K::Triangle_3 &t,
const typename K::Line_3 &l,
const K& k)
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(l) ) ;
typedef typename K::Point_3 Point_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Object_3 Object_3;
typedef typename K::Line_3 Line_3;
if ( !CGAL::do_intersect(t, l) )
return Object_3();
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
// TOFIX: here we assume that we have already tested
// do_intersect between the triangle and the line
const Object intersection = CGAL::intersection(t.supporting_plane(),
l);
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
// intersection is either a point, either a line
// if it is a line, then we need to clip it to a segment
if ( const Line_3* line = object_cast<Line_3>(&intersection))
typename K::Orientation_3 orientation =
k.orientation_3_object();
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Intersect_3 intersection =
k.intersect_3_object();
const Point_3 & a = vertex_on(t,0);
const Point_3 & b = vertex_on(t,1);
const Point_3 & c = vertex_on(t,2);
const Point_3 & p = point_on(l,0);
const Point_3 & q = point_on(l,1);
if ( ( orientation(a,b,c,p) != COPLANAR )
|| ( orientation(a,b,c,q) != COPLANAR ) )
{
typename K::Intersect_3 intersect = k.intersect_3_object();
typename K::Construct_line_3 f_line = k.construct_line_3_object();
typename K::Construct_vertex_3 vertex_on = k.construct_vertex_3_object();
typename K::Construct_object_3 make_object = k.construct_object_3_object();
typename K::Construct_segment_3 f_segment = k.construct_segment_3_object();
typename K::Has_on_3 has_on = k.has_on_3_object();
const Orientation pqab = orientation(p,q,a,b);
const Orientation pqbc = orientation(p,q,b,c);
const Point_3& t0 = vertex_on(t,0);
const Point_3& t1 = vertex_on(t,1);
const Point_3& t2 = vertex_on(t,2);
switch ( pqab ) {
case POSITIVE:
if ( pqbc != NEGATIVE && orientation(p,q,c,a) != NEGATIVE )
return intersection(l,t.supporting_plane());
else
return Object();
const Line_3 l01 = f_line(t0,t1);
const Line_3 l02 = f_line(t0,t2);
const Line_3 l12 = f_line(t1,t2);
case NEGATIVE:
if ( pqbc != POSITIVE && orientation(p,q,c,a) != POSITIVE )
return intersection(l,t.supporting_plane());
else
return Object();
const Segment_3 s01 = f_segment(t0,t1);
const Segment_3 s02 = f_segment(t0,t2);
const Segment_3 s12 = f_segment(t1,t2);
case COPLANAR:
switch ( pqbc ) {
case POSITIVE:
if ( orientation(p,q,c,a) != NEGATIVE )
return intersection(l,t.supporting_plane());
else
return Object();
const Object_3 inter_01 = intersect(l01,*line);
const Object_3 inter_02 = intersect(l02,*line);
const Object_3 inter_12 = intersect(l12,*line);
case NEGATIVE:
if ( orientation(p,q,c,a) != POSITIVE )
return intersection(l,t.supporting_plane());
else
return Object();
const Point_3* p01 = object_cast<Point_3>(&inter_01);
const Point_3* p02 = object_cast<Point_3>(&inter_02);
const Point_3* p12 = object_cast<Point_3>(&inter_12);
case COPLANAR: // pqa or pqb or pqc are collinear
return intersection(l,t.supporting_plane());
if ( p01 && has_on(s01, *p01) )
{
if ( p02 && has_on(s02, *p02) )
return make_object(f_segment(*p01,*p02));
else if ( p12 && has_on(s12, *p12) )
return make_object(f_segment(*p01,*p12));
else
return make_object(*p01);
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
else if ( p02 && has_on(s02, *p02) )
{
if ( p12 && has_on(s12, *p12) )
return make_object(f_segment(*p02,*p12));
else
return make_object(*p02);
}
else if ( p12 && has_on(s12, *p12) )
{
return make_object(*p12);
}
// should not happen
CGAL_kernel_assertion(false);
return Object_3();
}
else
return intersection;
// Coplanar case
return intersection_coplanar(t,l,k);
}
template <class K>
Object
intersection(const typename K::Line_3 &l,
const typename K::Triangle_3 &t,
const K& k)
{
return internal::intersection(t,l,k);
}
} // end namespace internal
template <class K>

View File

@ -174,9 +174,6 @@ intersection_coplanar(const typename K::Triangle_3 &t,
typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
k.collinear_are_ordered_along_line_3_object();
typename K::Intersect_3 intersection =
k.intersect_3_object();
typename K::Construct_line_3 line =
k.construct_line_3_object();

View File

@ -28,6 +28,7 @@
#include <CGAL/Cartesian.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
template <class T>
@ -176,6 +177,9 @@ int main()
std::cout << "Testing with Exact_predicates_inexact_constructions_kernel..." << std::endl ;
b &= test<CGAL::Exact_predicates_inexact_constructions_kernel>();
std::cout << "Testing with Exact_predicates_exact_constructions_kernel..." << std::endl ;
b &= test<CGAL::Exact_predicates_exact_constructions_kernel>();
if ( b )
return EXIT_SUCCESS;
else

View File

@ -77,7 +77,7 @@ bool test()
// +E +1
// / \
// +C 6+ +8 +4 +B
// / +7 \
// / 9++7 \
// 3+-------+5--+2
//
// +F +A
@ -91,10 +91,14 @@ bool test()
// Edges of t
Segment s12(p1,p2);
Segment s21(p2,p1);
Segment s13(p1,p3);
Segment s23(p2,p3);
Segment s32(p3,p2);
Segment s31(p3,p1);
bool b = test_aux(t,s12,"t-s12",s12);
b &= test_aux(t,s21,"t-s21",s21);
b &= test_aux(t,s13,"t-s13",s13);
b &= test_aux(t,s23,"t-s23",s23);
@ -121,6 +125,8 @@ bool test()
Segment s46(p4,p6);
Segment s48(p4,p8);
Segment s56(p5,p6);
Segment s65(p6,p5);
Segment s64(p6,p4);
Segment s17(p1,p7);
Segment s67(p6,p7);
Segment s68(p6,p8);
@ -142,6 +148,8 @@ bool test()
b &= test_aux(t,s26,"t-s26",s26);
b &= test_aux(t,s62,"t-s62",s62);
b &= test_aux(t,s46,"t-s46",s46);
b &= test_aux(t,s65,"t-s65",s65);
b &= test_aux(t,s64,"t-s64",s64);
b &= test_aux(t,s48,"t-s48",s48);
b &= test_aux(t,s56,"t-s56",s56);
b &= test_aux(t,s17,"t-t17",s17);
@ -200,6 +208,108 @@ bool test()
b &= test_aux(t,sa8,"t-sa8",p8);
b &= test_aux(t,sb2,"t-sb2",p2);
// -----------------------------------
// Line queries
// -----------------------------------
// Edges of t
Line l12(p1,p2);
Line l21(p2,p1);
Line l13(p1,p3);
Line l23(p2,p3);
b &= test_aux(t,l12,"t-l12",s12);
b &= test_aux(t,l21,"t-l21",s21);
b &= test_aux(t,l13,"t-l13",s13);
b &= test_aux(t,l23,"t-l23",s23);
// In triangle
Point p9_(FT(0.), FT(0.5), FT(0.5));
Point p9(FT(0.25), FT(0.375), FT(0.375));
Line l14(p1,p4);
Line l41(p4,p1);
Line l24(p2,p4);
Line l42(p4,p2);
Line l15(p1,p5);
Line l25(p2,p5);
Line l34(p3,p4);
Line l35(p3,p5);
Line l36(p3,p6);
Line l45(p4,p5);
Line l16(p1,p6);
Line l26(p2,p6);
Line l62(p6,p2);
Line l46(p4,p6);
Line l48(p4,p8);
Line l56(p5,p6);
Line l47(p4,p7);
Line l89(p8,p9);
Line l86(p8,p6);
Line l68(p6,p8);
Segment s89_res(p1,p9_);
b &= test_aux(t,l14,"t-l14",s12);
b &= test_aux(t,l41,"t-l41",s21);
b &= test_aux(t,l24,"t-l24",s21);
b &= test_aux(t,l42,"t-l42",s12);
b &= test_aux(t,l15,"t-l15",s15);
b &= test_aux(t,l25,"t-l25",s23);
b &= test_aux(t,l34,"t-l34",s34);
b &= test_aux(t,l35,"t-l35",s32);
b &= test_aux(t,l36,"t-l36",s31);
b &= test_aux(t,l45,"t-l45",s45);
b &= test_aux(t,l16,"t-l16",s13);
b &= test_aux(t,l26,"t-l26",s26);
b &= test_aux(t,l62,"t-l62",s62);
b &= test_aux(t,l46,"t-l46",s46);
b &= test_aux(t,l48,"t-l48",s46);
b &= test_aux(t,l56,"t-l56",s56);
b &= test_aux(t,l47,"t-l47",s45);
b &= test_aux(t,l89,"t-t89",s89_res);
b &= test_aux(t,l68,"t-l68",s64);
b &= test_aux(t,l86,"t-l86",s46);
// Outside points (in triangle plane)
Line lAB(pA,pB);
Line lBC(pB,pC);
Line l2E(p2,pE);
Line lE2(pE,p2);
Line l2A(p2,pA);
Line l6E(p6,pE);
Line lB8(pB,p8);
Line lC8(pC,p8);
Line l8C(p8,pC);
Line l1F(p1,pF);
Line lF6(pF,p6);
b &= test_aux(t,lAB,"t-lAB",p2);
b &= test_aux(t,lBC,"t-lBC",s46);
b &= test_aux(t,l2E,"t-l2E",s26);
b &= test_aux(t,lE2,"t-lE2",s62);
b &= test_aux(t,l2A,"t-l2A",p2);
b &= test_aux(t,l6E,"t-l6E",s26);
b &= test_aux(t,lB8,"t-lB8",s46);
b &= test_aux(t,lC8,"t-lC8",s64);
b &= test_aux(t,l8C,"t-l8C",s46);
b &= test_aux(t,l1F,"t-l1F",s13);
b &= test_aux(t,lF6,"t-lF6",s31);
// Outside triangle plane
Line lab(pa,pb);
Line lac(pa,pc);
Line lae(pa,pe);
Line la8(pa,p8);
Line lb2(pb,p2);
b &= test_aux(t,lab,"t-lab",p1);
b &= test_aux(t,lac,"t-lac",p6);
b &= test_aux(t,lae,"t-lae",p8);
b &= test_aux(t,la8,"t-la8",p8);
b &= test_aux(t,lb2,"t-lb2",p2);
return b;
}