mirror of https://github.com/CGAL/cgal
Internal namespace renamed.
This commit is contained in:
parent
ea64681620
commit
cfb6461d24
|
|
@ -21,7 +21,7 @@ CGAL_BEGIN_NAMESPACE ;
|
|||
|
||||
#include <CGAL/basic.h>
|
||||
|
||||
namespace CGALi {
|
||||
namespace POLYNOMIAL {
|
||||
|
||||
// TODO: Own simple matrix and vector to avoid importing the whole matrix stuff
|
||||
// from EXACUS.
|
||||
|
|
@ -120,7 +120,7 @@ namespace CGALi {
|
|||
* (specialisation for NiX::Matrix_d)
|
||||
*/
|
||||
template <class NT > inline
|
||||
NT determinant(const CGALi::Simple_matrix<NT>& A)
|
||||
NT determinant(const POLYNOMIAL::Simple_matrix<NT>& A)
|
||||
{
|
||||
CGAL_assertion(A.row_dimension()==A.column_dimension());
|
||||
return determinant(A,A.column_dimension());
|
||||
|
|
@ -139,7 +139,7 @@ namespace CGALi {
|
|||
typedef typename Algebraic_structure_traits<NT>::Algebraic_category Algebra_type;
|
||||
typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
|
||||
|
||||
return CGALi::determinant (matrix, n, Algebra_type(), Is_exact());
|
||||
return POLYNOMIAL::determinant (matrix, n, Algebra_type(), Is_exact());
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -154,12 +154,12 @@ namespace CGALi {
|
|||
|
||||
int i, j, l;
|
||||
|
||||
typename CGALi::Simple_vector<NT> r(k-1);
|
||||
typename CGALi::Simple_vector<NT> s(k-1);
|
||||
typename CGALi::Simple_vector<NT> t(k-1);
|
||||
typename POLYNOMIAL::Simple_vector<NT> r(k-1);
|
||||
typename POLYNOMIAL::Simple_vector<NT> s(k-1);
|
||||
typename POLYNOMIAL::Simple_vector<NT> t(k-1);
|
||||
std::vector<NT> rMks(k);
|
||||
|
||||
typename CGALi::Simple_matrix<NT> MM(k-1);
|
||||
typename POLYNOMIAL::Simple_matrix<NT> MM(k-1);
|
||||
|
||||
for (i=n-k+2;i<=n;++i)
|
||||
for (j=n-k+2;j<=n;++j)
|
||||
|
|
@ -202,7 +202,7 @@ namespace CGALi {
|
|||
* Note that this routine is completely free of divisions!
|
||||
*/
|
||||
template <class NT > inline
|
||||
NT det_berkowitz(const CGALi::Simple_matrix<NT>& A)
|
||||
NT det_berkowitz(const POLYNOMIAL::Simple_matrix<NT>& A)
|
||||
{
|
||||
CGAL_assertion(A.row_dimension()==A.column_dimension());
|
||||
return det_berkowitz(A,A.column_dimension());
|
||||
|
|
@ -226,10 +226,10 @@ namespace CGALi {
|
|||
std::vector<NT> rMks;
|
||||
NT a;
|
||||
|
||||
typename CGALi::Simple_matrix<NT> B(n+1); // not square in original
|
||||
typename POLYNOMIAL::Simple_matrix<NT> B(n+1); // not square in original
|
||||
|
||||
typename CGALi::Simple_vector<NT> p(n+1);
|
||||
typename CGALi::Simple_vector<NT> q(n+1);
|
||||
typename POLYNOMIAL::Simple_vector<NT> p(n+1);
|
||||
typename POLYNOMIAL::Simple_vector<NT> q(n+1);
|
||||
|
||||
for (k=1;k<=n;++k)
|
||||
{
|
||||
|
|
@ -252,7 +252,7 @@ namespace CGALi {
|
|||
}
|
||||
else if (k == n)
|
||||
{
|
||||
rMks = CGALi::clow_lengths<M>(A,k,n);
|
||||
rMks = POLYNOMIAL::clow_lengths<M>(A,k,n);
|
||||
// Setup for last row of matrix B
|
||||
i = n+1;
|
||||
B[i-1][n-1] = NT(-1);
|
||||
|
|
@ -267,7 +267,7 @@ namespace CGALi {
|
|||
}
|
||||
else
|
||||
{
|
||||
rMks = CGALi::clow_lengths<M>(A,k,n);
|
||||
rMks = POLYNOMIAL::clow_lengths<M>(A,k,n);
|
||||
|
||||
// Setup for matrix B (diagonal after diagonal)
|
||||
|
||||
|
|
@ -330,7 +330,7 @@ namespace CGALi {
|
|||
|
||||
|
||||
|
||||
} // namespace CGALi
|
||||
} // namespace POLYNOMIAL
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue