clean up Periodic_3_mesh_3 doc

This commit is contained in:
Sébastien Loriot 2022-09-21 17:20:29 +02:00
parent 7a6faa7c38
commit d2cd6244ff
6 changed files with 448 additions and 486 deletions

View File

@ -153,6 +153,8 @@ private:
* \tparam MC either a model of the concept `MeshCriteria_3` or a model
* of `MeshCriteriaWithFeatures_3` if the domain has exposed features.
*
* \tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters
*
* \param c3t3 the mesh to be refined that is modified by the refinement process.
* As the refinement process only adds points to the triangulation, all
* vertices of the triangulation of `c3t3` remain in the

View File

@ -1,83 +0,0 @@
namespace CGAL {
/*!
\ingroup PkgPeriodic3Mesh3Functions
The function `lloyd_optimize_periodic_3_mesh_3()` is a periodic mesh optimization
process based on the minimization of a global energy function.
This function directly calls `lloyd_optimize_mesh_3()`, but is provided for convenience.
Further information can be found on the documentation of the function `lloyd_optimize_mesh_3()`.
\note This function requires the \ref thirdpartyEigen library.
*/
template<typename C3T3, typename MD>
CGAL::Mesh_optimization_return_code
lloyd_optimize_periodic_3_mesh_3(C3T3& c3t3,
const MD& domain,
double parameters::time_limit=0,
std::size_t parameters::max_iteration_number=0,
double parameters::convergence=0.02,
double parameters::freeze_bound = 0.01,
bool parameters::do_freeze=true);
/*!
\ingroup PkgPeriodic3Mesh3Functions
The function `odt_optimize_periodic_3_mesh_3()` is a periodic mesh optimization
process based on the minimization of a global energy function.
This function directly calls `odt_optimize_mesh_3()`, but is provided for convenience.
Further information can be found on the documentation of the function `odt_optimize_mesh_3()`.
*/
template<typename C3T3, typename MD>
Mesh_optimization_return_code
odt_optimize_periodic_3_mesh_3(C3T3& c3t3,
const MD& domain,
double parameters::time_limit=0,
std::size_t parameters::max_iteration_number=0,
double parameters::convergence=0.02,
double parameters::freeze_bound = 0.01,
bool parameters::do_freeze=true);
/*!
\ingroup PkgPeriodic3Mesh3Functions
The function `perturb_periodic_3_mesh_3()` is a mesh optimizer that
improves the quality of a Delaunay mesh by changing the positions of some vertices of the mesh.
This function directly calls `perturb_mesh_3()`, but is provided for convenience.
Further information can be found on the documentation of the function `perturb_mesh_3()`.
*/
template<typename C3T3, typename MD>
CGAL::Mesh_optimization_return_code
perturb_periodic_3_mesh_3(C3T3& c3t3,
const MD& domain,
double parameters::time_limit=0,
double parameters::sliver_bound=0);
/*!
\ingroup PkgPeriodic3Mesh3Functions
The function `exude_periodic_3_mesh_3()` performs a sliver exudation process
on a periodic Delaunay mesh.
The sliver exudation process consists in optimizing the weights of vertices
of the periodic weighted Delaunay triangulation in such a way that slivers disappear
and the quality of the mesh improves.
\warning This optimizer modifies the weight of vertices of the periodic triangulation
and, if called, must be the last optimizer to be called. If the mesh is refined after
this optimization has been performed, all improvements will be lost.
This function directly calls `exude_mesh_3()`, but is provided for convenience.
Further information can be found on the documentation of the function `exude_mesh_3()`.
*/
template<typename C3T3>
CGAL::Mesh_optimization_return_code
exude_periodic_3_mesh_3(C3T3& c3t3,
double parameters::time_limit=0,
double parameters::sliver_bound=0);
} /* namespace CGAL */

View File

@ -2,7 +2,8 @@
INPUT += \
${CGAL_PACKAGE_INCLUDE_DIR}/CGAL/make_periodic_3_mesh_3.h \
${CGAL_PACKAGE_INCLUDE_DIR}/CGAL/refine_periodic_3_mesh_3.h
${CGAL_PACKAGE_INCLUDE_DIR}/CGAL/refine_periodic_3_mesh_3.h \
${CGAL_PACKAGE_INCLUDE_DIR}/CGAL/optimize_periodic_3_mesh_3.h
PROJECT_NAME = "CGAL ${CGAL_DOC_VERSION} - 3D Periodic Mesh Generation"
EXTRACT_ALL = false
HIDE_UNDOC_CLASSES = true

View File

@ -167,186 +167,182 @@ struct C3t3_initializer<C3T3, MeshDomain, MeshCriteria, true, CGAL::Tag_true>
// -----------------------------------
/*!
\ingroup PkgPeriodic3Mesh3Functions
The function `make_periodic_3_mesh_3()` is a 3D periodic mesh generator.
It produces simplicial meshes which discretize 3D periodic domains.
The periodic mesh generation algorithm is a Delaunay refinement process
followed by an optimization phase. The criteria driving the Delaunay refinement
process may be tuned to achieve the user needs with respect to
the size of mesh elements, the accuracy of boundaries approximation,
etc.
The optimization phase is a sequence of optimization processes,
amongst the following available optimizers: an ODT-smoothing,
a Lloyd smoothing, a sliver perturber, and a sliver exuder.
Each optimization process can be activated or not, according to the user requirements
and available time.
By default, only the perturber and the exuder are activated.
Note that the benefits of the exuder will be lost if the mesh
is further refined afterward, and that ODT-smoothing, Lloyd-smoothing,
and sliver perturber should never be called after the sliver exuder.
In the case of further refinement, only the sliver exuder can be used.
The function outputs the mesh to an object which provides iterators to
traverse the resulting mesh data structure or can be written to a file
(see \ref Periodic_3_mesh_3_section_examples ).
\tparam C3T3 is required to be a model of
the concept `MeshComplex_3InTriangulation_3`. This is the return type.
The type `C3T3` is in particular required to provide a nested type
`C3T3::Triangulation` for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the
triangulation `C3T3::Triangulation` are required to be models of the
concepts `MeshVertexBase_3` and `MeshCellBase_3`
respectively.
\tparam MD is required to be a model of
the concept `MeshDomain_3`, or of the refined concept
`MeshDomainWithFeatures_3`
if the domain has corners and curves that need to be accurately represented in the mesh.
The argument `domain`
is the sole link through which the domain
to be discretized is known by the mesh generation algorithm.
\tparam MC has to be a model of the concept
`MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3` if the domain has exposed features.
The argument `criteria` of type `MC` specifies the
size and shape requirements for mesh tetrahedra
and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements
satisfy those criteria at the end of the refinement process.
In addition, if the domain has features, the argument
`criteria` provides a sizing field to guide the discretization
of 1-dimensional exposed features.
\tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
\param domain the domain to be discretized
\param criteria the criteria
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below:
\cgalNamedParamsBegin
\cgalParamNBegin{features_options}
\cgalParamDescription{allows the user to specify whether 0 and 1-dimensional features have to be
taken into account or not
when the domain is a model of `MeshDomainWithFeatures_3`.
The type `Features` of this parameter is an internal undescribed type.
The library provides functions to construct appropriate values of that type.
<UL>
<LI>\link parameters::features() `parameters::features(domain)` \endlink sets `features` according to the domain,
i.e.\ 0 and 1-dimensional features are taken into account if `domain` is a
`MeshDomainWithFeatures_3`. This is the default behavior
if parameter `features` is not specified.
<LI>`parameters::no_features()` prevents the representation
of 0 and 1-dimensional features in the mesh.
</UL>}
\cgalParamType{`parameters::features()' OR `parameters::features(domain)`}
\cgalParamDefault{`parameters::features(domain)`}
\cgalParamNBegin{manifold_option}
\cgalParamDescription{allows the user to drive the meshing algorithm,
and ensure that the output mesh surface follows the given manifold criterion.
It can be activated with `parameters::manifold()`, `parameters::manifold_with_boundary()`
and `parameters::non_manifold()`. Note that the meshing algorithm cannot generate a manifold
surface if the input surface is not manifold.}
\cgalParamType{`parameters::manifold()` OR `parameters::manifold_with_boundary()` OR `parameters::non_manifold()`}
\cgalParamDefault{`parameters::non_manifold()`}
\cgalParamNBegin{lloyd_options}
\cgalParamDescription{`parameters::lloyd()` and `parameters::no_lloyd()` are designed to
trigger or not a call to `lloyd_optimize_mesh_3()` function and to set the
parameters of this optimizer. If one parameter is not set, the default value of
`lloyd_optimize_mesh_3()` is used for this parameter.}
\cgalParamType{`parameters::lloyd()` OR `parameters::no_lloyd()`}
\cgalParamDefault{`parameters::no_lloyd()`}
\cgalParamNBegin{odt_options}
\cgalParamDescription{`parameters::odt()` and `parameters::no_odt()` are designed to
trigger or not a call to `odt_optimize_mesh_3()` function and
to set the parameters of this optimizer.
If one parameter is not set, the default value of
`odt_optimize_mesh_3()` is used for this parameter.}
\cgalParamType{`parameters::odt()` OR `parameters::no_odt()`}
\cgalParamDefault{`parameters::no_odt()`}
\cgalParamNBegin{perturb_options}
\cgalParamDescription{`parameters::perturb()` and `parameters::no_perturb()` are designed to
trigger or not a call to `perturb_mesh_3()` function and
to set the parameters of this optimizer. If one parameter is not set, the default value of
`perturb_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.}
\cgalParamType{`parameters::perturb()` and `parameters::no_perturb()`}
\cgalParamDefault{`parameters::no_perturb`}
\cgalParamNBegin{exude_options}
\cgalParamDescription{parameters::exude()` and `parameters::no_exude()` are designed to
trigger or not a call to `exude_mesh_3()` function and to override to set the
parameters of this optimizer. If one parameter is not set, the default value of
`exude_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.}
\cgalParamType{`parameters::exude()` and `parameters::no_exude()`}
\cgalParamDefault{`parameters::no_exude`}
\cgalNamedParamsEnd
The optimization parameters can be passed in an arbitrary order. If one parameter
is not passed, its default value is used. The default values are
`no_lloyd()`, `no_odt()`, `perturb()` and `exude()`.
Note that whatever may be the optimization processes activated,
they are always launched in the order that is a suborder
of the following (see user manual for further
details): *ODT-smoother*, *Lloyd-smoother*, *perturber*, and *exuder*.
Beware that optimization of the mesh is obtained
by perturbing mesh vertices and modifying the mesh connectivity
and that this has an impact
on the strict compliance to the refinement criteria.
Though a strict compliance to mesh criteria
is guaranteed at the end of the Delaunay refinement, this may no longer be true after
some optimization processes. Also beware that the default behavior does involve some
optimization processes.
\sa `refine_periodic_3_mesh_3()`
\sa `make_mesh_3()`
\sa `parameters::features()`
\sa `parameters::no_features()`
\sa `parameters::manifold()`
\sa `parameters::manifold_with_boundary()`
\sa `parameters::non_manifold()`
\sa `exude_mesh_3()`
\sa `perturb_mesh_3()`
\sa `lloyd_optimize_mesh_3()`
\sa `odt_optimize_mesh_3()`
\sa `parameters::exude()`
\sa `parameters::no_exude()`
\sa `parameters::perturb()`
\sa `parameters::no_perturb()`
\sa `parameters::lloyd()`
\sa `parameters::no_lloyd()`
\sa `parameters::odt()`
\sa `parameters::no_odt()`
*/
* \ingroup PkgPeriodic3Mesh3Functions
*
* The function `make_periodic_3_mesh_3()` is a 3D periodic mesh generator.
* It produces simplicial meshes which discretize 3D periodic domains.
* The periodic mesh generation algorithm is a Delaunay refinement process
* followed by an optimization phase. The criteria driving the Delaunay refinement
* process may be tuned to achieve the user needs with respect to
* the size of mesh elements, the accuracy of boundaries approximation,
* etc.
* The optimization phase is a sequence of optimization processes,
* amongst the following available optimizers: an ODT-smoothing,
* a Lloyd smoothing, a sliver perturber, and a sliver exuder.
* Each optimization process can be activated or not, according to the user requirements
* and available time.
* By default, only the perturber and the exuder are activated.
* Note that the benefits of the exuder will be lost if the mesh
* is further refined afterward, and that ODT-smoothing, Lloyd-smoothing,
* and sliver perturber should never be called after the sliver exuder.
* In the case of further refinement, only the sliver exuder can be used.
* The function outputs the mesh to an object which provides iterators to
* traverse the resulting mesh data structure or can be written to a file
* (see \ref Periodic_3_mesh_3_section_examples ).
*
*
* \tparam C3T3 is required to be a model of
* the concept `MeshComplex_3InTriangulation_3`. This is the return type.
* The type `C3T3` is in particular required to provide a nested type
* `C3T3::Triangulation` for the 3D triangulation
* embedding the mesh. The vertex and cell base classes of the
* triangulation `C3T3::Triangulation` are required to be models of the
* concepts `MeshVertexBase_3` and `MeshCellBase_3`
* respectively.
*
* \tparam MD is required to be a model of
* the concept `MeshDomain_3`, or of the refined concept
* `MeshDomainWithFeatures_3`
* if the domain has corners and curves that need to be accurately represented in the mesh.
* The argument `domain`
* is the sole link through which the domain
* to be discretized is known by the mesh generation algorithm.
*
* \tparam MC has to be a model of the concept
* `MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3` if the domain has exposed features.
* The argument `criteria` of type `MC` specifies the
* size and shape requirements for mesh tetrahedra
* and surface facets. These criteria
* form the rules which drive the refinement process. All mesh elements
* satisfy those criteria at the end of the refinement process.
* In addition, if the domain has features, the argument
* `criteria` provides a sizing field to guide the discretization
* of 1-dimensional exposed features.
*
* \tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
*
* \param domain the domain to be discretized
* \param criteria the criteria
* \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below:
*
* \cgalNamedParamsBegin
* \cgalParamSectionBegin{Feature preservation options}
* \cgalParamDescription{If the domain is a model of `MeshDomainWithFeatures_3`, 0 and 1-dimensional features can be
* taken into account while generating the mesh. The following two named parameters control
* this option:
* <UL>
* <LI>\link parameters::features() `parameters::features(domain)` \endlink
* <LI>`parameters::no_features()`
* </UL>}
* \cgalParamDefault{`parameters::features(domain)`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Topological options (manifoldness)}
* \cgalParamDescription{In order to drive the meshing algorithm and ensure that the output mesh follows a desired topological criterion,
* three named parameters control this option:
* <UL>
* <LI>`parameters::manifold()`
* <LI>`parameters::manifold_with_boundary()`
* <LI>`parameters::non_manifold()`
* </UL>
* Note that the meshing algorithm cannot generate a manifold surface if the input surface is not manifold.}
* \cgalParamDefault{`parameters::non_manifold()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Lloyd optimization}
* \cgalParamDescription{`lloyd_optimize_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::no_lloyd()`
* <LI> `parameters::lloyd_optimize_mesh_3()`
* </UL>}
* \cgalParamDefault{`parameters::no_lloyd()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{ODT optimization}
* \cgalParamDescription{`odt_optimize_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::no_odt()`
* <LI> `parameters::odt()`
* </UL>}
* \cgalParamDefault{`parameters::no_odt()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Mesh perturbation}
* \cgalParamDescription{`perturb_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::no_perturb()`
* <LI> `parameters::perturb()`
* </UL>}
* \cgalParamDefault{`parameters::perturb()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Mesh exudation}
* \cgalParamDescription{`exude_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::exude()`
* <LI> `parameters::no_exude()`
* </UL>}
* \cgalParamDefault{`parameters::exude()`}
* \cgalParamSectionEnd
* \cgalNamedParamsEnd
*
* The optimization parameters can be passed in an arbitrary order. If one parameter
* is not passed, its default value is used. The default values are
* `no_lloyd()`, `no_odt()`, `perturb()` and `exude()`.
*
* Note that whatever may be the optimization processes activated,
* they are always launched in the order that is a suborder
* of the following (see user manual for further
* details): *ODT-smoother*, *Lloyd-smoother*, *perturber*, and *exuder*.
*
* Beware that optimization of the mesh is obtained
* by perturbing mesh vertices and modifying the mesh connectivity
* and that this has an impact
* on the strict compliance to the refinement criteria.
* Though a strict compliance to mesh criteria
* is guaranteed at the end of the Delaunay refinement, this may no longer be true after
* some optimization processes. Also beware that the default behavior does involve some
* optimization processes.
*
* \sa `refine_periodic_3_mesh_3()`
* \sa `make_mesh_3()`
* \sa `parameters::features()`
* \sa `parameters::no_features()`
* \sa `parameters::manifold()`
* \sa `parameters::manifold_with_boundary()`
* \sa `parameters::non_manifold()`
* \sa `exude_mesh_3()`
* \sa `perturb_mesh_3()`
* \sa `lloyd_optimize_mesh_3()`
* \sa `odt_optimize_mesh_3()`
* \sa `parameters::exude()`
* \sa `parameters::no_exude()`
* \sa `parameters::perturb()`
* \sa `parameters::no_perturb()`
* \sa `parameters::lloyd()`
* \sa `parameters::no_lloyd()`
* \sa `parameters::odt()`
* \sa `parameters::no_odt()`
*/
template<typename C3T3, typename MeshDomain, typename MeshCriteria, typename CGAL_NP_TEMPLATE_PARAMETERS>
C3T3 make_periodic_3_mesh_3(MeshDomain& domain, MeshCriteria& criteria, const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
C3T3 c3t3;
parameters::internal::Exude_options exude_param = choose_parameter(get_parameter(np, internal_np::exude_options_param), parameters::exude().v);
parameters::internal::Perturb_options perturb_param = choose_parameter(get_parameter(np, internal_np::perturb_options_param), parameters::perturb().v);
parameters::internal::Odt_options odt_param = choose_parameter(get_parameter(np, internal_np::odt_options_param), parameters::no_odt().v);
parameters::internal::Lloyd_options lloyd_param = choose_parameter(get_parameter(np, internal_np::lloyd_options_param), parameters::no_lloyd().v);
parameters::internal::Features_options features_param = choose_parameter(get_parameter(np, internal_np::features_options_param), parameters::features(domain).v);
parameters::internal::Mesh_3_options mesh_options_param = choose_parameter(get_parameter(np, internal_np::mesh_param), parameters::internal::Mesh_3_options());
parameters::internal::Manifold_options manifold_options_param = choose_parameter(get_parameter(np, internal_np::manifold_param), parameters::internal::Manifold_options());
using parameters::choose_parameter;
using parameters::get_parameter;
C3T3 c3t3;
parameters::internal::Exude_options exude_param = choose_parameter(get_parameter(np, internal_np::exude_options_param), parameters::exude().v);
parameters::internal::Perturb_options perturb_param = choose_parameter(get_parameter(np, internal_np::perturb_options_param), parameters::perturb().v);
parameters::internal::Odt_options odt_param = choose_parameter(get_parameter(np, internal_np::odt_options_param), parameters::no_odt().v);
parameters::internal::Lloyd_options lloyd_param = choose_parameter(get_parameter(np, internal_np::lloyd_options_param), parameters::no_lloyd().v);
parameters::internal::Features_options features_param = choose_parameter(get_parameter(np, internal_np::features_options_param), parameters::features(domain).v);
parameters::internal::Mesh_3_options mesh_options_param = choose_parameter(get_parameter(np, internal_np::mesh_param), parameters::internal::Mesh_3_options());
parameters::internal::Manifold_options manifold_options_param = choose_parameter(get_parameter(np, internal_np::manifold_param), parameters::internal::Manifold_options());
make_periodic_3_mesh_3_impl(c3t3, domain, criteria,
exude_param, perturb_param, odt_param, lloyd_param,
features_param.features(), mesh_options_param,
manifold_options_param);
return c3t3;
make_periodic_3_mesh_3_impl(c3t3, domain, criteria,
exude_param, perturb_param, odt_param, lloyd_param,
features_param.features(), mesh_options_param,
manifold_options_param);
return c3t3;
}
@ -354,7 +350,7 @@ C3T3 make_periodic_3_mesh_3(MeshDomain& domain, MeshCriteria& criteria, const CG
template<typename C3T3, typename MeshDomain, typename MeshCriteria, typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
C3T3 make_periodic_3_mesh_3(MeshDomain& domain, MeshCriteria& criteria, const CGAL_NP_CLASS& ... nps)
{
return make_periodic_3_mesh_3<C3T3>(domain, criteria, internal_np::combine_named_parameters(nps...));
return make_periodic_3_mesh_3<C3T3>(domain, criteria, internal_np::combine_named_parameters(nps...));
}

View File

@ -24,96 +24,139 @@
namespace CGAL {
// ---------------------------------- pertuber ---------------------------------
/*!
* \ingroup PkgPeriodic3Mesh3Functions
*
* The function `perturb_periodic_3_mesh_3()` is a mesh optimizer that
* improves the quality of a Delaunay mesh by changing the positions of some vertices of the mesh.
*
* This function directly calls `perturb_mesh_3()`, but is provided for convenience.
* Further information can be found on the documentation of the function `perturb_mesh_3()`.
*/
template<typename C3T3, typename MeshDomain, typename CGAL_NP_TEMPLATE_PARAMETERS>
Mesh_optimization_return_code perturb_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain, const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
double time_limit = choose_parameter(get_parameter(np,internal_np::maximum_running_time),0);
auto sliver_bound = choose_parameter(get_parameter(np,internal_np::lower_sliver_bound), parameters::default_values_for_mesh_3::perturb_sliver_bound);
auto sliver_criterion = choose_parameter(get_parameter(np, internal_np::sliver_criteria), parameters::default_values_for_mesh_3::default_sliver_criterion(c3t3,sliver_bound));
auto perturbation_vector = choose_parameter(get_parameter(np,internal_np::perturb_vector), default_perturbation_vector(c3t3,domain,sliver_criterion));
return perturb_mesh_3_impl(c3t3, domain, time_limit, sliver_criterion, perturbation_vector);
using parameters::choose_parameter;
using parameters::get_parameter;
double time_limit = choose_parameter(get_parameter(np,internal_np::maximum_running_time),0);
auto sliver_bound = choose_parameter(get_parameter(np,internal_np::lower_sliver_bound), parameters::default_values_for_mesh_3::perturb_sliver_bound);
auto sliver_criterion = choose_parameter(get_parameter(np, internal_np::sliver_criteria), parameters::default_values_for_mesh_3::default_sliver_criterion(c3t3,sliver_bound));
auto perturbation_vector = choose_parameter(get_parameter(np,internal_np::perturb_vector), default_perturbation_vector(c3t3,domain,sliver_criterion));
return perturb_mesh_3_impl(c3t3, domain, time_limit, sliver_criterion, perturbation_vector);
}
template<typename C3T3, typename MeshDomain, typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code perturb_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain, const CGAL_NP_CLASS& ... nps)
{
return perturb_periodic_3_mesh_3(c3t3,domain, internal_np::combine_named_parameters(nps...));
return perturb_periodic_3_mesh_3(c3t3,domain, internal_np::combine_named_parameters(nps...));
}
template<typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code perturb_periodic_3_mesh_3(const CGAL_NP_CLASS& ... nps)
{
return perturb_periodic_3_mesh_3(internal_np::combine_named_parameters(nps...));
return perturb_periodic_3_mesh_3(internal_np::combine_named_parameters(nps...));
}
// ---------------------------------- exuder -----------------------------------
/*!
* \ingroup PkgPeriodic3Mesh3Functions
*
* The function `exude_periodic_3_mesh_3()` performs a sliver exudation process
* on a periodic Delaunay mesh.
*
* The sliver exudation process consists in optimizing the weights of vertices
* of the periodic weighted Delaunay triangulation in such a way that slivers disappear
* and the quality of the mesh improves.
*
* \warning This optimizer modifies the weight of vertices of the periodic triangulation
* and, if called, must be the last optimizer to be called. If the mesh is refined after
* this optimization has been performed, all improvements will be lost.
*
* This function directly calls `exude_mesh_3()`, but is provided for convenience.
* Further information can be found on the documentation of the function `exude_mesh_3()`.
*/
template<typename C3T3, typename CGAL_NP_TEMPLATE_PARAMETERS>
Mesh_optimization_return_code exude_periodic_3_mesh_3(C3T3& c3t3,const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
int time_limit=choose_parameter(get_parameter(np,internal_np::maximum_running_time),0);
double sliver_bound= choose_parameter(get_parameter(np,internal_np::lower_sliver_bound),parameters::default_values_for_mesh_3::exude_sliver_bound);
return exude_mesh_3_impl(c3t3,time_limit,sliver_bound);
using parameters::choose_parameter;
using parameters::get_parameter;
int time_limit=choose_parameter(get_parameter(np,internal_np::maximum_running_time),0);
double sliver_bound= choose_parameter(get_parameter(np,internal_np::lower_sliver_bound),parameters::default_values_for_mesh_3::exude_sliver_bound);
return exude_mesh_3_impl(c3t3,time_limit,sliver_bound);
}
template<typename C3T3, typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code exude_periodic_3_mesh_3(C3T3& c3t3, const CGAL_NP_CLASS& ... nps)
{
return exude_periodic_3_mesh_3(c3t3,internal_np::combine_named_parameters(nps...));
return exude_periodic_3_mesh_3(c3t3,internal_np::combine_named_parameters(nps...));
}
template<typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code exude_periodic_3_mesh_3(const CGAL_NP_CLASS& ... nps)
{
return exude_periodic_3_mesh_3(internal_np::combine_named_parameters(nps...));
return exude_periodic_3_mesh_3(internal_np::combine_named_parameters(nps...));
}
// ------------------------------ odt optimizer --------------------------------
/*!
* \ingroup PkgPeriodic3Mesh3Functions
*
* The function `odt_optimize_periodic_3_mesh_3()` is a periodic mesh optimization
* process based on the minimization of a global energy function.
*
* This function directly calls `odt_optimize_mesh_3()`, but is provided for convenience.
* Further information can be found on the documentation of the function `odt_optimize_mesh_3()`.
*/
template<typename C3T3,typename MeshDomain,typename CGAL_NP_TEMPLATE_PARAMETERS>
Mesh_optimization_return_code odt_optimize_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain, const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
double time_limit=choose_parameter(get_parameter(np,internal_np::maximum_running_time),0);
std::size_t max_iteration_number=choose_parameter(get_parameter(np,internal_np::number_of_iterations),0);
double convergence=choose_parameter(get_parameter(np,internal_np::convergence_ratio),0.02);
double freeze_bound=choose_parameter(get_parameter(np,internal_np::vertex_freeze_bound),0.01);
bool do_freeze=choose_parameter(get_parameter(np,internal_np::freeze),true);
return odt_optimize_mesh_3_impl(c3t3, domain, time_limit, max_iteration_number, convergence, freeze_bound, do_freeze);
using parameters::choose_parameter;
using parameters::get_parameter;
double time_limit=choose_parameter(get_parameter(np,internal_np::maximum_running_time),0);
std::size_t max_iteration_number=choose_parameter(get_parameter(np,internal_np::number_of_iterations),0);
double convergence=choose_parameter(get_parameter(np,internal_np::convergence_ratio),0.02);
double freeze_bound=choose_parameter(get_parameter(np,internal_np::vertex_freeze_bound),0.01);
bool do_freeze=choose_parameter(get_parameter(np,internal_np::freeze),true);
return odt_optimize_mesh_3_impl(c3t3, domain, time_limit, max_iteration_number, convergence, freeze_bound, do_freeze);
}
template<typename C3T3, typename MeshDomain, typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code odt_optimize_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain, const CGAL_NP_CLASS& ... nps)
{
return odt_optimize_periodic_3_mesh_3(c3t3, domain, internal_np::combine_named_parameters(nps...));
return odt_optimize_periodic_3_mesh_3(c3t3, domain, internal_np::combine_named_parameters(nps...));
}
template<typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code odt_optimize_periodic_3_mesh_3(const CGAL_NP_CLASS& ... nps)
{
return odt_optimize_periodic_3_mesh_3(internal_np::combine_named_parameters(nps...));
return odt_optimize_periodic_3_mesh_3(internal_np::combine_named_parameters(nps...));
}
// ------------------------------- lloyd optimizer -----------------------------
/*!
* \ingroup PkgPeriodic3Mesh3Functions
*
* The function `lloyd_optimize_periodic_3_mesh_3()` is a periodic mesh optimization
* process based on the minimization of a global energy function.
*
* This function directly calls `lloyd_optimize_mesh_3()`, but is provided for convenience.
* Further information can be found on the documentation of the function `lloyd_optimize_mesh_3()`.
*
* \note This function requires the \ref thirdpartyEigen library.
*/
template<typename C3T3, typename MeshDomain, typename CGAL_NP_TEMPLATE_PARAMETERS>
Mesh_optimization_return_code lloyd_optimize_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain,const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
int max_iterations = choose_parameter(get_parameter(np, internal_np::number_of_iterations), 0);
const double convergence_ratio = choose_parameter(get_parameter(np, internal_np::convergence_ratio), 0.001);
const double freeze_bound = choose_parameter(get_parameter(np, internal_np::vertex_freeze_bound), 0.001);
const double time_limit = choose_parameter(get_parameter(np, internal_np::maximum_running_time), 0.);
bool do_freeze = choose_parameter(get_parameter(np,internal_np::freeze),true);
return lloyd_optimize_mesh_3_impl(c3t3, domain, time_limit, max_iterations, convergence_ratio, freeze_bound, do_freeze);
using parameters::choose_parameter;
using parameters::get_parameter;
int max_iterations = choose_parameter(get_parameter(np, internal_np::number_of_iterations), 0);
const double convergence_ratio = choose_parameter(get_parameter(np, internal_np::convergence_ratio), 0.001);
const double freeze_bound = choose_parameter(get_parameter(np, internal_np::vertex_freeze_bound), 0.001);
const double time_limit = choose_parameter(get_parameter(np, internal_np::maximum_running_time), 0.);
bool do_freeze = choose_parameter(get_parameter(np,internal_np::freeze),true);
return lloyd_optimize_mesh_3_impl(c3t3, domain, time_limit, max_iterations, convergence_ratio, freeze_bound, do_freeze);
}
template<typename C3T3, typename MeshDomain,typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
Mesh_optimization_return_code lloyd_optimize_periodic_3_mesh_3(C3T3& c3t3,MeshDomain& domain, const CGAL_NP_CLASS& ... nps)
{
return lloyd_optimize_periodic_3_mesh_3(c3t3,domain, internal_np::combine_named_parameters(nps...));
return lloyd_optimize_periodic_3_mesh_3(c3t3,domain, internal_np::combine_named_parameters(nps...));
}
} // namespace CGAL

View File

@ -134,204 +134,207 @@ void project_points(C3T3& c3t3,
} // namespace internal
/*!
\ingroup PkgPeriodic3Mesh3Functions
The function `refine_periodic_3_mesh_3()` is a 3D periodic
mesh generator. It produces periodic simplicial meshes which discretize
3D periodic domains.
The periodic mesh generation algorithm is a Delaunay refinement process
followed by an optimization phase.
The criteria driving the Delaunay refinement
process may be tuned to achieve the user needs with respect to
the size of mesh elements, the accuracy of boundaries approximation, etc.
The optimization phase is a sequence of optimization processes,
amongst the following available optimizers: an ODT-smoothing,
a Lloyd smoothing, a sliver perturber, and a sliver exuder.
Each optimization process can be activated or not, according to the user requirements
and available time.
By default, only the perturber and the exuder are activated.
Note that the benefits of the exuder will be lost if the mesh
is further refined afterward.
\attention The function template `refine_periodic_3_mesh_3()` may be used
to refine a previously computed mesh, e.g.:
\code{.cpp}
C3T3 c3t3 = CGAL::make_periodic_3_mesh_3<C3T3>(domain,criteria);
CGAL::refine_periodic_3_mesh_3(c3t3, domain, new_criteria);
\endcode
\attention Note that the triangulation must form at all times a simplicial complex within
a single copy of the domain (see Sections \ref P3Triangulation3secspace and \ref P3Triangulation3secintro
of the manual of 3D periodic triangulations). It is the responsability of the user to provide
a triangulation that satisfies this condition when calling the refinement
function `refine_periodic_3_mesh_3`. The underlying triangulation of a mesh
complex obtained through `make_periodic_3_mesh_3()` or `refine_periodic_3_mesh_3()`
will always satisfy this condition.
\tparam C3T3 is required to be a model of
the concept
`MeshComplex_3InTriangulation_3`.
The argument `c3t3` is passed by
reference as this object is modified by the refinement process. As the
refinement process only adds points to the triangulation, all
vertices of the triangulation of `c3t3` remain in the
mesh during the refinement process. Object `c3t3` can be used to insert
specific points in the domain to ensure that they will be contained in the
final triangulation.
The type `C3T3` is in particular required to provide a nested type
`C3T3::Triangulation` for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the
triangulation `C3T3::Triangulation` are required to be models of the
concepts `MeshVertexBase_3` and `MeshCellBase_3`
respectively.
\tparam MD is required to be a model of
the concept `Periodic_3MeshDomain_3` or of the refined concept
`Periodic_3MeshDomainWithFeatures_3` if 0 and 1-dimensional features
of the input complex have to be accurately represented in the mesh.
The argument `domain` is the sole link through which the domain
to be discretized is known by the mesh generation algorithm.
\tparam MC is required to be a model of the concept
`MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3`
if the domain has exposed features. The argument `criteria` of
type `MC` specifies the
size and shape requirements for mesh tetrahedra
and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements
satisfy those criteria at the end of the refinement process.
In addition, if the domain has features, the argument
`criteria` provides a sizing field to guide the discretization
of 1-dimensional exposed features.
\param c3t3 the mesh to be refined.
\param domain the domain to be discretized
\param criteria the criteria
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below:
The following four parameters are optional optimization parameters.
They control which optimization processes are performed
and allow the user to tune the parameters of the optimization processes.
Individual optimization parameters are not described here as they are
internal types (see instead the documentation page of each optimizer).
For each optimization algorithm, there exist two global functions
that allow to enable or disable the optimizer:
\cgalNamedParamsBegin
\cgalParamNBegin{manifold_option}
\cgalParamDescription{allows the user to drive the meshing algorithm,
and ensure that the output mesh surface follows the given manifold criterion.
It can be activated with `parameters::manifold()`, `parameters::manifold_with_boundary()`
and `parameters::non_manifold()`. Note that the meshing algorithm cannot generate a manifold
surface if the input surface is not manifold.}
\cgalParamType{`parameters::manifold()` OR `parameters::manifold_with_boundary()` OR `parameters::non_manifold()`}
\cgalParamDefault{`parameters::non_manifold()`}
\cgalParamNBegin{lloyd_options}
\cgalParamDescription{`parameters::lloyd()` and `parameters::no_lloyd()` are designed to
trigger or not a call to `lloyd_optimize_mesh_3()` function and to set the
parameters of this optimizer. If one parameter is not set, the default value of
`lloyd_optimize_mesh_3()` is used for this parameter.}
\cgalParamType{`parameters::lloyd()` OR `parameters::no_lloyd()`}
\cgalParamDefault{`parameters::no_lloyd()'}
\cgalParamNBegin{odt_options}
\cgalParamDescription{`parameters::odt()` and `parameters::no_odt()` are designed to
trigger or not a call to `odt_optimize_mesh_3()` function and
to set the parameters of this optimizer.
If one parameter is not set, the default value of
`odt_optimize_mesh_3()` is used for this parameter.}
\cgalParamType{`parameters::odt()` OR `parameters::no_odt()`}
\cgalParamDefault{`parameters::no_odt()`}
\cgalParamNBegin{perturb_options}
\cgalParamDescription{`parameters::perturb()` and `parameters::no_perturb()` are designed to
trigger or not a call to `perturb_mesh_3()` function and
to set the parameters of this optimizer. If one parameter is not set, the default value of
`perturb_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.}
\cgalParamType{`parameters::perturb()` and `parameters::no_perturb()`}
\cgalParamDefault{`parameters::no_perturb`}
\cgalParamNBegin{exude_options}
\cgalParamDescription{parameters::exude()` and `parameters::no_exude()` are designed to
trigger or not a call to `exude_mesh_3()` function and to override to set the
parameters of this optimizer. If one parameter is not set, the default value of
`exude_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.}
\cgalParamType{`parameters::exude()` and `parameters::no_exude()`}
\cgalParamDefault{`parameters::no_exude`}
\cgalNamedParamsEnd
The optimization parameters can be passed in arbitrary order. If one parameter
is not passed, its default value is used. The default values are
`no_lloyd()`, `no_odt()`, `perturb()` and `exude()`.
Note that whatever may be the optimization processes activated,
they are always launched in the order that is a suborder
of the following (see user manual for further
details): *ODT-smoother*, *Lloyd-smoother*, *perturber*, and *exuder*.
Beware that optimization of the mesh is obtained
by perturbing mesh vertices and modifying the mesh connectivity
and that this has an impact
on the strict compliance to the refinement criteria.
Though a strict compliance to mesh criteria
is guaranteed at the end of the Delaunay refinement, this may no longer be true after
some optimization processes. Also beware that the default behavior does involve some
optimization processes.
\sa `make_periodic_3_mesh_3()`
\sa `refine_mesh_3()`
\sa `exude_periodic_3_mesh_3()`
\sa `perturb_periodic_3_mesh_3()`
\sa `lloyd_optimize_periodic_3_mesh_3()`
\sa `odt_optimize_periodic_3_mesh_3()`
\sa `parameters::exude`
\sa `parameters::no_exude`
\sa `parameters::perturb`
\sa `parameters::no_perturb`
\sa `parameters::lloyd`
\sa `parameters::no_lloyd`
\sa `parameters::odt`
\sa `parameters::no_odt`
* \ingroup PkgPeriodic3Mesh3Functions
*
* The function `refine_periodic_3_mesh_3()` is a 3D periodic
* mesh generator. It produces periodic simplicial meshes which discretize
* 3D periodic domains.
*
* The periodic mesh generation algorithm is a Delaunay refinement process
* followed by an optimization phase.
* The criteria driving the Delaunay refinement
* process may be tuned to achieve the user needs with respect to
* the size of mesh elements, the accuracy of boundaries approximation, etc.
*
* The optimization phase is a sequence of optimization processes,
* amongst the following available optimizers: an ODT-smoothing,
* a Lloyd smoothing, a sliver perturber, and a sliver exuder.
* Each optimization process can be activated or not, according to the user requirements
* and available time.
* By default, only the perturber and the exuder are activated.
* Note that the benefits of the exuder will be lost if the mesh
* is further refined afterward.
*
* \attention The function template `refine_periodic_3_mesh_3()` may be used
* to refine a previously computed mesh, e.g.:
* \code{.cpp}
* C3T3 c3t3 = CGAL::make_periodic_3_mesh_3<C3T3>(domain,criteria);
*
* CGAL::refine_periodic_3_mesh_3(c3t3, domain, new_criteria);
* \endcode
*
* \attention Note that the triangulation must form at all times a simplicial complex within
* a single copy of the domain (see Sections \ref P3Triangulation3secspace and \ref P3Triangulation3secintro
* of the manual of 3D periodic triangulations). It is the responsability of the user to provide
* a triangulation that satisfies this condition when calling the refinement
* function `refine_periodic_3_mesh_3`. The underlying triangulation of a mesh
* complex obtained through `make_periodic_3_mesh_3()` or `refine_periodic_3_mesh_3()`
* will always satisfy this condition.
*
*
* \tparam C3T3 is required to be a model of
* the concept
* `MeshComplex_3InTriangulation_3`.
* The argument `c3t3` is passed by
* reference as this object is modified by the refinement process. As the
* refinement process only adds points to the triangulation, all
* vertices of the triangulation of `c3t3` remain in the
* mesh during the refinement process. Object `c3t3` can be used to insert
* specific points in the domain to ensure that they will be contained in the
* final triangulation.
* The type `C3T3` is in particular required to provide a nested type
* `C3T3::Triangulation` for the 3D triangulation
* embedding the mesh. The vertex and cell base classes of the
* triangulation `C3T3::Triangulation` are required to be models of the
* concepts `MeshVertexBase_3` and `MeshCellBase_3`
* respectively.
*
* \tparam MD is required to be a model of
* the concept `Periodic_3MeshDomain_3` or of the refined concept
* `Periodic_3MeshDomainWithFeatures_3` if 0 and 1-dimensional features
* of the input complex have to be accurately represented in the mesh.
* The argument `domain` is the sole link through which the domain
* to be discretized is known by the mesh generation algorithm.
*
* \tparam MC is required to be a model of the concept
* `MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3`
* if the domain has exposed features. The argument `criteria` of
* type `MC` specifies the
* size and shape requirements for mesh tetrahedra
* and surface facets. These criteria
* form the rules which drive the refinement process. All mesh elements
* satisfy those criteria at the end of the refinement process.
* In addition, if the domain has features, the argument
* `criteria` provides a sizing field to guide the discretization
* of 1-dimensional exposed features.
*
* \tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters
*
* \param c3t3 the mesh to be refined.
* \param domain the domain to be discretized
* \param criteria the criteria
* \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below:
*
* The following four parameters are optional optimization parameters.
* They control which optimization processes are performed
* and allow the user to tune the parameters of the optimization processes.
* Individual optimization parameters are not described here as they are
* internal types (see instead the documentation page of each optimizer).
* For each optimization algorithm, there exist two global functions
* that allow to enable or disable the optimizer:
*
* \cgalNamedParamsBegin
* \cgalParamSectionBegin{Topological options (manifoldness)}
* \cgalParamDescription{In order to drive the meshing algorithm and ensure that the output mesh follows a desired topological criterion,
* three named parameters control this option:
* <UL>
* <LI>`parameters::manifold()`
* <LI>`parameters::manifold_with_boundary()`
* <LI>`parameters::non_manifold()`
* </UL>
* Note that the meshing algorithm cannot generate a manifold surface if the input surface is not manifold.}
* \cgalParamDefault{`parameters::non_manifold()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Lloyd optimization}
* \cgalParamDescription{`lloyd_optimize_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::no_lloyd()`
* <LI> `parameters::lloyd_optimize_mesh_3()`
* </UL>}
* \cgalParamDefault{`parameters::no_lloyd()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{ODT optimization}
* \cgalParamDescription{`odt_optimize_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::no_odt()`
* <LI> `parameters::odt()`
* </UL>}
* \cgalParamDefault{`parameters::no_odt()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Mesh perturbation}
* \cgalParamDescription{`perturb_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::no_perturb()`
* <LI> `parameters::perturb()`
* </UL>}
* \cgalParamDefault{`parameters::perturb()`}
* \cgalParamSectionEnd
* \cgalParamSectionBegin{Mesh exudation}
* \cgalParamDescription{`exude_mesh_3()` can optionally be called after the meshing process.
* Two named parameters control this behavior:
* <UL>
* <LI> `parameters::exude()`
* <LI> `parameters::no_exude()`
* </UL>}
* \cgalParamDefault{`parameters::exude()`}
* \cgalParamSectionEnd
* \cgalNamedParamsEnd
*
* The optimization parameters can be passed in arbitrary order. If one parameter
* is not passed, its default value is used. The default values are
* `no_lloyd()`, `no_odt()`, `perturb()` and `exude()`.
* Note that whatever may be the optimization processes activated,
* they are always launched in the order that is a suborder
* of the following (see user manual for further
* details): *ODT-smoother*, *Lloyd-smoother*, *perturber*, and *exuder*.
*
* Beware that optimization of the mesh is obtained
* by perturbing mesh vertices and modifying the mesh connectivity
* and that this has an impact
* on the strict compliance to the refinement criteria.
* Though a strict compliance to mesh criteria
* is guaranteed at the end of the Delaunay refinement, this may no longer be true after
* some optimization processes. Also beware that the default behavior does involve some
* optimization processes.
*
* \sa `make_periodic_3_mesh_3()`
* \sa `refine_mesh_3()`
* \sa `exude_periodic_3_mesh_3()`
* \sa `perturb_periodic_3_mesh_3()`
* \sa `lloyd_optimize_periodic_3_mesh_3()`
* \sa `odt_optimize_periodic_3_mesh_3()`
* \sa `parameters::exude`
* \sa `parameters::no_exude`
* \sa `parameters::perturb`
* \sa `parameters::no_perturb`
* \sa `parameters::lloyd`
* \sa `parameters::no_lloyd`
* \sa `parameters::odt`
* \sa `parameters::no_odt`
*/
template<typename C3T3, typename MeshDomain, typename MeshCriteria, typename CGAL_NP_TEMPLATE_PARAMETERS>
void refine_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain, MeshCriteria& criteria, const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
parameters::internal::Exude_options exude_param = choose_parameter(get_parameter(np, internal_np::exude_options_param), parameters::no_exude().v);
parameters::internal::Perturb_options perturb_param = choose_parameter(get_parameter(np, internal_np::perturb_options_param), parameters::no_perturb().v);
parameters::internal::Odt_options odt_param = choose_parameter(get_parameter(np, internal_np::odt_options_param), parameters::no_odt().v);
parameters::internal::Lloyd_options lloyd_param = choose_parameter(get_parameter(np, internal_np::lloyd_options_param), parameters::no_lloyd().v);
bool reset = choose_parameter(get_parameter(np, internal_np::do_reset_c3t3), false);
parameters::internal::Mesh_3_options mesh_options_param = choose_parameter(get_parameter(np, internal_np::mesh_param), parameters::internal::Mesh_3_options());
parameters::internal::Manifold_options manifold_options_param = choose_parameter(get_parameter(np, internal_np::manifold_param), parameters::internal::Manifold_options());
using parameters::choose_parameter;
using parameters::get_parameter;
parameters::internal::Exude_options exude_param = choose_parameter(get_parameter(np, internal_np::exude_options_param), parameters::no_exude().v);
parameters::internal::Perturb_options perturb_param = choose_parameter(get_parameter(np, internal_np::perturb_options_param), parameters::no_perturb().v);
parameters::internal::Odt_options odt_param = choose_parameter(get_parameter(np, internal_np::odt_options_param), parameters::no_odt().v);
parameters::internal::Lloyd_options lloyd_param = choose_parameter(get_parameter(np, internal_np::lloyd_options_param), parameters::no_lloyd().v);
bool reset = choose_parameter(get_parameter(np, internal_np::do_reset_c3t3), false);
parameters::internal::Mesh_3_options mesh_options_param = choose_parameter(get_parameter(np, internal_np::mesh_param), parameters::internal::Mesh_3_options());
parameters::internal::Manifold_options manifold_options_param = choose_parameter(get_parameter(np, internal_np::manifold_param), parameters::internal::Manifold_options());
return refine_periodic_3_mesh_3_impl(c3t3,
domain,
criteria,
exude_param,
perturb_param,
odt_param,
lloyd_param,
reset,
mesh_options_param,
manifold_options_param);
return refine_periodic_3_mesh_3_impl(c3t3,
domain,
criteria,
exude_param,
perturb_param,
odt_param,
lloyd_param,
reset,
mesh_options_param,
manifold_options_param);
}
#ifndef DOXYGEN_RUNNING
template<typename C3T3, typename MeshDomain, typename MeshCriteria, typename ... CGAL_NP_TEMPLATE_PARAMETERS_VARIADIC>
void refine_periodic_3_mesh_3(C3T3& c3t3, MeshDomain& domain, MeshCriteria& criteria, const CGAL_NP_CLASS& ... nps)
{
return refine_periodic_3_mesh_3(c3t3, domain, criteria, internal_np::combine_named_parameters(nps...));
return refine_periodic_3_mesh_3(c3t3, domain, criteria, internal_np::combine_named_parameters(nps...));
}
/**
* @brief This function refines the mesh c3t3 wrt domain & criteria