switch names

This commit is contained in:
kanhuang 2013-09-12 09:32:44 -04:00
parent 08aa9c27f8
commit d35ac74685
1 changed files with 74 additions and 75 deletions

View File

@ -83,25 +83,25 @@ public:
private:
typedef std::vector<Point_2> Pvec;
typedef std::pair<Point_2, Point_2> Pair;
typedef std::pair<Point_2, Point_2> Edge;
const Geometry_traits_2 *geom_traits;
const Input_arrangement_2 *p_arr;
Point_2 q;
Point_2 dp;
Pvec polygon; //visibility polygon
std::map<Point_2, Pvec> neighbors; //vertex and two edges incident to it that might block vision
std::map<Pair, int> edx; //index of edge in the heap
std::vector<Pair> heap;
Pvec polygon; //visibility polygon
std::map<Point_2, Pvec> neighbors; //vertex and its neighbours that are relevant to visibility polygon
std::map<Edge, int> edx; //index of edge in the heap
std::vector<Edge> active_edges; //a heap of edges that interset the current vision ray.
Pvec vs; //angular sorted vertices
Pvec vs; //angular sorted vertices
bool is_vertex_query;
bool is_edge_query;
bool is_big_cone; //whether the angle of visibility_cone is greater than pi.
std::vector<Halfedge_const_handle> bad_edge_handles;
bool is_big_cone; //whether the angle of visibility_cone is greater than pi.
std::vector<Halfedge_const_handle> bad_edge;
Vertex_const_handle query_vertex;
Point_2 source;
Point_2 target;
Point_2 source; //one end of visibility cone
Point_2 target; //another end of visibility cone
public:
@ -112,10 +112,10 @@ public:
Face_handle compute_visibility(const Point_2& q, const Halfedge_const_handle e, Arrangement_2& arr_out) {
arr_out.clear();
bad_edge_handles.clear();
bad_edge.clear();
this->q = q;
if (q == e->target()->point()) {
if (Visibility_2::compare_xy_2(geom_traits, q, e->target()->point())==EQUAL) {
query_vertex = e->target();
is_vertex_query = true;
is_edge_query = false;
@ -127,9 +127,9 @@ public:
first = curr = e->target()->incident_halfedges();
do {
if (curr->face() == e->face())
bad_edge_handles.push_back(curr);
bad_edge.push_back(curr);
else if (curr->twin()->face() == e->face())
bad_edge_handles.push_back(curr->twin());
bad_edge.push_back(curr->twin());
} while (++curr != first);
}
else {
@ -137,7 +137,7 @@ public:
is_edge_query = true;
source = e->source()->point();
target = e->target()->point();
bad_edge_handles.push_back(e);
bad_edge.push_back(e);
is_big_cone = false;
}
visibility_region_impl(e->face(), q);
@ -248,7 +248,6 @@ const Input_arrangement_2& arr() {
private:
bool do_intersect_ray(const Point_2& q,
const Point_2& dp,
const Point_2& p1,
@ -299,7 +298,7 @@ private:
vs[i+l+right.size()] = left[left.size()-1-l];
}
void compare_heap(std::vector<Pair>& heap1, std::vector<Pair>& heap2) {
void compare_heap(std::vector<Edge>& heap1, std::vector<Edge>& heap2) {
if (heap1.size() != heap2.size()) {
print_heap(heap1);
print_heap(heap2);
@ -311,10 +310,10 @@ private:
print_heap(heap2);
return;
}
std::cout<<"right heap has edges: "<<heap.size()<<std::endl;
std::cout<<"right heap has edges: "<<active_edges.size()<<std::endl;
}
void print_heap(std::vector<Pair> heap) {
void print_heap(std::vector<Edge> heap) {
for (int i=0; i<heap.size(); i++) {
std::cout<<i<<':'<< heap[i].first<<','<<heap[i].second<<std::endl;
}
@ -323,11 +322,11 @@ private:
void visibility_region_impl(const Face_const_handle f, const Point_2& q) {
vs.clear();
polygon.clear();
heap.clear();
active_edges.clear();
neighbors.clear();
edx.clear();
std::vector<Pair> good_edges;
std::vector<Edge> good_edges;
if (is_vertex_query || is_edge_query)
input_face(f, good_edges);
else
@ -344,7 +343,7 @@ private:
dp = q + dir;
std::vector<Pair> heapc;
std::vector<Edge> heapc;
heapc.clear();
//initiation of active_edges
if (is_vertex_query || is_edge_query) {
@ -385,13 +384,13 @@ private:
//angular sweep begins
for (int i=0; i!=vs.size(); i++) {
dp = vs[i];
Pair closest_e = heap.front(); //save the closest edge;
Edge closest_e = active_edges.front(); //save the closest edge;
int insert_cnt(0), remove_cnt(0);
std::vector<Point_2>& neis=neighbors[dp];
std::vector<Pair> insert_e, remove_e;
std::vector<Edge> insert_e, remove_e;
for (int j=0; j!=neis.size(); j++) {
Pair e = create_pair(dp, neis[j]);
Edge e = create_pair(dp, neis[j]);
// Orientation o=Visibility_2::orientation_2(geom_traits, q, dp, nei);
/* if (o==RIGHT_TURN ||
(o==COLLINEAR && i>0 && Visibility_2::compare_xy_2(geom_traits, nei, vs[i-1])==EQUAL))*/
@ -408,7 +407,7 @@ private:
remove_cnt = remove_e.size();
if (remove_e.size()==1 && insert_e.size()==1) {
int remove_idx = edx[remove_e.front()];
heap[remove_idx] = insert_e.front();
active_edges[remove_idx] = insert_e.front();
edx[insert_e.front()] = remove_idx;
edx.erase(remove_e.front());
}
@ -421,7 +420,7 @@ private:
}
}
if (closest_e != heap.front()) {
if (closest_e != active_edges.front()) {
//when the closest edge changed
if (remove_cnt > 0 && insert_cnt > 0) {
//some edges are added and some are deleted, which means the vertice sweeped is a vertice of visibility polygon.
@ -436,28 +435,28 @@ private:
if (remove_cnt > 0 && insert_cnt == 0) {
//only delete some edges, means some block is moved and the view ray can reach the segments after the block.
update_visibility(dp);
update_visibility(ray_seg_intersection(q, dp, heap.front().first, heap.front().second));
update_visibility(ray_seg_intersection(q, dp, active_edges.front().first, active_edges.front().second));
}
}
}
}
Pair create_pair(const Point_2& p1, const Point_2& p2) const{
Edge create_pair(const Point_2& p1, const Point_2& p2) const{
assert(p1 != p2);
if (Visibility_2::compare_xy_2(geom_traits, p1, p2)==SMALLER)
return Pair(p1, p2);
return Edge(p1, p2);
else
return Pair(p2, p1);
return Edge(p2, p1);
}
void heap_insert(const Pair& e) {
void heap_insert(const Edge& e) {
// timer.reset();
// timer.start();
heap.push_back(e);
int i = heap.size()-1;
active_edges.push_back(e);
int i = active_edges.size()-1;
edx[e] = i;
int parent = (i-1)/2;
while (i!=0 && is_closer(q, heap[i], heap[parent])){
while (i!=0 && is_closer(q, active_edges[i], active_edges[parent])){
heap_swap(i, parent);
i = parent;
parent = (i-1)/2;
@ -470,19 +469,19 @@ private:
// timer.reset();
// timer.start();
edx.erase(heap[i]);
if (i== heap.size()-1)
edx.erase(active_edges[i]);
if (i== active_edges.size()-1)
{
heap.pop_back();
active_edges.pop_back();
}
else {
heap[i] = heap.back();
edx[heap[i]] = i;
heap.pop_back();
active_edges[i] = active_edges.back();
edx[active_edges[i]] = i;
active_edges.pop_back();
int i_before_swap = i;
int parent = (i-1)/2;
while (i!=0 && is_closer(q, heap[i], heap[parent])){
while (i!=0 && is_closer(q, active_edges[i], active_edges[parent])){
heap_swap(i, parent);
i = parent;
parent = (i-1)/2;
@ -493,10 +492,10 @@ private:
int left_son = i*2+1;
int right_son = i*2+2;
int closest_idx = i;
if (left_son < heap.size() && is_closer(q, heap[left_son], heap[i])) {
if (left_son < active_edges.size() && is_closer(q, active_edges[left_son], active_edges[i])) {
closest_idx = left_son;
}
if (right_son < heap.size() && is_closer(q, heap[right_son], heap[closest_idx])) {
if (right_son < active_edges.size() && is_closer(q, active_edges[right_son], active_edges[closest_idx])) {
closest_idx = right_son;
}
swapped = false;
@ -517,11 +516,11 @@ private:
// timer.reset();
// timer.start();
edx[heap[i]] = j;
edx[heap[j]] = i;
Pair temp = heap[i];
heap[i] = heap[j];
heap[j] = temp;
edx[active_edges[i]] = j;
edx[active_edges[j]] = i;
Edge temp = active_edges[i];
active_edges[i] = active_edges[j];
active_edges[j] = temp;
// timer.stop();
// heap_swap_t += timer.time();
@ -597,8 +596,8 @@ private:
// };
bool is_closer(const Point_2& q,
const Pair& e1,
const Pair& e2) {
const Edge& e1,
const Edge& e2) {
const Point_2& s1=e1.first, t1=e1.second, s2=e2.first, t2=e2.second;
Orientation e1q = Visibility_2::orientation_2(geom_traits, s1, t1, q);
switch (e1q)
@ -656,8 +655,8 @@ private:
}
Point_2 ray_seg_intersection(
const Point_2& q, const Point_2& dp, // the ray
const Point_2& s, const Point_2& t) // the segment
const Point_2& q, const Point_2& dp, // the ray
const Point_2& s, const Point_2& t) // the segment
{
if (CGAL::collinear(q, dp, s)) {
if (CGAL::collinear(q, dp, t)) {
@ -672,23 +671,24 @@ private:
Ray_2 ray(q,dp);
Segment_2 seg(s,t);
CGAL::Object result = CGAL::intersection(ray, seg);
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
return *ipoint;
}
else {
if (const Segment_2 *iseg = CGAL::object_cast<Segment_2 >(&result)) {
switch (CGAL::compare_distance_to_point(ray.source(), iseg->source(), iseg->target())) {
case (CGAL::SMALLER):
return iseg->source();
break;
case (CGAL::LARGER) :
return iseg->target();
break;
}
} else {
assert(false);
}
}
return *(CGAL::object_cast<Point_2>(&result));
// if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
// return *ipoint;
// }
// else {
// if (const Segment_2 *iseg = CGAL::object_cast<Segment_2 >(&result)) {
// switch (CGAL::compare_distance_to_point(ray.source(), iseg->source(), iseg->target())) {
// case (CGAL::SMALLER):
// return iseg->source();
// break;
// case (CGAL::LARGER) :
// return iseg->target();
// break;
// }
// } else {
// assert(false);
// }
// }
}
void update_visibility(const Point_2& p){
@ -696,7 +696,6 @@ private:
polygon.push_back(p);
else
{
// if (polygon.back() != p){
if (Visibility_2::compare_xy_2(geom_traits, polygon.back(), p) != EQUAL) {
polygon.push_back(p);
}
@ -775,9 +774,9 @@ private:
//for vertex and edge query: the visibility is limited in a cone.
void input_edge(const Halfedge_const_handle e,
std::vector<Pair>& good_edges) {
for (int i=0; i<bad_edge_handles.size(); i++)
if (e == bad_edge_handles[i])
std::vector<Edge>& good_edges) {
for (int i=0; i<bad_edge.size(); i++)
if (e == bad_edge[i])
return;
Point_2 v1 = e->target()->point();
@ -829,7 +828,7 @@ private:
}
//for vertex or edge query: traverse the face to get all edges and sort vertices in counter-clockwise order.
void input_face (Face_const_handle fh,
std::vector<Pair>& good_edges)
std::vector<Edge>& good_edges)
{
// timer.reset();
// timer.start();