From d42a92f8988e445e788c0ea5a54eedcc97cb0dec Mon Sep 17 00:00:00 2001 From: FrancisGipsa Date: Fri, 22 Mar 2019 13:57:25 +0100 Subject: [PATCH] update documentation --- .../PackageDescription.txt | 2 +- .../fig/surface-mesh-topology-logo.png | Bin 0 -> 12214 bytes .../Surface_mesh_topology/long_description.txt | 4 +--- 3 files changed, 2 insertions(+), 4 deletions(-) create mode 100644 Surface_mesh_topology/doc/Surface_mesh_topology/fig/surface-mesh-topology-logo.png diff --git a/Surface_mesh_topology/doc/Surface_mesh_topology/PackageDescription.txt b/Surface_mesh_topology/doc/Surface_mesh_topology/PackageDescription.txt index 99bfd18b5f0..0bce00abaa6 100644 --- a/Surface_mesh_topology/doc/Surface_mesh_topology/PackageDescription.txt +++ b/Surface_mesh_topology/doc/Surface_mesh_topology/PackageDescription.txt @@ -6,7 +6,7 @@ /*! \addtogroup PkgSurfaceMeshTopology \cgalPkgDescriptionBegin{Surface Mesh Topology,PkgSurfaceMeshTopologySummary} -\cgalPkgPicture{sm_topology_logo.svg} +\cgalPkgPicture{surface-mesh-topology-logo.png} \cgalPkgSummaryBegin \cgalPkgAuthor{Guillaume Damiand, Francis Lazarus} \cgalPkgDesc{This package provides methods for testing if two (closed) paths on a combinatorial surface are homotopic. The user can choose between free homotopy and homotopy with fixed endpoints. The algorithms are based on a paper by Erickson and Whittlesey \cgalCite{ew-tcsr-13}. If the input surface has size \f$n\f$, the construction of a `Surface_mesh_curve_topology` takes \f$O(n)\f$ time. The homotopy tests are then linear in the size of the input curves.} diff --git a/Surface_mesh_topology/doc/Surface_mesh_topology/fig/surface-mesh-topology-logo.png b/Surface_mesh_topology/doc/Surface_mesh_topology/fig/surface-mesh-topology-logo.png new file mode 100644 index 0000000000000000000000000000000000000000..1c704fb7d71586dadc17147271ce210eea433a36 GIT binary patch literal 12214 zcmWk!18^Np9KRQvFSgOxW@D>qo5pEu+h}9kYHT%ZY$uJK#K5&!_GaT-v7UHJANfVW)SUVzc>K^ zGWP!i1f*x;Lnh&!<&>o0cVLlFr~&BmhOYoX4#<5J*K}V#&2sZ5o^KrNax=|nC~vY% zW*$x^YI1<*t?5qmN5uG{ge9LD40KZj!*5}3!n%V3*(qYcvgC8~k06bnK zk!=g|m*fhTN>?pcH`lXg<4@&D4O+>O#@-?oOG`^6vOUA?e6KUwZ~yAJcdS=)0e#xT$PX92=)YgCMjd{C z%i#|adlVp@UDUTunPbE*zK-KPSm7!45t;G`jNYji(=XX??BWeH?9+| z+qwtcJkP--X4ri$5Ok; z(l|>iDyRjm;56vEhAgnNyDf*MM$p(TTCr69B$s=M|gg%a`lPFev_l&<&|>|53J#nOOCh(Tg)MLc`_Oa@s*_OvI#U z0Z}yU^PvoR8oeZq`mDAI@p8EJ-g{Oe{o=@sMZs)a!M@Iz_ z{R@gTRD_ds+gw2gwI)ta4`#J1VekagI-&P45i9i>E=2o=DkLKnhvx;y>s3rD019nF zP*S-Ha%rqpbw_g7%Rg2+&=k?r0B>ja)xS{-J6@DJxt+IQPAA52qlo+rDcM%Ko{O{n z;B@)x^bhREzPn4+vD^33CUxxcwcS&@%VWQE`~a~}pKv2^nYU#`pQh!2zI?QuLv+6f zXk9d|_9F~un14K+U92O8-4zB$ z96~>3VSi#UsxN$Qwjj+;eg#(j-d|Tek1Gp*{mOv>#GITsAz3RA7O$Q^VacolO@Nkz z0-8n5Pc$>M$zoM~-Crq1Hg`3y|559DN(jE?{={_ed@WK=UQxYHges&9Y?2#cE=k=> zEuq4OKw)ma`X`x$Hw;RHBu+s}tAddGXaohH%VGW7&O0-tB5*^Z2czD& zVINZ{r-Q7I1dGF{qvQ;`w`eDv8}sGOHMG`AJ`Y`iU<)k?%PeO1+t712sldDHD>RWjAiRE2HkE4e3&E3pFPgDdSIvhK zzrznw-Bn60wR%a-@;WQ(ctrrJ+pmzE_9yyHII=zipX*Igo%Y7McP`0;C8VFIX;mIL zY5S95jIrT^0F#RXnY;PeQi65K#`%F9>Bye%JZ{F(eI||<1A<6WK~<(#527;dRVr$a zu8(+QWtGx#@nGGnAp^RcmC7N$v6x~~aKF6AKhX#8b7NsbgTe0qc_q4i0*f$WUyD0$rrS$-NAv2NEB_ zOJR&}DaE`KZ@W5OFWUh zPZiTEx;0)7PR7`a`yiL552R-b+2%M4d@sEtzoz2sJ-6dQsUKrtH>(xf=E(4HALGj= zWJgNrSIkz~2?%O@*|n!?#W)a7&i1OJb8Z*N7T2nbB)-d06g_p}n5C<8+E)(7c!AWA z!SnljFD&^SSwMH;_j%{D`$1k9Q1jK1p5=w5SHYGR!~8sDNm+Fgulf0R`@s0_o~tu; z*a_Mjj|m?R14C+S1%~w1J}mrbw&`=#N*en=r7Ooy-2L^B2O{9jy52Cp>N2bxqp|lC z_`>=gi@|vRW(+yXR7JFr4|=BeZ(-97rjTH$?tEh0&vIM8L8Lav~F+mAWyAmg`yl%8NJm8xbKuAHi4jNOMH}q(oiX(0x)|zb+r6>+cwW z#=D&D9lsj2YC}!^pI`JZj?cJ`?Wdv3aq%n4!-JLdYmI&qVh1(ouIKuFcwyPl1}_hn z?ayazuj*}6R)F=|4xk0}O`CC?33Tzd4llkzqE(#q^$QkPlng?dMJMOk49%1x(IZ3-K)e z6wVEzwqQd5bFGc0tFYv+>4ab)IqiKL@;dLh{|99NNul2NZ5yaXQvdkO*o_VG z>f-;VD8f$#ldn`?CtP`kHa&{TH+|>#Xlx1gjKE2#8Z`9%ysPXQY>ks##ngRVzN51d z`|xs>su)v<)Dxtnj=)k*zY{ouB+1BtWcRQ5Qm+a+qH5L&kpdS#P)v19n#*AYszD6d z!^30Mag_OG8?WmifjTi5RO5E8N9uEi-8*0^*^BjfIRLNGvRCvn906Xn<;8`p;spx|O!ojH_mcL%mpBe=iSEZe@x}Z!w z{fOd{hLXU+i25a)W_+=OkdJH`StslFM@PlkM(W>`O+=6mhxeN8K3i@&5QE$>CA{9M0lSCGx4iN`Y#7qD~k=Ma9ra-0k`) zaJnyTL*qQm@9cWM)_LAO6s$klR~rLQlm3IMC>}n51tv{|EJc%aJ960)N<#HJ_qDvQ zfX=LSYEh(p^`$>Kkd@wwW4-23j%mcoXmq*V4>_MsH(;^B0{ec=O@C-+OqOW$Ansks zbfAyTAty3bCGrw$Dr9r4_)``COt6$ZxU`;yF6W(@AfU`mp9v|4{SuX7r;S4bqvR*e zhcLG9GaC#;T@B@~cydtWWr^5^6yHOBM%{WpPl;!Wu+lO}SayHbIUvCpE9T;{X$v@7 zzK>JqFq zBSb@&Rg`h1zAeRLr}O6!Ti;;Q-)?~WB3c^Bxwc#r z8;^ux{}?AswWzO5;Z1YbL?Inj>4qz)zzdDTdWOOM>)q91GFh-Ac8>ctqVGd5S$upv z77+l6W6~5|*Ds&BE5s1EQ$=hfkY~VS`ixQL^?~@o z#`_J<(o(w*hYVMNC)`LJAxTrGw)>+M%j0i-N%<_02c9tpKk$?Eg78W8$>Br%F(YBx zo+S-pIugHoAd1MVun>`< zXtl-=dbU^zdUJ*!HC5@5K0F*lb)yC|r3W1AH5<% z;lc^{voUZm27NqLjDmm0(y2Z>lXPLUXJib(D+_l1_>h)0qpCJ$cyEQYULW}DJ9?B- zPTl$Dx%oXI=E}y)9`CB}^QkUKRZB}sTpUDBPwWo+OUXTZ=<$A_wk#d9L{>~IY3lXl z!z*@pjeX&hjS#aJD8%&~ld6K?BKKHiAT{(#Y+w@KmUKX0TIpZz8m94daT`TS>NH-= z;{a#jmEZYSPzwYCgZl~RH_ns5KP<4N-lAZ*q_!q>bqMB`0|VpGU#F&o7;SL5#-pm9 z#r-E2Fi;W@(MUacz*HrbIw1?%crKKK2XAU5svKO136PC+5j<~ zIj>j_Vwg2L>0M*FDIu&lTJ_xxgg+I>LOhm2kLx_P%WV#D>(UE*vp8mh%V@f6s8YGs&TyA4~5kTz&tlCpyEyR2kj%1Vim1iTs)d(MM&0 zTRupklIPeTL)EJ_Vl9=icL!R|pFHo}&DT`D@?`zp%JuYjn01;2kcC1Mgv??=BdK(l z*e-5?H?>mGCv9RLpj^UebDAWsMTYAT)i;yAj3axfGF2i6MdVLOBgm17Pn*6w-qCw~bzb@YP?Sixu6`y4FY7s%sy#vMqU! zFhAZT4YQES^7;}pdBOR=yu1tn2PFeqIFeX%bCo^kc1NTqN=zek+mc1yM!n_qk+unu zqv=7MPDrPxNfjG>5FFZwo@%$d=+m?#`uVn+;o${!)xH;1mVtjKl2c+MP1H|hetv!| zlb^Fh$LB=&LX_#jFFM|@cH=B zhT(Ve4^EDFDT8(U(!Mdf@`kXm4;@ zN)*0E!LkC5wEkfO+0jzyY)!iT5fg>Aeqvf048k{DIkuhYi(eYn0;VhuDmVC2{3^RJ zC}4QkoUtJc8shf}#T=2Wt1Cy_&d0qeGnulDy$+oIxxYTLlN>Hfr?}XfICL?`a`3M>*4upGJ7symx>jsS>QMw%Je>PP-`b8r{N^IAry-I+bE>K$~ zMnF&8k=uo*)sy1Q{bz+K7qr6f@x{m!=G+i?U99{>RA#hu5x3yL?T3rx?Tm;dmHJI0 z)!s|Q?6MA|InM;?5jFJmCdl3&1`BBxcVa}9AuK1J&+ofgyNm8YPRNTg2#w{gDo`-t zMq5EKzb+rM^`Y2YW;O`aA0%VH#tbJ^A>ZVV&s}@$Na0hZ%*5ccQ*r=jozG_&t>AuK zjzBb$H?N%Vw<;D2>&Y=%|6LhWxE>rs)7678&~TWQ>CDX6uq0~sjX@X5 z7AKz?5x!rQl$3-Hfw0x9NnANy8iyxSF}v@C51ORJh6~95Y+?Qs z?3QdgeX=emz0CJNv9=d&S&Fc==dC1;cj2lgwxSlh>VS&x*pV z1GgQz3qb@9mFm3a9jSY;U!@>A^QNKL88L14la4XJ@CaZD73vkGhsaV-$yTRLeEn9Q^=FV zlYmGPw<#vmgiH-`K9q?uP;dtQd3n69{mf+k6*(UGLLl8Rb`V7O?0x5^nkJm3E+gOz zGHXhgB-EGBQtS0oh9LLxv(t*_8^^!4Ey2u!w$ckeLXW!%bASI1D0&=O)qQ5l^g8=Z z%SRgZ|CoCth>w& zjoLM)y$c>@hk!h~aKv!pK;qBIgq&;cZQhPUq~M5E+IER;o{Z@btX|j{yg2T9pM^;f zK9BWhYXJD>GOq=2@%V+ZaLk6Nq&o=gptz&-mltPm> z(u3&+9-WxazjtfXJr_cAXO@*QR&~8SsfNY4+Ht25VDso_lF#^vulPkLF4N6jEoG=H%NoC_^=D<*565AzEkWwv_5?kn$zGr;i7lx$Goh zwiTB;`skhe{)byxp#D{Vghjk=yMaf%lPLaAEnFn%KG+%P~DQC(!rXF!E$ z9lRUf3B|?5J7_?9v6{X>gqTEb#*v+RMEKD)U!OOU`%am9vx3M z`Z&^I-9Sl7SE7;!KxxzpRsHejIb{*_VUNb}sq@7_2e`1Ut++@H!u=~B&K zZ`kGmJmK)VQdU+UBJfy6s(>1kVJyix)6C>PUpU=K1(*%jF9^WDJ1$LK71h9x#nF1f zB_`Wz<}>Bd@jPR)O_^n0r!vK*_+ppxB6Q9}ovHE(G5~<|tOP@;o6X0C z*U!w#g(x*%8)Q%4ZoCK>ifmu%`8# zf!x^-F0{?1^y+3Rp`7AQjDfdgnI5gSb9NBTjLrjazPYtQgY*H#1YV~}NnKNBq59Mu z3hs@4s{C$RE9Qr;DXnw#LtQXzf6rpzzjpa{u+I_~_`8SH#cd$Nm|Dn+Ysnu~G#zZH z7+7n~%X@^>W{P@T?e2oujQS8D&=m8lg0fqt(GS|mb=Bq1`jc}}R_-Etu>T=jXQ$%RZh}f+zN__Oog7E~Mry4ogDOx@n#(bdYi9eCPaU8p5l%F@ z0)Uq7@DH)-y(FvOrnA)}an1AEw~K15vqY$;2~fU#VM_(#37Ctshd*NtM0;+w{6uku z@s|&;ir55Evpomd*W+2Xi2f z37=z|M)tgq$Q=~^#tC9#A%yz#o0QX6yg4k{q%cZG%ldy!MPC5;Td5OPR(x~uj=j=e zcHN;Bu8L+r>FZbF@Cl|xI0qhE!jl0Mib^!V@C!eGquN8l1sXVAAA#xjgQ_wLj$sx! z86V15ieoabnOQPxo+Td}7s*IY#$9*ciDF%YR!vIW6dTk(i`reWf?}~JDsypC7BMC8 zLy>|CpwZH5qpqWd1=zku0S!%LaEN!gZM8Ewg0gpZJoPlA@uZaa{y# zzTR)Z=hhhLMb_w^ETKaw{Ym_Uqa`0*D1b%UV6LD@a#TXK)3yNMvl#$~hldZ1rrvMT za|Y9)EA=T9 ztsv{WO;wFqGX((9uYtr$hnMy3nNA@0qtajI=H?GGnqu;*+_bn=IKrDbRq#5UvT_~s z@tVXGSgOm*BTv#$z^c=vaO$|JP-PLl1P$k!x%7k7qf@tHYG=+X$!=ZhQf5L7%s^AQ zcnVvC70lP%D7D^m=>?Zh)p|Z-psD3$`Br1i8Yg+Iwp3R^;uDQ281Hn!Tm@YF?V`uE z*>04eD~JRw>W_GA3nwmN~Rk-Cz_^Ty7;+SvZo~ww`5zvlvx(u1gY)L&;bVsZGYP$$H=YN zj=wKtKS%SNVW)gmG;J?KEJxc}(QLIFHsbjndz=}va4cM`o?DPVVmVIr3C&JO^#LaH zR1H)8%5~aali+l}w%os`ZPgj~W{MYR*$hMuY%S^$`}7wDusr@WQ0tC;{cNlzh9JVk z<_Ony$gy+0t|SeI&pub8-vSXvq6z*F8h8k5HDP6XuPQ|Bh5PXt8Q-nF^$AKMAi0SH z4xNP|QRN zqLuV$sNkQf-_`RBa{LLH8C^_anMa!HvgUtm`9M?MVsIfzzP?G5ci4g0+|It~c^=Y~ z9es+;@nIo|o}S~W`aXJ>!}dHDL)E}4__RcJ^+@BrC2RK0SlCGy_ig(GrL8PHX<%<0 z0%sxC1xVV8{s|*XVq$iKYDV5@1L?|>?nsnxXpxuWz{|Y<^5+Y4wSG}D2}mR%a9_EE zK7hHXef#MVgbA^r1eSUC_V(_W0Rf&Lj?Kj6qR+(Y8c2DVgoF!u7ULzB?|a97pH;^S zp9qT^%7pe&&K9Y-(TJb0akSo1mY{K+;C@e}tpQ737ybF+`b7yY9?0Rk`6iw<(I{eK zu{`(47+C#fJ72yAyLs`v)j6AFgnvp1R}I_}frWd71%W_$eGSwYwZYc=!@6EknNjY~ z*cqNwq}6R_0uXNlzxNxhb@I2dJ(L$;yzFG?|HT&U1y;h-(IEr3;)JbnmH|&Kk?H&T z>+AQPYHsMjlZsL>o;Q*3+`o$VQV(IS>d6yp!%aLBy*cR-2Es$LW-1->@1EQYv*khP zESRQpE9p=#VKWy@BxBYw;remJvZImZNXF#>2JEu-ZhzgiG&+{KtzVyRA?PG1vVnb< z-)ws32{x(mJRyla?b^(a5@Tv7{C&MO5-L?sXSf;dtiPz|VZ=#d?__h!4f4ltVhb!Z z;A~@i=5Q=i;;>xp(cFD!kcd*4Lm`>Z3nCoGPn6Z-Fi@eLeDg&OL0=uZ(#Wi3UAxV> zP?0=uK5b8WEmHYkz#mwZE7Weo$#Gq_$SX0h{flD#seq?yx-qS(=_^z6+Y)XEG?xxC zT%FHsqfl~v>~bJ#9uI2kD3Ph=A;QuEchL0liLtuz1y0b3UQ|OXI9cRb=%}EXtP#wo zUQbP3`>Y8IK=KX*Hko~1w)w}WuE17`*5Ds@v`hm=eX`w{d}CX#Jx8~`W!|aQ8eLRv zAmk)@tNJZjp=Q%8b5`a6E@VK`xq_QoFr?Lz|GT$mNc2vSyefYaA2bvs8Dp6%05yKu zT1Y%UktcyLbJB|+>qJ_4nxv`8I*`U4bUpD^fgFQBe)?Eqo!nlL_F*t%K#GOW40R%t zlM#hZdbvTBwz(MFc#*_1Ao~Du_WMvmjjIbrJaeatBc)M^QOeH)zQ(>zL{7I z6IZ< z-e-=QaUdkf2#jS569FnZrFnK09^!br-6GeolJ)vxHm@>VJOqXZqb$plh%!(gr7-hF z@YEbJ*o}>=B`mQ>y7thtJnxBsvz8q+D)4FzE@0L=9Z_BN)+=JSoNH0(-7o;GMl$#b z?jef|#?OVgNwlH<)2R;3wx-tdPn0daJwRIC2T}!G7$H6=3NoSjPe00*?Y&&@v(CvP zEp1jUt)=6V*aPBv_wIeT_T4E3>C0JQ5<;IM^l3OBgLwSaP~wN)0%Wolg#F&U3sE*5 z&&5&*qYbbNRd{@Um4o?^e6_TybK869;e`F}EMExec;qn1GJ_T!1x$D-!qKFn-hPrw zHyNAr zn1f=LT~l%0v+y^0-WQeO5ARadYRe3lr`quQd&B$4sCw@kyKR8zK7(Q0Of~V!*GY&W z9dv9=3j$bv_tDQ)SUliK&@b9ZV@Y`QN0eBe7k4ER9*brn|0%qD4-$4^%iOFN-QFq9 z6>%hcV5Z;jCRweW7i(GKw%`0?4DBCnUog4guWvPAB9EN)LHNdU=0#g;vGoBM z?yiJF!dNbz(@le=gwQSC>sJ<$cSKky0`U`>-amVYKRS#t`ol1&?lEkh$uYk?tHlhy`BmRbAyNO*jxm9v&jurbU0qu8fDBVmkD2k^#u{?_OCH zu(l6Qn$>@f%V9S|iER0rAYXykv7jBJ;zSV~D93&G#!&6eyJc1JxGN7)Ec&;16Stc4 zNBIWgU+ztOt1pgu3tleG2EKO3WQQN%JaFRy0b-kr(3{U2?;^l$x4Vx_@yS^SGWHW> z&C#t9ZB;O5$^<_~^Sl3xTLRqAgJ<`$+;;rw)F}MV0gi{yx-7J@C1tgNd~Ro}#_0Zn z=k1(BLxf_n$6Oyhe0IK$6}x}(^Y1?=ijbq}-x#zUR$O<9ALPG&-o}NcN8f4{LClw|=$40-+4p@KoiduFjl*Z%*Ufp}bSp&gVx5^p3eVKTC$m z$FpCp*KAMbT;5J%eyWY83SsP~4Bm*CdAE>1nDZDNTf}Zj@b5z#zlsG66i1bm5!Mq! zPH4)|=P$R7n7rs6n2Np-_Unb`u@_-8?t@7}t=jgY+I@VEmub$GzcFH{t>XED=&!)5 zW$r0c8E+rc#;U80o;~WbK_ENb!5cc>O)V+J+28u!D0xxJ9Yw`*T^^e^C^r)`nwOTTRr_Q1)G? z@-M3jR3zc|10NMD3wruFaiyxsAhBt8yDt>2XW#9o=NGME^^?=j9^=>ac}6)c-5_(=2e|pfe~1uPF|tg;VrdrAxj=Xh({cB>YK~IN zlazj}*YAz~D;+tKU8pthjpLEek6(ly{sbYu+i3U+&q1RL{ejRfiV8Xet~!_=OZDcq zOA3%>Anr&(ohG86)Uzsnd6T!kj#v?kRyZ>T5=?TAg`Pf<1Mcx<=~{VQm9m<;^&HX+ z8M#%yHb&^zSdmY|Twgha^+f=AdHJE?;k-OUGU&QVab$D)@DK>4bIePS)CP^rVtBCW zVIFXB3w7zJu(Col{rzTlu&HSzHE3h8At}8T9aAkh4}%eY^zErg{>R1qe0C^#Avl9g zu;Sogm-qX{AMC*Z7*(yLiVCKqqa%BdyG>b=K;a?;w^0y8?9DA>7)yVn%@BEJ{h0U) z4};WpFM_KmAe=4N*YNYIZZc|0=eLH$?!U~1$_yDJo#|t}5JMGhV^Ra)WwoMo_47sL z?%B6HW8Yi49Pgf+!`a#|*YsmuC=@WyBiSOw6%czVUU-a5K3IpsB6=%y3;dm0fM+JU z0zj|@NM^Z@Y7bo~QKF?7jJ;7>%Rw|+Go%++2Q@1MX&ihWhch`rqBhH1GqbY}ZO3ZC zgz1M8sWrdARMQTNGPy_!bA}Fu$>c^itq_+RQj&xWsTcFWg}hkI)EwoP1>UI@ecE?q zRL8D;+GiwmJwN}gzm#uY7f{5Omepsu`XKV6-Qo;eqv?Dp_vMj`$0$ZBqKKMn^qgewGT00SKJ=|WAEEcyc=ullS}SI9Bq@S7^CKd&gv%^b z!k&=IEg4(SkniRbUWb0L?#zqcTQOX5Zj;RyM&9Kig>0a;?UbZ#ob!mm|NHk(O?$x~ z1M<4D`K3#tp!7SD*BM8&TuCtZ^x2(mp7fX#20a&#UH`t_3Hvp?Zd~tX#_0ohRO#W) z!vu}N>1<^^`3XK7mr7X2gA&6$)X?z?RS4KnfFvDj$e0`5gtr{{oA9iRMLDpwxMzV zg<&|U$K}&8C83S_k(wL-y%o#1GhH=~NN{?3^WE_^9u7`O<>Y>tNb_eV6e1obql2c7 zjx52m7U=4Qh{Sl0U*pgUqJ8+$us}})c=m(}5oWox#8a?G4;mu3LH6s`$)JC($QI&z zax;|wxaraHzhZ?+#M<20NHV*Z=wtb7*jUrd2ZD00Zf1Rmpz(QaiR(?rkJy8_l#Ksp z{H03I60@^OxorfN-#qCUNjL%j+TRH)YxNB@baY`5Ia%gq{9w8OTiH%PZjc{Pp1G8v n`}J22$Sj1|j^*^fJo&8{{Zw(?&=P<+>;X9`<&RYo27&(p6HkD3 literal 0 HcmV?d00001 diff --git a/Surface_mesh_topology/package_info/Surface_mesh_topology/long_description.txt b/Surface_mesh_topology/package_info/Surface_mesh_topology/long_description.txt index e86b6c7d4d8..181ab9c6032 100644 --- a/Surface_mesh_topology/package_info/Surface_mesh_topology/long_description.txt +++ b/Surface_mesh_topology/package_info/Surface_mesh_topology/long_description.txt @@ -1,3 +1 @@ -Implementation of topological algorithms on surface meshes. - -TODO: an abstract. +Given two walks in the vertex-edge graph of a combinatorial map, this package provides linear time algorithms to decide if the walks are homotopic, i.e. can be continuously deformed one into the other on the surface of the combinatorial map. Two notions of homotopy are proposed. Homotopy with fixed basepoints applies to non necessarily closed walks and assumes that the common endpoints of the walks stay fix during the deformation. Free homotopy applies only to closed walks and does not impose any restriction on the deformation. Another helpful algorithm is provided to test if a single curve is contractible; it is equivalent to a homotopy test where one of the closed walks is reduced to a point.