From d42bbaa6149eeac46dcb6fa4fd3aaa7be0a60e6c Mon Sep 17 00:00:00 2001 From: Monique Teillaud Date: Wed, 4 Apr 2007 09:30:55 +0000 Subject: [PATCH] fixes again --- .../NumberTypeSupport_ref/Root_of_traits_2.tex | 2 -- .../NumberTypeSupport_ref/make_root_of_2.tex | 15 +++++++-------- 2 files changed, 7 insertions(+), 10 deletions(-) diff --git a/Number_types/doc_tex/NumberTypeSupport_ref/Root_of_traits_2.tex b/Number_types/doc_tex/NumberTypeSupport_ref/Root_of_traits_2.tex index e35734fe8ea..3ecd8771842 100644 --- a/Number_types/doc_tex/NumberTypeSupport_ref/Root_of_traits_2.tex +++ b/Number_types/doc_tex/NumberTypeSupport_ref/Root_of_traits_2.tex @@ -13,8 +13,6 @@ Associates types for algebraic numbers to \ccc{RT}, supposed to be a \ccTypes -\ccNestedType{Root_of_1}{Model of \ccc{FieldNumberType} associated with \ccc{RT}.} - \ccNestedType{Root_of_2}{Model of \ccc{RootOf_2}.} \ccSeeAlso diff --git a/Number_types/doc_tex/NumberTypeSupport_ref/make_root_of_2.tex b/Number_types/doc_tex/NumberTypeSupport_ref/make_root_of_2.tex index 1d4f8dcc0e9..785ffadd365 100644 --- a/Number_types/doc_tex/NumberTypeSupport_ref/make_root_of_2.tex +++ b/Number_types/doc_tex/NumberTypeSupport_ref/make_root_of_2.tex @@ -3,26 +3,25 @@ \ccDefinition The function \ccRefName\ constructs an algebraic number of degree 2 over a -ring. +ring number type. \ccInclude{CGAL/Root_of_traits.h} -\ccFunction{template - Root_of_traits::RootOf_2 - make_root_of_2(const NT& a, const NT& b, const NT& c, bool s);} +\ccFunction{template + Root_of_traits::RootOf_2 + make_root_of_2(const RT& a, const RT& b, const RT& c, bool s);} {Returns the real root of the polynomial $aX^2+bX+c$ which is the smallest if $s$ is true, or the largest if $s$ is false. %If \ccc{NT} supports a \ccc{sqrt} operation, then the usual formula is used. %Otherwise the \ccc{Root_of_2} class is used. -\ccPrecond{\ccc{NT} is a \ccc{RingNumberType} or \ccc{Fieldnumbertype}.} +\ccPrecond{\ccc{RT} is a \ccc{RingNumberType}.} \ccPrecond{The polynomial has at least one real root.}} \ccFunction{template Root_of_traits::RootOf_2 - make_root_of_2(Root_of_traits::RootOf_1 alpha, - Root_of_traits::RootOf_1 beta, - Root_of_traits::RootOf_1 gamma);} + make_root_of_2(RT alpha, RT beta, RT gamma);} {Constructs the number $\alpha + \beta \sqrt{\gamma}$. +\ccPrecond{\ccc{RT} is a \ccc{RingNumberType}.} \ccPrecond{$\gamma\geq 0$}} \ccSeeAlso