merged branch that deals with 1D features on the sides of a cube

This commit is contained in:
Andreas Fabri 2015-12-13 11:07:12 +01:00
commit d4dd0c1b28
9 changed files with 846 additions and 11 deletions

View File

@ -0,0 +1,98 @@
// Copyright (c) 2015 GeometryFactory
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Rineau
#ifndef CGAL_INTERNAL_MESH_3_INTERNAL_GRAPH_MANIPULATIONS
#define CGAL_INTERNAL_MESH_3_INTERNAL_GRAPH_MANIPULATIONS
#include <CGAL/Kernel/global_functions_3.h>
// Assumes the point is a CGAL point.
#include <boost/graph/graph_traits.hpp>
#include <map>
namespace CGAL {
namespace internal {
namespace Mesh_3 {
template <typename Graph, typename Point_3>
struct Graph_manipulations
{
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<Graph>::edge_descriptor edge_descriptor;
std::map<Point_3, vertex_descriptor> p2v;
Graph& g;
Graph_manipulations(Graph& g) : g(g) {}
vertex_descriptor get_vertex(const Point_3& p) {
typename std::map<Point_3, vertex_descriptor>::iterator
it = p2v.find(p);
if(it == p2v.end()){
vertex_descriptor v0 = add_vertex(g);
p2v[p] = v0;
g[v0] = p;
return v0;
} else {
return it->second;
}
}
vertex_descriptor split(const Point_3& a, const Point_3& b) {
const Point_3 mid = a < b ? midpoint(a, b) : midpoint(b, a);
vertex_descriptor vmid = get_vertex(mid);
typename std::map<Point_3, vertex_descriptor>::iterator
it_a = p2v.find(a),
it_b = p2v.find(b);
if(it_a != p2v.end() && it_b != p2v.end()) {
vertex_descriptor va = it_a->second;
vertex_descriptor vb = it_b->second;
edge_descriptor edge;
bool b;
// test if the edge is already here, using add_edge
boost::tie(edge, b) = add_edge(va, vb, g);
remove_edge(edge, g);
if(!b) {
// The edge was already here.
try_add_edge(va, vmid);
try_add_edge(vb, vmid);
return vmid;
}
}
return vmid;
}
bool try_add_edge(vertex_descriptor v1, vertex_descriptor v2) {
if(v1 != v2) {
edge_descriptor edge;
bool b;
boost::tie(edge, b) = add_edge(v1, v2, g);
return b;
} else
return false;
}
}; // struct template Graph_manipulations
} // namespace Mesh_3
} // namespace internal
} // namespace CGAL
#endif CGAL_INTERNAL_MESH_3_INTERNAL_GRAPH_MANIPULATIONS

View File

@ -0,0 +1,212 @@
// Copyright (c) 2012-2015 GeometryFactory Sarl (France)
// All rights reserved.
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL:$
// $Id:$
//
// Author(s) : Andreas Fabri, Laurent Rineau
#ifndef CGAL_SPLIT_IN_POLYLINES_H
#define CGAL_SPLIT_IN_POLYLINES_H
#include <vector>
#include <set>
#include <iostream>
#include <boost/foreach.hpp>
#include <CGAL/number_utils.h>
#include <boost/graph/graph_traits.hpp>
namespace CGAL {
namespace internal {
namespace Mesh_3 {
template <typename Graph>
void dump_graph_edges(std::ostream& out, const Graph& g)
{
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<Graph>::edge_descriptor edge_descriptor;
BOOST_FOREACH(edge_descriptor e, edges(g))
{
vertex_descriptor s = source(e, g);
vertex_descriptor t = target(e, g);
out.precision(17);
out << "2 " << g[s] << " " << g[t] << "\n";
}
}
template <typename Graph>
void dump_graph_edges(const char* filename, const Graph& g)
{
std::ofstream out(filename);
dump_graph_edges(out, g);
}
/// Splits a graph at vertices with degree higher than two.
/// The vertices are duplicated, and new incident edges created.
template <typename Graph, typename Kernel>
void split_in_polylines(Graph& G, Kernel)
{
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<Graph>::edge_descriptor edge_descriptor;
typedef typename boost::graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename boost::graph_traits<Graph>::out_edge_iterator out_edge_iterator;
vertex_iterator b,e;
boost::tie(b,e) = vertices(G);
std::vector<vertex_descriptor> V(b,e);
for(typename std::vector<vertex_descriptor>::iterator it = V.begin();
it != V.end();
++it){
vertex_descriptor v = *it;
bool split = false;
if(out_degree(v,G) > 2) {
split = true;
} else if(out_degree(v, G) == 2) {
out_edge_iterator out_edge_it, out_edges_end;
boost::tie(out_edge_it, out_edges_end) = out_edges(v, G);
vertex_descriptor v1 = target(*out_edge_it++, G);
vertex_descriptor v2 = target(*out_edge_it++, G);
CGAL_assertion(out_edge_it == out_edges_end);
const typename Kernel::Point_3& p = G[v];
const typename Kernel::Point_3& p1 = G[v1];
const typename Kernel::Point_3& p2 = G[v2];
const typename Kernel::Vector_3 e1 = p1 - p;
const typename Kernel::Vector_3 e2 = p2 - p;
const typename Kernel::FT sc_prod = e1 * e2;
if( sc_prod >= 0 || // angle < 135 degrees (3*pi/4)
(sc_prod < 0 &&
CGAL::square(sc_prod) < (e1 * e1) * (e2 * e2) / 2 ) )
{
split = true;
}
}
if(split) {
out_edge_iterator b,e;
boost::tie(b,e) = out_edges(v,G);
std::vector<edge_descriptor> E(b,e);
for(unsigned int i = 1; i < E.size(); ++i){
edge_descriptor e = E[i];
vertex_descriptor w = target(e,G);
remove_edge(e,G);
vertex_descriptor vc = add_vertex(G);
G[vc] = G[v];
add_edge(vc,w,G);
}
}
}
CGAL_assertion_code(
BOOST_FOREACH(vertex_descriptor v, vertices(G))
{
typename boost::graph_traits<Graph>::degree_size_type
n = out_degree(v, G);
CGAL_assertion(n == 1 || n == 2);
}
BOOST_FOREACH(edge_descriptor e, edges(G))
{
vertex_descriptor v = target(e,G);
vertex_descriptor w = source(e, G);
CGAL_assertion(v != w);
CGAL_assertion(G[v] != G[w]);
}
)
}
template <typename Graph, typename Polylines_container, typename Kernel>
void split_in_polylines(Graph& G, Polylines_container& polylines, Kernel k)
{
typedef typename Polylines_container::value_type Polyline;
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename boost::graph_traits<Graph>::out_edge_iterator out_edge_iterator;
// dump_graph_edges("edges.polylines.txt", G);
split_in_polylines(G, k);
std::set<vertex_descriptor> terminal;
vertex_iterator b,e;
for(boost::tie(b,e) = vertices(G); b!=e; ++b){
if(degree(*b,G) == 1){
terminal.insert(*b);
}
}
while(! terminal.empty()){
typename std::set<vertex_descriptor>::iterator it = terminal.begin();
vertex_descriptor u = *it;
terminal.erase(u);
Polyline V;
polylines.push_back(V);
Polyline& polyline = polylines.back();
polyline.push_back(G[u]);
while(out_degree(u,G)!=0){
CGAL_assertion(out_degree(u,G) == 1);
out_edge_iterator b,e;
boost::tie(b,e) = out_edges(u,G);
vertex_descriptor v = target(*b,G);
CGAL_assertion(G[v] != polyline.back());
polyline.push_back(G[v]);
remove_edge(b,G);
u = v;
}
terminal.erase(u);
if(polyline.back() == polyline.front())
{
CGAL_assertion(polyline.size() > 3);
// Fake cycle. We intended that cycle to be split at polyline.front()
// Split the line in two, arbitrary.
std::size_t n = polyline.size() / 2;
Polyline new_line(polyline.begin() + n,
polyline.end());
polyline.resize(n+1);
polylines.push_back(new_line);
}
}
// dump_graph_edges("only-cycle-edges.polylines.txt", G);
std::size_t nb_cycles = 0;
// process cycles
while(num_edges(G) != 0)
{
vertex_descriptor u = source(*edges(G).first, G);
Polyline V;
polylines.push_back(V);
Polyline& polyline = polylines.back();
polyline.push_back(G[u]);
++nb_cycles;
CGAL_assertion_code(bool first = true);
while(out_degree(u,G)!=0){
CGAL_assertion(out_degree(u,G) == 1 ||
(first && out_degree(u, G) == 2));
out_edge_iterator b,e;
boost::tie(b,e) = out_edges(u,G);
vertex_descriptor v = target(*b,G);
polyline.push_back(G[v]);
remove_edge(b,G);
u = v;
CGAL_assertion_code(first = false);
}
}
}
} // namespace Mesh_3
} // namespace internal
} // namespace CGAL
#endif // CGAL_SPLIT_IN_POLYLINES_H

View File

@ -0,0 +1,369 @@
// Copyright (c) 2015 GeometryFactory
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Rineau
#ifndef CGAL_POLYLINES_TO_PROTECT_H
#define CGAL_POLYLINES_TO_PROTECT_H
#include <vector>
#include <map>
#include <CGAL/Image_3.h>
#include <CGAL/internal/Mesh_3/split_in_polylines.h>
#include <CGAL/internal/Mesh_3/Graph_manipulations.h>
#include <boost/graph/adjacency_list.hpp>
namespace CGAL {
template <typename P>
void
polylines_to_protect(const CGAL::Image_3& cgal_image,
const double vx, const double vy, const double vz,
std::vector<std::vector<P> >& polylines)
{
typedef typename Kernel_traits<P>::Kernel K;
typedef P Point_3;
typedef boost::adjacency_list<boost::setS, boost::setS, boost::undirectedS, Point_3> Graph;
typedef boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef boost::graph_traits<Graph>::edge_iterator edge_iterator;
const int xdim = static_cast<int>(cgal_image.xdim());
const int ydim = static_cast<int>(cgal_image.ydim());
const int zdim = static_cast<int>(cgal_image.zdim());
const int image_dims[3] = { xdim, ydim, zdim };
Graph graph;
internal::Mesh_3::Graph_manipulations<Graph, Point_3> g_manip(graph);
std::size_t
case4 = 0, // 4 colors
case211 = 0, case121 = 0, // 3 colors
case31 = 0, case22 = 0, // 2 colors
case1 = 0; // 1 color
for(int axis = 0; axis < 3; ++axis)
{
for(int i = 0; i < xdim; i+= (axis == 0 ? (xdim-1) : 1 ) )
for(int j = 0; j < ydim; j+= (axis == 1 ? (ydim-1) : 1 ) )
for(int k = 0; k < zdim; k+= (axis == 2 ? (zdim-1) : 1 ) )
{
using CGAL::cpp11::array;
using CGAL::cpp11::tuple;
typedef array<int, 3> Pixel;
Pixel pix00 = {{i , j , k }},
pix10 = pix00, pix01 = pix00, pix11 = pix00;
const int axis_xx = (axis + 1) % 3;
const int axis_yy = (axis + 2) % 3;
++pix10[axis_xx];
++pix11[axis_xx];
++pix01[axis_yy];
++pix11[axis_yy];
if(pix11[0] >= xdim || pix11[1] >= ydim || pix11[2] >= zdim) {
// we have gone too far
continue;
}
typedef unsigned char Image_word_type;
typedef tuple<Pixel, Point_3, Image_word_type> Enriched_pixel;
array<array<Enriched_pixel, 2>, 2> square =
{{ {{ Enriched_pixel(pix00, Point_3(), Image_word_type()),
Enriched_pixel(pix01, Point_3(), Image_word_type()) }},
{{ Enriched_pixel(pix10, Point_3(), Image_word_type()),
Enriched_pixel(pix11, Point_3(), Image_word_type()) }} }};
std::map<Image_word_type, int> pixel_values_set;
for(int ii = 0; ii < 2; ++ii)
for(int jj = 0; jj < 2; ++jj)
{
const Pixel& pixel = get<0>(square[ii][jj]);
double x = pixel[0] * cgal_image.vx();
double y = pixel[1] * cgal_image.vy();
double z = pixel[2] * cgal_image.vz();
get<1>(square[ii][jj]) = Point_3(x, y, z);
get<2>(square[ii][jj]) = cgal_image.value(pixel[0],
pixel[1],
pixel[2]);
++pixel_values_set[get<2>(square[ii][jj])];
}
const Point_3& p00 = get<1>(square[0][0]);
const Point_3& p10 = get<1>(square[1][0]);
const Point_3& p01 = get<1>(square[0][1]);
const Point_3& p11 = get<1>(square[1][1]);
//
// Protect the edges of the cube
//
if(pix00[axis_xx] == 0) {
g_manip.try_add_edge(g_manip.get_vertex(p00),
g_manip.get_vertex(p01));
}
if(pix11[axis_xx] == image_dims[axis_xx]-1) {
g_manip.try_add_edge(g_manip.get_vertex(p10),
g_manip.get_vertex(p11));
}
if(pix00[axis_yy] == 0) {
g_manip.try_add_edge(g_manip.get_vertex(p00),
g_manip.get_vertex(p10));
}
if(pix11[axis_yy] == image_dims[axis_yy]-1) {
g_manip.try_add_edge(g_manip.get_vertex(p01),
g_manip.get_vertex(p11));
}
//
// Protect lines inside the square
//
switch(pixel_values_set.size()) {
case 4: {
assert(get<2>(square[0][0]) != get<2>(square[0][1]));
assert(get<2>(square[0][0]) != get<2>(square[1][0]));
assert(get<2>(square[0][0]) != get<2>(square[1][1]));
assert(get<2>(square[1][0]) != get<2>(square[1][1]));
assert(get<2>(square[0][1]) != get<2>(square[1][1]));
assert(get<2>(square[0][1]) != get<2>(square[1][0]));
case_4:
// case 4 or case 2-2
++case4;
vertex_descriptor left = g_manip.split(p00, p01);
vertex_descriptor right = g_manip.split(p10, p11);
vertex_descriptor top = g_manip.split(p01, p11);
vertex_descriptor bottom = g_manip.split(p00, p10);
vertex_descriptor vmid = g_manip.get_vertex(midpoint(p00, p11));
g_manip.try_add_edge(left , vmid);
g_manip.try_add_edge(right , vmid);
g_manip.try_add_edge(top , vmid);
g_manip.try_add_edge(bottom , vmid);
}
break;
case 3: {
if(get<2>(square[0][0]) == get<2>(square[1][1])) {
// Diagonal, but the wrong one.
// Vertical swap
std::swap(square[0][1], square[0][0]);
std::swap(square[1][1], square[1][0]);
}
if(get<2>(square[0][1]) == get<2>(square[1][0])) {
// diagonal case 1-2-1
assert(get<2>(square[0][1]) == get<2>(square[1][0]));
assert(get<2>(square[1][1]) != get<2>(square[0][0]));
assert(get<2>(square[0][1]) != get<2>(square[0][0]));
assert(get<2>(square[0][1]) != get<2>(square[1][1]));
++case121;
vertex_descriptor left = g_manip.split(p00, p01);
vertex_descriptor right = g_manip.split(p10, p11);
vertex_descriptor top = g_manip.split(p01, p11);
vertex_descriptor bottom = g_manip.split(p00, p10);
Point_3 inter_left = p00 + (1./3.) * (p11 - p00);
Point_3 inter_right = p00 + (2./3.) * (p11 - p00);
vertex_descriptor v_int_left = g_manip.get_vertex(inter_left);
vertex_descriptor v_int_right = g_manip.get_vertex(inter_right);
g_manip.try_add_edge(left, v_int_left);
g_manip.try_add_edge(v_int_left, bottom);
g_manip.try_add_edge(top, v_int_right);
g_manip.try_add_edge(v_int_right, right);
} else {
// case 2-1-1
if(get<2>(square[0][0]) == get<2>(square[1][0])) {
// Diagonal swap
std::swap(square[0][1], square[1][0]);
} else
if(get<2>(square[0][1]) == get<2>(square[1][1])) {
// The other diagonal swap
std::swap(square[0][0], square[1][1]);
} else
if(get<2>(square[1][0]) == get<2>(square[1][1])) {
// Vertical swap
std::swap(square[0][0], square[1][0]);
std::swap(square[0][1], square[1][1]);
}
assert(get<2>(square[0][0]) == get<2>(square[0][1]));
assert(get<2>(square[0][0]) != get<2>(square[1][0]));
assert(get<2>(square[0][0]) != get<2>(square[1][1]));
++case211;
Point_3 midleft = midpoint(p00, p01);
Point_3 midright = midpoint(p10, p11);
Point_3 inter = midleft + (2./3)*(midright-midleft);
vertex_descriptor v_inter = g_manip.get_vertex(inter);
vertex_descriptor right = g_manip.split(p10, p11);
vertex_descriptor top = g_manip.split(p01, p11);
vertex_descriptor bottom = g_manip.split(p00, p10);
g_manip.try_add_edge(top, v_inter);
g_manip.try_add_edge(bottom, v_inter);
g_manip.try_add_edge(right, v_inter);
}
}
break;
case 2: {
if(pixel_values_set.begin()->second ==
pixel_values_set.rbegin()->second)
{
// Case of two colors with two pixels each.
if(get<2>(square[0][0])==get<2>(square[1][0])) {
// case 2-2, diagonal swap
std::swap(square[0][1], square[1][0]);
assert(get<2>(square[0][0])==get<2>(square[0][1]));
}
if(get<2>(square[1][0])==get<2>(square[1][1])) {
// case 2-2, vertical swap
std::swap(square[0][1], square[1][1]);
std::swap(square[0][0], square[1][0]);
assert(get<2>(square[0][0])==get<2>(square[0][1]));
}
if(get<2>(square[0][1])==get<2>(square[1][1])) {
// case 2-2, diagonal swap
std::swap(square[0][0], square[1][1]);
assert(get<2>(square[0][0])==get<2>(square[0][1]));
}
if(get<2>(square[0][0])==get<2>(square[0][1])) {
// vertical case 2-2
++case22;
assert(get<2>(square[1][0])==get<2>(square[1][1]));
assert(get<2>(square[1][0])!=get<2>(square[0][1]));
vertex_descriptor top = g_manip.split(p01, p11);
vertex_descriptor bottom = g_manip.split(p00, p10);
g_manip.try_add_edge(top, bottom);
} else {
// Else diagonal case case 2-2
// Same as the case with 4 colors
assert(get<2>(square[0][0])==get<2>(square[1][1]));
assert(get<2>(square[1][0])==get<2>(square[0][1]));
assert(get<2>(square[0][0])!=get<2>(square[0][1]));
goto case_4;
}
}
else {
// case of two colors with one pixel green and three red
Image_word_type value_alone;
if(pixel_values_set.begin()->second == 1) {
value_alone = pixel_values_set.begin()->first;
} else {
assert(pixel_values_set.begin()->second == 3);
assert(pixel_values_set.rbegin()->second ==1);
value_alone = pixel_values_set.rbegin()->first;
}
if(get<2>(square[0][1]) == value_alone) {
// central symmetry
std::swap(square[0][1], square[1][0]);
std::swap(square[0][0], square[1][1]);
assert(get<2>(square[1][0]) == value_alone);
}
if(get<2>(square[1][1]) == value_alone) {
// vertical swap
std::swap(square[0][0], square[0][1]);
std::swap(square[1][0], square[1][1]);
assert(get<2>(square[1][0]) == value_alone);
}
if(get<2>(square[0][0]) == value_alone) {
// horizontal swap
std::swap(square[0][1], square[1][1]);
std::swap(square[0][0], square[1][0]);
assert(get<2>(square[1][0]) == value_alone);
}
++case31;
assert(get<2>(square[1][0]) == value_alone);
assert(get<2>(square[1][0]) != get<2>(square[0][0]));
assert(get<2>(square[1][1]) == get<2>(square[0][0]));
assert(get<2>(square[0][1]) == get<2>(square[0][0]));
vertex_descriptor bottom = g_manip.split(p00, p10);
vertex_descriptor old = bottom;
Point_3 inter;
vertex_descriptor v_int;
for(double x = 0.55; x < 1.; x+= 0.05)
{
inter = p00
+ x * (p10 - p00) // x
+ (1.-1./(2.*x)) * (p01 - p00); // y
v_int = g_manip.get_vertex(inter);
g_manip.try_add_edge(old, v_int);
old = v_int;
}
vertex_descriptor right = g_manip.split(p10, p11);
g_manip.try_add_edge(v_int, right);
}
}
break;
default: // case 1
++case1;
// nothing to do
break;
}
}
}
// std::cerr << "case 4: " << case4 << std::endl;
// std::cerr << "case 2-1-1: " << case211 << std::endl;
// std::cerr << "case 1-2-1: " << case121 << std::endl;
// std::cerr << "case 3-1: " << case31 << std::endl;
// std::cerr << "case 2-2: " << case22 << std::endl;
// std::cerr << "case 1: " << case1 << std::endl;
const std::ptrdiff_t nb_facets =
case4 + case211 + case121 + case31 + case22 + case1;
const std::ptrdiff_t expected_nb_facets =
2*((xdim-1)*(ydim-1) + (ydim-1)*(zdim-1) + (xdim-1)*(zdim-1));
// std::cerr << "nb of facets: " << nb_facets << std::endl
// << " expected nb of facets: " << expected_nb_facets << std::endl;
CGAL_assertion(nb_facets == expected_nb_facets);
CGAL_USE(nb_facets); CGAL_USE(expected_nb_facets);
internal::Mesh_3::split_in_polylines(graph, polylines, K());
{
std::ofstream out("polylines.cgal.txt");
out.precision(17);
BOOST_FOREACH(const std::vector<Point_3>& polyline, polylines) {
out << polyline.size();
BOOST_FOREACH(const Point_3& p, polyline ) {
out << " " << p;
}
out << std::endl;
}
}
}
template <typename P>
void
polylines_to_protect(const CGAL::Image_3& cgal_image,
std::vector<std::vector<P> >& polylines)
{
polylines_to_protect(cgal_image,
cgal_image.vx(), cgal_image.vy(),cgal_image.vz(),
polylines);
}
} // namespace CGAL
#endif // CGAL_POLYLINES_TO_PROTECT_H

View File

@ -9,6 +9,7 @@
#ifdef CGAL_MESH_3_DEMO_ACTIVATE_SEGMENTED_IMAGES
#include "Image_type.h"
#include <CGAL/Labeled_image_mesh_domain_3.h>
#include <CGAL/Mesh_domain_with_polyline_features_3.h>
#include "Polyhedron_demo_mesh_3_labeled_mesh_domain_3.h"
#endif
#ifdef CGAL_MESH_3_DEMO_ACTIVATE_IMPLICIT_FUNCTIONS
@ -50,8 +51,9 @@ typedef CGAL::Polyhedral_mesh_domain_with_features_3<
// The last `Tag_true` says the Patch_id type will be int, and not pair<int, int>
#ifdef CGAL_MESH_3_DEMO_ACTIVATE_SEGMENTED_IMAGES
typedef CGAL::Labeled_image_mesh_domain_3<Image,Kernel> Image_domain;
typedef CGAL::Polyhedron_demo_labeled_mesh_domain_3<Image_domain> Image_mesh_domain;
typedef CGAL::Labeled_image_mesh_domain_3<Image,Kernel> Image_domain1;
typedef CGAL::Polyhedron_demo_labeled_mesh_domain_3<Image_domain1> Image_domain;
typedef CGAL::Mesh_domain_with_polyline_features_3<Image_domain> Image_mesh_domain;
#endif
#ifdef CGAL_MESH_3_DEMO_ACTIVATE_IMPLICIT_FUNCTIONS
typedef Wrapper<Kernel> Function_wrapper;

View File

@ -22,7 +22,6 @@ set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_RUNTIME_OUTPUT_DIRECTORY}")
# Include this package's headers first
include_directories( BEFORE ./ ./include ../../include ./CGAL_demo )
list(INSERT CMAKE_MODULE_PATH 0 "${CMAKE_CURRENT_SOURCE_DIR}")
add_subdirectory( implicit_functions )

View File

@ -0,0 +1,124 @@
// Copyright (c) 2015 GeometryFactory
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Rineau
#ifndef CGAL_FACET_EXTRA_CRITERION_H
#define CGAL_FACET_EXTRA_CRITERION_H
#include <CGAL/Mesh_3/mesh_standard_criteria.h>
template <typename Tr, typename Domain, typename Visitor_>
class Facet_extra_criterion :
public CGAL::Mesh_3::Abstract_criterion<Tr, Visitor_>
{
private:
typedef typename Tr::Facet Facet;
typedef CGAL::Mesh_3::Abstract_criterion<Tr,Visitor_> Base;
typedef typename Base::Quality Quality;
typedef typename Base::Badness Badness;
typedef Facet_extra_criterion<Tr,Domain,Visitor_> Self;
const Domain& domain;
public:
/// Constructor
Facet_extra_criterion(const Domain& domain) : domain(domain) {}
/// Destructor
~Facet_extra_criterion() {}
protected:
virtual void do_accept(Visitor_& v) const
{
v.visit(*this);
}
virtual Self* do_clone() const
{
// Call copy ctor on this
return new Self(*this);
}
virtual Badness do_is_bad (const Facet& f) const
{
typedef typename Tr::Vertex_handle Vertex_handle;
typedef typename Tr::Cell_handle Cell_handle;
typedef typename Domain::Surface_patch_index Surface_patch_index;
const Cell_handle& ch = f.first;
const int& i = f.second;
const Vertex_handle& v1 = ch->vertex((i+1)&3);
const Vertex_handle& v2 = ch->vertex((i+2)&3);
const Vertex_handle& v3 = ch->vertex((i+3)&3);
Surface_patch_index index = Surface_patch_index();
bool is_index_initialized = false;
std::cerr << typeid(index).name() << std::endl;
if ( v1->in_dimension() == 2 )
{
index = domain.surface_patch_index(v1->index());
if(index != 0) { // (index.first != 0 && index.second != 0)
//index = Surface_patch_index(std::make_pair(1,1));
}
is_index_initialized = true;
}
if ( v2->in_dimension() == 2 )
{
Surface_patch_index index2 = domain.surface_patch_index(v2->index());
if(index2) { // (index2.first != 0 && index2.second != 0){
//index2 = Surface_patch_index(1,1);
}
if ( is_index_initialized )
{
if ( !(index2 == index) )
{
return Badness(Quality(1));
}
}
else
{
index = index2;
is_index_initialized = true;
}
}
if ( v3->in_dimension() == 2 )
{
Surface_patch_index index3 = domain.surface_patch_index(v3->index());
if(index3 != 0) { // (index3.first != 0 && index3.second != 0)
// index3 = Surface_patch_index(1,1);
}
if ( is_index_initialized && !(index3 == index) )
{
return Badness(Quality(1));
}
}
return Badness();
}
}; // end class Facet_extra_criterion
#endif // CGAL_FACET_EXTRA_CRITERION_H

View File

@ -55,6 +55,7 @@ Scene_item* cgal_code_mesh_3(const Image* pImage,
const double facet_approx,
const double tet_sizing,
const double tet_shape,
const bool protect_features,
CGAL::Three::Scene_interface* scene);
#endif
@ -143,7 +144,11 @@ void Polyhedron_demo_mesh_3_plugin::mesh_3()
else if (NULL != function_item) { item = function_item; }
#endif
#ifdef CGAL_MESH_3_DEMO_ACTIVATE_SEGMENTED_IMAGES
else if (NULL != image_item) { item = image_item; }
else if (NULL != image_item)
{
item = image_item;
features_protection_available = true;
}
#endif
if (NULL == item)
@ -284,6 +289,7 @@ void Polyhedron_demo_mesh_3_plugin::mesh_3()
approx,
tet_sizing,
radius_edge,
protect_features,
scene);
}
#endif

View File

@ -2,6 +2,7 @@
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/polylines_to_protect.h>
#include <CGAL/Bbox_3.h>
#include <Polyhedron_type.h>
@ -11,6 +12,7 @@
#include <CGAL/Three/Scene_item.h>
#include "Mesh_function.h"
#include "Facet_extra_criterion.h"
#include <CGAL/Timer.h>
using namespace CGAL::Three;
@ -41,7 +43,6 @@ Scene_item* cgal_code_mesh_3(const Polyhedron* pMesh,
Facet_criteria facet_criteria(angle, facet_sizing, approx); // angle, size, approximation
Cell_criteria cell_criteria(tet_shape, tet_sizing); // radius-edge ratio, size
Mesh_criteria criteria(edge_criteria, facet_criteria, cell_criteria);
CGAL::Timer timer;
timer.start();
std::cerr << "Meshing file \"" << qPrintable(filename) << "\"\n";
@ -52,6 +53,7 @@ Scene_item* cgal_code_mesh_3(const Polyhedron* pMesh,
std::cerr << "Build AABB tree...";
// Create domain
Polyhedral_mesh_domain domain(*pMesh);
if(protect_features) {
domain.detect_features();
}
@ -126,7 +128,7 @@ Scene_item* cgal_code_mesh_3(const Implicit_function_interface* pfunction,
CGAL::Timer timer;
p_new_item->set_scene(scene);
std::cerr << "done (" << timer.time() << " ms, "
std::cerr << "done (" << timer.time() << " sec, "
<< p_new_item->c3t3().triangulation().number_of_vertices() << " vertices)"
<< std::endl;
@ -154,6 +156,7 @@ Scene_item* cgal_code_mesh_3(const Image* pImage,
const double facet_approx,
const double tet_sizing,
const double tet_shape,
const bool protect_features,
CGAL::Three::Scene_interface* scene)
{
@ -162,11 +165,29 @@ Scene_item* cgal_code_mesh_3(const Image* pImage,
Image_mesh_domain* p_domain
= new Image_mesh_domain(*pImage, 1e-6);
if(protect_features){
std::vector<std::vector<Point_3> > polylines;
CGAL::polylines_to_protect(*pImage, polylines);
p_domain->add_features(polylines.begin(), polylines.end());
}
// Set mesh criteria
Edge_criteria edge_criteria(facet_sizing);
Facet_criteria facet_criteria(facet_angle, facet_sizing, facet_approx); // angle, size, approximation
Cell_criteria cell_criteria(tet_shape, tet_sizing); // radius-edge ratio, size
typedef Facet_extra_criterion<Tr,
Image_mesh_domain,
Mesh_criteria::Facet_criteria::Visitor>
Extra_criterion;
// facet_criteria.add(new Extra_criterion(*p_domain));
Mesh_criteria criteria(edge_criteria, facet_criteria, cell_criteria);
CGAL::Timer timer;
timer.start();
Scene_c3t3_item* p_new_item = new Scene_c3t3_item(CGAL::make_mesh_3<C3t3>(*p_domain,

View File

@ -691,8 +691,6 @@ void Scene_c3t3_item::draw_triangle_edges(const Kernel::Point_3& pa,
const Kernel::Point_3& pc)const {
#undef darker
Kernel::Vector_3 n = cross_product(pb - pa, pc - pa);
n = n / CGAL::sqrt(n*n);
positions_lines.push_back(pa.x());
positions_lines.push_back(pa.y());
positions_lines.push_back(pa.z());
@ -1089,6 +1087,13 @@ void Scene_c3t3_item::compute_elements()
//The facets
{
const Kernel::Plane_3& plane = this->plane();
GLdouble clip_plane[4];
clip_plane[0] = plane.a();
clip_plane[1] = plane.b();
clip_plane[2] = plane.c();
clip_plane[3] = plane.d();
for (C3t3::Facet_iterator
fit = c3t3().facets_begin(),
end = c3t3().facets_end();
@ -1100,7 +1105,6 @@ void Scene_c3t3_item::compute_elements()
const Kernel::Point_3& pb = cell->vertex((index + 2) & 3)->point();
const Kernel::Point_3& pc = cell->vertex((index + 3) & 3)->point();
if(cell->subdomain_index() == 0) {
QColor color = d->colors[cell->neighbor(index)->subdomain_index()];
f_colors.push_back(color.redF());f_colors.push_back(color.greenF());f_colors.push_back(color.blue());