diff --git a/Packages/Spatial_searching/doc_tex/Spatial_searching/intro.tex b/Packages/Spatial_searching/doc_tex/Spatial_searching/intro.tex index 5133bec9499..60ff6216442 100755 --- a/Packages/Spatial_searching/doc_tex/Spatial_searching/intro.tex +++ b/Packages/Spatial_searching/doc_tex/Spatial_searching/intro.tex @@ -2,9 +2,9 @@ \section{Introduction} -The {\bf spatial searching} package implements -exact and approximate distance browsing -by providing implementations of algorithms supporting +The spatial searching package implements exact and approximate +distance browsing by providing implementations of algorithms +supporting \begin{itemize} @@ -90,7 +90,7 @@ neighbor must not be smaller than $r/(1+\epsilon)$. Obviously, for $\epsilon=0$ we get the exact result, and the larger $\epsilon$ is, the less exact the result. -\subsection{Range searching} +\subsection{Range Searching} {\bf Exact range searching} and {\bf approximate range searching} is supported using exact or fuzzy $d$-dimensional objects enclosing a @@ -218,7 +218,7 @@ coordinates. \ccIncludeExampleCode{../../examples/Spatial_searching/Fuzzy_range_query.C} -\subsection{Example of Distance Browsing} +\subsection{Example of Incremental Searching} This example program illustrates distance browsing for $4$-dimensional points with a positive first coordinate using orthogonal priority @@ -241,7 +241,7 @@ in this file as well. \ccIncludeExampleCode{../../examples/Spatial_searching/User_defined_point_and_distance.C} -\section{Software design} +\section{Software Design} \begin{ccTexOnly} \begin{figure}[t] @@ -331,7 +331,7 @@ as implemented by \ccc{CGAL::Plane_separator}. \ccc{CGAL::Sliding_Fair}. \item -\ccc{TreeTraits} denoting a traits class for the construction of a tree. +\ccc{PointTraits} denoting a traits class for the construction of a tree. \ccc{CGAL::Kd_tree_traits_point< SpatialPoint, Splitter >} provides an implementation. \item @@ -360,18 +360,18 @@ a weighted Minkowski metric. \item \ccc{SpatialTree} denoting a tree supporting spatial searching -\ccc{CGAL::Kd_tree} provides an implementation of $k$-$d$ trees. +\ccc{CGAL::Kd_tree} provides an implementation of $k$-$d$ trees. \end{itemize} -\subsection{Neighbor search} +\subsection{Neighbor Search} The four classes implementing neighbor searching algorithms are \begin{itemize} \item -The class \ccc{CGAL::General_standard_search} +The class \ccc{CGAL::K_neighbor_search} implementing the standard search strategy for general distances like the Manhattan distance for iso-rectangles. Requires no use of extended nodes in the $k$-$d$ tree and supports only $k$ @@ -379,21 +379,22 @@ neighbor searching for queries defined by points or spatial objects. \item -The class \ccc{CGAL::General_priority_search} implementing the priority search -strategy for general distances -like the Manhattan distance for iso-rectangles. -Requires no use of extended nodes in the $k$-$d$ tree and supports incremental -neighbor searching and distance browsing for queries defined by points or spatial objects. +The class \ccc{CGAL::Incremental_neighbor_search} implementing the incremental +search strategy for general distances like the Manhattan distance for +iso-rectangles. Requires no use of extended nodes in the $k$-$d$ tree +and supports incremental neighbor searching and distance browsing for +queries defined by points or spatial objects. \item -The class \ccc{CGAL::Orthogonal_standard_search} implementing the standard search strategy for -orthogonal distances +The class \ccc{CGAL::Orthogonal_k_neighbor_search} +implementing the standard search strategy for orthogonal distances like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports only $k$ neighbor searching for point queries. \item -The class \ccc{Orthogonal_priority_search} implementing the priority search strategy for general -distances +The class \ccc{Orthogonal_incremental_neighbor_search} +implementing the priority search strategy for general distances like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports incremental neighbor searching and distance browsing for point queries. @@ -410,7 +411,7 @@ methods to compute bounding boxes of point sets and methods to split iso-rectangles. \item -The class \ccc{CGAL::Kd_tree_node} implementing $k$-$d$ tree nodes. +The class \ccc{CGAL::Kd_tree_node} implementing $k$-$d$ tree nodes. \end{itemize} @@ -511,10 +512,9 @@ generate empty cells. \section{Backward compability with the Kd-trees package} \label{Spatial_searching:Backward_compability_Kd-trees} -In release 2.3 of CGAL -$k$-$d$ trees have been implemented by the class \ccc{CGAL::Kdtree_d}, -that is parameterized with one of the -traits classes +In release 2.3 of \cgal\ $k$-$d$ trees have been implemented by the +class \ccc{CGAL::Kdtree_d}, that is parameterized with +one of the traits classes \begin{itemize} diff --git a/Packages/Spatial_searching/doc_tex/basic/Spatial_searching/intro.tex b/Packages/Spatial_searching/doc_tex/basic/Spatial_searching/intro.tex index 5133bec9499..60ff6216442 100755 --- a/Packages/Spatial_searching/doc_tex/basic/Spatial_searching/intro.tex +++ b/Packages/Spatial_searching/doc_tex/basic/Spatial_searching/intro.tex @@ -2,9 +2,9 @@ \section{Introduction} -The {\bf spatial searching} package implements -exact and approximate distance browsing -by providing implementations of algorithms supporting +The spatial searching package implements exact and approximate +distance browsing by providing implementations of algorithms +supporting \begin{itemize} @@ -90,7 +90,7 @@ neighbor must not be smaller than $r/(1+\epsilon)$. Obviously, for $\epsilon=0$ we get the exact result, and the larger $\epsilon$ is, the less exact the result. -\subsection{Range searching} +\subsection{Range Searching} {\bf Exact range searching} and {\bf approximate range searching} is supported using exact or fuzzy $d$-dimensional objects enclosing a @@ -218,7 +218,7 @@ coordinates. \ccIncludeExampleCode{../../examples/Spatial_searching/Fuzzy_range_query.C} -\subsection{Example of Distance Browsing} +\subsection{Example of Incremental Searching} This example program illustrates distance browsing for $4$-dimensional points with a positive first coordinate using orthogonal priority @@ -241,7 +241,7 @@ in this file as well. \ccIncludeExampleCode{../../examples/Spatial_searching/User_defined_point_and_distance.C} -\section{Software design} +\section{Software Design} \begin{ccTexOnly} \begin{figure}[t] @@ -331,7 +331,7 @@ as implemented by \ccc{CGAL::Plane_separator}. \ccc{CGAL::Sliding_Fair}. \item -\ccc{TreeTraits} denoting a traits class for the construction of a tree. +\ccc{PointTraits} denoting a traits class for the construction of a tree. \ccc{CGAL::Kd_tree_traits_point< SpatialPoint, Splitter >} provides an implementation. \item @@ -360,18 +360,18 @@ a weighted Minkowski metric. \item \ccc{SpatialTree} denoting a tree supporting spatial searching -\ccc{CGAL::Kd_tree} provides an implementation of $k$-$d$ trees. +\ccc{CGAL::Kd_tree} provides an implementation of $k$-$d$ trees. \end{itemize} -\subsection{Neighbor search} +\subsection{Neighbor Search} The four classes implementing neighbor searching algorithms are \begin{itemize} \item -The class \ccc{CGAL::General_standard_search} +The class \ccc{CGAL::K_neighbor_search} implementing the standard search strategy for general distances like the Manhattan distance for iso-rectangles. Requires no use of extended nodes in the $k$-$d$ tree and supports only $k$ @@ -379,21 +379,22 @@ neighbor searching for queries defined by points or spatial objects. \item -The class \ccc{CGAL::General_priority_search} implementing the priority search -strategy for general distances -like the Manhattan distance for iso-rectangles. -Requires no use of extended nodes in the $k$-$d$ tree and supports incremental -neighbor searching and distance browsing for queries defined by points or spatial objects. +The class \ccc{CGAL::Incremental_neighbor_search} implementing the incremental +search strategy for general distances like the Manhattan distance for +iso-rectangles. Requires no use of extended nodes in the $k$-$d$ tree +and supports incremental neighbor searching and distance browsing for +queries defined by points or spatial objects. \item -The class \ccc{CGAL::Orthogonal_standard_search} implementing the standard search strategy for -orthogonal distances +The class \ccc{CGAL::Orthogonal_k_neighbor_search} +implementing the standard search strategy for orthogonal distances like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports only $k$ neighbor searching for point queries. \item -The class \ccc{Orthogonal_priority_search} implementing the priority search strategy for general -distances +The class \ccc{Orthogonal_incremental_neighbor_search} +implementing the priority search strategy for general distances like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports incremental neighbor searching and distance browsing for point queries. @@ -410,7 +411,7 @@ methods to compute bounding boxes of point sets and methods to split iso-rectangles. \item -The class \ccc{CGAL::Kd_tree_node} implementing $k$-$d$ tree nodes. +The class \ccc{CGAL::Kd_tree_node} implementing $k$-$d$ tree nodes. \end{itemize} @@ -511,10 +512,9 @@ generate empty cells. \section{Backward compability with the Kd-trees package} \label{Spatial_searching:Backward_compability_Kd-trees} -In release 2.3 of CGAL -$k$-$d$ trees have been implemented by the class \ccc{CGAL::Kdtree_d}, -that is parameterized with one of the -traits classes +In release 2.3 of \cgal\ $k$-$d$ trees have been implemented by the +class \ccc{CGAL::Kdtree_d}, that is parameterized with +one of the traits classes \begin{itemize}