mirror of https://github.com/CGAL/cgal
add documentation of concept PowerSideOfBoundedPowerSphere_3
This commit is contained in:
parent
1ad7bfa202
commit
db37ec56c2
|
|
@ -6839,7 +6839,7 @@ public:
|
|||
/*!
|
||||
constructs the point which is the center of the smallest orthogonal circle to the input weighted points.
|
||||
*/
|
||||
Kernel::Point_2 operator()(const Kernel::Weighted_point_2& p, const Kernel::Weighted_point_2& q, const Kernel::Weighted_point_3& s);
|
||||
Kernel::Point_2 operator()(const Kernel::Weighted_point_2& p, const Kernel::Weighted_point_2& q, const Kernel::Weighted_point_2& s);
|
||||
|
||||
}; /* end Kernel::ConstructWeightedCircumcenter_2
|
||||
|
||||
|
|
@ -8014,7 +8014,21 @@ public:
|
|||
/*!
|
||||
returns the sign of the power test of the last weighted point
|
||||
with respect to the smallest sphere orthogonal to the others.
|
||||
*/
|
||||
|
||||
Let \f$ {z(p,q,r,s)}^{(w)}\f$ be the power sphere of the weighted points
|
||||
\f$ (p,q,r,s)\f$. Returns
|
||||
- `ON_BOUNDARY` if `t` is orthogonal to
|
||||
\f$ {z(p,q,r,s)}^{(w)}\f$,
|
||||
- `ON_UNBOUNDED_SIDE` if `t` lies outside the bounded sphere of
|
||||
center \f$ z(p,q,r,s)\f$ and radius \f$ \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\f$
|
||||
(which is equivalent to \f$ \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)} >0\f$)),
|
||||
- `ON_BOUNDED_SIDE` if `t` lies inside this oriented sphere.
|
||||
|
||||
\pre `p, q, r, s` are not coplanar.
|
||||
|
||||
If all the points have a weight equal to 0, then
|
||||
`power_side_of_bounded_power_sphere_3(p,q,r,s,t)` == `side_of_bounded_sphere(p,q,r,s,t)`.
|
||||
*/
|
||||
CGAL::Bounded_side
|
||||
operator()(const Kernel::Weighted_point_3 & p,
|
||||
const Kernel::Weighted_point_3 & q,
|
||||
|
|
@ -8023,25 +8037,40 @@ public:
|
|||
const Kernel::Weighted_point_3 & t);
|
||||
|
||||
/*!
|
||||
returns.
|
||||
*/
|
||||
Analogous to the previous method, for coplanar points,
|
||||
with the power circle \f$ {z(p,q,r)}^{(w)}\f$.
|
||||
\pre `p, q, r` are not collinear.
|
||||
|
||||
If all the points have a weight equal to 0, then
|
||||
`power_side_of_bounded_power_sphere_3(p,q,r,t)` == `side_of_bounded_sphere(p,q,r,t)`.
|
||||
*/
|
||||
CGAL::Bounded_side
|
||||
operator()(const Kernel::Weighted_point_3 & p,
|
||||
const Kernel::Weighted_point_3 & q,
|
||||
const Kernel::Weighted_point_3 & r,
|
||||
const Kernel::Weighted_point_3 & s);
|
||||
const Kernel::Weighted_point_3 & t);
|
||||
|
||||
/*!
|
||||
returns.
|
||||
*/
|
||||
which is the same for collinear points, where \f$ {z(p,q)}^{(w)}\f$ is the
|
||||
power segment of `p` and `q`.
|
||||
\pre `p` and `q` have different bare points.
|
||||
|
||||
If all points have a weight equal to 0, then
|
||||
`power_side_of_bounded_power_sphere_3(p,q,t)` gives the same answer as the kernel predicate
|
||||
`s(p,q).has_on(t)` would give, where `s(p,q)` denotes the
|
||||
segment with endpoints `p` and `q`.
|
||||
*/
|
||||
CGAL::Bounded_side
|
||||
operator()(const Kernel::Weighted_point_3 & p,
|
||||
const Kernel::Weighted_point_3 & q,
|
||||
const Kernel::Weighted_point_3 & r);
|
||||
const Kernel::Weighted_point_3 & t);
|
||||
|
||||
/*!
|
||||
returns.
|
||||
*/
|
||||
which is the same for equal points, that is when `p` and `q`
|
||||
have equal coordinates, then it returns the comparison of the weights
|
||||
(`ON_BOUNDED_SIDE` when `q` is heavier than `p`).
|
||||
\pre `p` and `q` have equal bare points.
|
||||
*/
|
||||
CGAL::Bounded_side
|
||||
operator()(const Kernel::Weighted_point_3 & p,
|
||||
const Kernel::Weighted_point_3 & q);
|
||||
|
|
|
|||
Loading…
Reference in New Issue