mirror of https://github.com/CGAL/cgal
things forgotten yesterday...
This commit is contained in:
parent
96935d61cc
commit
db4472338a
|
|
@ -73,16 +73,7 @@ with their multiplicity, as objects of type
|
|||
OutputIterator res);}
|
||||
{Same as previous.}
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{Algebraic_kernel_for_circles_2_2::Solve;}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
\ccRefIdfierPage{CGAL::solve}
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
\begin{ccRefConcept}{AlgebraicKernelForCircles::XCriticalPoints}
|
||||
|
||||
\ccDefinition
|
||||
|
|
@ -104,14 +95,6 @@ A model \ccVar\ of this type must provide:
|
|||
bool i);}
|
||||
{Computes the \ccc{i}th \ccc{x}-critical point of polynomial \ccc{p}.}
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{Algebraic_kernel_for_circles_2_2::X_critical_points;}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
\ccRefIdfierPage{CGAL::x_critical_points}
|
||||
|
||||
\end{ccRefConcept}
|
||||
\begin{ccRefConcept}{AlgebraicKernelForCircles::YCriticalPoints}
|
||||
|
||||
|
|
@ -134,12 +117,4 @@ A model \ccVar\ of this type must provide:
|
|||
bool i);}
|
||||
{Computes the \ccc{i}th \ccc{y}-critical point of polynomial \ccc{p}.}
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{Algebraic_kernel_for_circles_2_2::Y_critical_points;}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
\ccRefIdfierPage{CGAL::y_critical_points}
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
\ccDefinition
|
||||
|
||||
This class is a traits class for CGAL arrangements, built on top of a model of
|
||||
This class is a traits class for \cgal\ arrangements, built on top of a model of
|
||||
concept \ccc{CircularKernel}.
|
||||
It provides curves of type \ccc{CGAL::Circular_arc_2<CircularKernel>}.
|
||||
|
||||
|
|
@ -18,7 +18,7 @@ It provides curves of type \ccc{CGAL::Circular_arc_2<CircularKernel>}.
|
|||
|
||||
\ccDefinition
|
||||
|
||||
This class is a traits class for CGAL arrangements, built on top of a
|
||||
This class is a traits class for \cgal\ arrangements, built on top of a
|
||||
model of concept \ccc{CircularKernel}. It provides curves of type
|
||||
\ccc{CGAL::Line_arc_2<CircularKernel>}.
|
||||
|
||||
|
|
@ -32,7 +32,7 @@ model of concept \ccc{CircularKernel}. It provides curves of type
|
|||
|
||||
\ccDefinition
|
||||
|
||||
This class is a traits class for CGAL arrangements, built on top of a
|
||||
This class is a traits class for \cgal\ arrangements, built on top of a
|
||||
model of concept \ccc{CircularKernel}. It provides curves that can be
|
||||
of both types
|
||||
\ccc{CGAL::Line_arc_2<CircularKernel>} or
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The geometric kernel parameter of \ccc{CGAL::Circular_kernel_2} is
|
||||
supposed to be a model of the \textit{(two-dimensional)} \ccc{Kernel}
|
||||
concept, so that the circular kernel provides all functionalities of a
|
||||
CGAL kernel.
|
||||
\cgal\ kernel.
|
||||
|
||||
%In fact, even though all types and operations of the
|
||||
%\ccc{CGAL::Kernel} concept are required so that
|
||||
|
|
@ -25,7 +25,7 @@ CGAL kernel.
|
|||
|
||||
\ccHasModels
|
||||
|
||||
all CGAL kernels
|
||||
All \cgal\ kernels
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@
|
|||
|
||||
The circular kernel is parameterized by a \ccc{LinearKernel} parameter
|
||||
(and derives from it), in order to reuse all needed functionalities on
|
||||
basic linear objects provided by one of the CGAL kernels. It also
|
||||
basic linear objects provided by one of the \cgal\ kernels. It also
|
||||
allows other implementations of these basic functionalities.
|
||||
|
||||
The second parameter, \ccc{AlgebraicKernelForCircles}, is meant to provide the
|
||||
|
|
|
|||
|
|
@ -155,7 +155,7 @@
|
|||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Traits Classes for CGAL Arrangements}
|
||||
\section{Traits Classes for \cgal\ Arrangements}
|
||||
|
||||
\ccRefIdfierPage{CGAL::Arr_circular_arc_traits<CircularKernel>}\\
|
||||
\ccRefIdfierPage{CGAL::Arr_line_arc_traits<CircularKernel>}\\
|
||||
|
|
|
|||
Loading…
Reference in New Issue