mainly \tparam

This commit is contained in:
Andreas Fabri 2012-09-14 09:48:56 +00:00
parent 237d8fab00
commit dce9cc543c
22 changed files with 135 additions and 161 deletions

View File

@ -10,22 +10,19 @@ The domain to be discretized is assumed to be the domain where
the function has negative values.
This class is a model of the concept `MeshDomain_3`.
Parameters
--------------
Parameter `BGT` is a geometric traits which provides
the basic operations to implement
intersection tests and computations
through a bisection method. This parameter must be instantiated
with a model of the concept `BisectionGeometricTraits_3`.
Parameter `Function` provides the definition of the function.
\tparam Function provides the definition of the function.
This parameter stands for a model of the concept
`ImplicitFunction` described in the
surface mesh generation package.
The number types `Function::FT`
and `BGT::FT` are required to match.
\tparam BGT is a geometric traits which provides the basic operations to implement
intersection tests and computations
through a bisection method. This parameter must be instantiated
with a model of the concept `BisectionGeometricTraits_3`.
The constructor of `Implicit_mesh_domain_3`
takes as argument a bounding sphere which is required
to circumscribe the surface and to have its center inside the

View File

@ -19,14 +19,12 @@ The bisection stops when the query segment is shorter than a given error bound
length of the diagonal of the bounding box (in world coordinates) and
`bound` is the argument passed to the constructor of `Labeled_image_mesh_domain_3`.
Parameters
--------------
Parameter `Image` is the type of the input image.
\tparam Image is the type of the input image.
This parameter must be a model of the concept
`LabeledImage_3`.
Parameter `BGT` is a geometric traits class which provides
\tparam BGT is a geometric traits class which provides
the basic operations to implement
intersection tests and intersection computations
through a bisection method. This parameter must be instantiated

View File

@ -7,18 +7,14 @@ The class `Mesh_cell_base_3` is a model of the concept `MeshCellBase_3`.
It is designed to serve as cell base class for the 3D triangulation
used in the 3D mesh generation process.
Parameters
--------------
The template parameter `MD` provides the types of indices
used to identify
\tparam MD provides the types of indices used to identify
the faces of the input complex. It has to be a model
of the concept `MeshDomain_3`.
The template parameter `Gt` is the geometric traits class.
\tparam Gt is the geometric traits class.
It has to be a model of the concept `RegularTriangulationTraits_3`.
The third parameter `Cb` is the cell base class. It has to be a model
\tparam Cb is the cell base class. It has to be a model
of the concept `RegularTriangulationCellBase_3` and defaults to
`Regular_triangulation_cell_base_3<Gt>`.

View File

@ -8,10 +8,7 @@ for the mesh tetrahedra,
a uniform shape criteria
and a sizing field which may be a uniform or variable field.
Parameters
--------------
The parameter `Tr` must be identical to the nested type
\tparam Tr must be identical to the nested type
`Triangulation` of the instance used as model of
`MeshComplex_3InTriangulation_3`.
@ -19,7 +16,7 @@ The parameter `Tr` must be identical to the nested type
\sa `MeshCriteria_3`
\sa `MeshCellCriteria_3`
\sa `Mesh_criteria_3<Tr>`
\sa `CGAL::Mesh_criteria_3<Tr>`
\sa `CGAL::make_mesh_3`
*/

View File

@ -10,17 +10,17 @@ generation process.
This class is a model of the concept
`MeshComplexWithFeatures_3InTriangulation_3`.
Parameters
--------------
The template parameter `Tr` can be instantiated with any 3D
\tparam Tr can be instantiated with any 3D
regular triangulation of \cgal provided that its
vertex and cell base class are models of the concepts
`MeshVertexBase_3` and `MeshCellBase_3`, respectively.
The template parameter `CornerIndex` is the type of the indices for corners and
the template parameter `CurveSegmentIndex` is the type of the indices for curves segments.
They must match the `Corner_index` and `Curve_segment_index` types of the model
\tparam CornerIndex is the type of the indices for corners. It must match the `Corner_index` of the model
of the `MeshDomainWithFeatures_3` concept used for mesh generation.
\tparam CurveSegmentIndex is the type of the indices for curves segments.
It must match the `Curve_segment_index` types of the model
of the `MeshDomainWithFeatures_3` concept used for mesh generation.
Those two last template parameters defaults to `int`, so that they can be ignored

View File

@ -13,11 +13,11 @@ of the domain.
Parameters
--------------
The parameter `Gt` is the geometric traits class. It must match the type `Triangulation::Geom_traits`,
\tparam Gt is the geometric traits class. It must match the type `Triangulation::Geom_traits`,
where `Triangulation` is the nested type of the model of `MeshComplex_3InTriangulation_3` used
in the meshing process.
The parameter `Index` is the type of index of the vertices of the triangulation.
\tparam Index is the type of index of the vertices of the triangulation.
It must match the type `Index` of the model of `MeshDomain_3` used in the meshing process.
\models ::MeshDomainField_3

View File

@ -13,10 +13,7 @@ the class `Mesh_criteria_3`
handles the definition of a sizing field to guide the discretization of
1-dimensional features.
Parameters
--------------
The parameter `Tr` has to be instantiated with the type used for
\tparam Tr has to be instantiated with the type used for
`C3T3::Triangulation`,
where `C3T3` is the model of `MeshComplex_3InTriangulation_3`
used in the mesh generation process,

View File

@ -9,10 +9,7 @@ features into any model of the `MeshDomain_3` concept.
The 1-dimensional features are described as polylines
whose endpoints are the added corners.
Parameters
--------------
The template parameter `MeshDomain_3` is the type
\tparam MeshDomain_3 is the type
of the domain which should be extended.
It has to be a model of the `MeshDomain_3` concept.

View File

@ -10,7 +10,7 @@ provides a bound for the size criterion.
\sa `MeshEdgeCriteria_3`
\sa `MeshCriteria_3`
\sa `Mesh_criteria_3<Tr>`
\sa `CGAL::Mesh_criteria_3<Tr>`
\sa `MeshDomainField_3`
*/

View File

@ -10,10 +10,7 @@ for the size criterion and/or
a uniform or variable distance field
for the approximation error criterion.
Parameters
--------------
The parameter `Tr` must be identical to the nested type
\tparam Tr must be identical to the nested type
`Triangulation` of the instance used as model of
`MeshComplex_3InTriangulation_3`.
@ -22,7 +19,7 @@ The parameter `Tr` must be identical to the nested type
\sa `CGAL::Mesh_facet_topology`
\sa `MeshCriteria_3`
\sa `MeshFacetCriteria_3`
\sa `Mesh_criteria_3<Tr>`
\sa `CGAL::Mesh_criteria_3<Tr>`
\sa `MeshDomainField_3`
\sa `CGAL::make_mesh_3`

View File

@ -8,10 +8,7 @@ as `PolyhedronItems_3` a customized type which adds data to the Vertex, Face and
Halfedge class. Those data are required to use our sharp features
detection algorithm.
Parameters
--------------
Template parameter `IGT` stands for the geometric traits associated
\tparam IGT stands for the geometric traits associated
to the meshing process. It should be a model of the two concepts
`PolyhedronTraits_3` and `IntersectionGeometricTraits_3`.

View File

@ -6,12 +6,9 @@ namespace CGAL {
The class `Mesh_triangulation_3` provides a default triangulation to be used as the 3D
triangulation of a mesh generation process.
Parameters
--------------
\tparam MD stands for a model of `MeshDomain_3`.
Template parameter `MD` stands for a model of `MeshDomain_3`.
Template parameter `Gt` stands for a model of `RegularTriangulationTraits_3`
\tparam Gt stands for a model of `RegularTriangulationTraits_3`
and defaults to `Kernel_traits<MD>::Kernel`.
\sa `CGAL::make_mesh_3`

View File

@ -7,18 +7,16 @@ The class `Mesh_vertex_base_3` is a model of the concept `MeshVertexBase_3`.
It is designed to serve as vertex base class for the 3D triangulation
used in a 3D mesh generation process.
Parameters
--------------
The template parameter `MD` provides the types of indices
\tparam MD provides the types of indices
used to identify
the faces of the input complex. It must be a model
of the concept `MeshDomain_3`.
The template parameter `Gt` is the geometric traits class.
\tparam Gt is the geometric traits class.
It must be a model of the concept `RegularTriangulationTraits_3`.
The third parameter `Vb` is the vertex base class. It has to be a model
\tparam Vb is the vertex base class. It has to be a model
of the concept `TriangulationVertexBase_3` and defaults to
`Triangulation_vertex_base_3<Gt>`.

View File

@ -8,21 +8,19 @@ a domain whose boundary is a simplicial polyhedral surface.
This surface must be closed and free of intersection.
This class is a model of the concept `MeshDomain_3`.
Parameters
--------------
The parameter `Polyhedron` stands for the type of the input polyhedral surface.
\tparam Polyhedron stands for the type of the input polyhedral surface.
The only requirements for this type is that the triangles of the surfaces
must be accessible through an object of the class
`TriangleAccessor`.
The parameter `IGT` stands for a geometric traits class
\tparam IGT stands for a geometric traits class
providing the types and functors required to implement
the intersection tests and intersection computations
for polyhedral boundary surfaces. This parameter has to be instantiated
with a model of the concept `IntersectionGeometricTraits_3`.
The parameter `TriangleAccessor` provides access to the triangles
\tparam TriangleAccessor provides access to the triangles
of the input polyhedral
surface. It must be a model of the concept
`TriangleAccessor_3`. It defaults to

View File

@ -10,10 +10,8 @@ It is a model of the concept `MeshDomainWithFeatures_3`. It also
provides a member function to automatically detect sharp features from
the input polyhedral surface.
Parameters
--------------
The parameter `IGT` stands for a geometric traits class providing the types
\tparam IGT stands for a geometric traits class providing the types
and functors required to implement the intersection tests and intersection computations
for polyhedral boundary surfaces. This parameter has to be
instantiated with a model of the concept `IntersectionGeometricTraits_3`.

View File

@ -11,10 +11,8 @@ template `template<typename Polyhedron, typename K>
Triangle_accessor_3<Polyhedron, K>`. One may give another partial
specialization of this class to handle one's own polyhedron data structure.
Parameters
--------------
The template parameter `K` is the geometric traits class.
\tparam K is the geometric traits class.
\models ::TriangleAccessor_3

View File

@ -12,10 +12,8 @@ the quality of the mesh improves.
\pre `time_limit` \f$ \geq\f$ 0 and 0 \f$ \leq\f$ `sliver_bound` \f$ \leq\f$ 180
Parameters
--------------
Parameter `C3T3` is required to be a model of the concept
\tparam C3T3 is required to be a model of the concept
`MeshComplex_3InTriangulation_3`.
The argument `c3t3`, passed by
reference, provides the initial mesh
@ -49,12 +47,12 @@ incident to some vertices.
Return Values
--------------
The function `exude_mesh_3` returns a value of type `Mesh_optimization_return_code`
The function `exude_mesh_3` returns a value of type `CGAL::Mesh_optimization_return_code`
which is:
<UL>
<LI>`BOUND_REACHED` when the targeted bound for the smallest dihedral angle in the mesh is reached.
<LI>`TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`CANT_IMPROVE_ANYMORE` when exudation process stops because it can no longer improve
<LI>`CGAL::BOUND_REACHED` when the targeted bound for the smallest dihedral angle in the mesh is reached.
<LI>`CGAL::TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`CGAL::CANT_IMPROVE_ANYMORE` when exudation process stops because it can no longer improve
the smallest dihedral angle of the set of cells incident to some vertex in the mesh.
</UL>
@ -62,10 +60,9 @@ Example
--------------
\code{.cpp}
// Exude without sliver_bound, using at most 10s CPU time
exude_mesh_3(c3t3, parameters::time_limit=10);
exude_mesh_3(c3t3,
parameters::time_limit=10);
\endcode
\sa `CGAL::Mesh_optimization_return_code`

View File

@ -22,17 +22,14 @@ representation of the domain boundaries.
\pre `time_limit` \f$ \geq\f$ 0 and 0 \f$ \leq\f$ `convergence` \f$ \leq\f$ 1 and 0 \f$ \leq\f$ `freeze_bound` \f$ \leq\f$ 1
Parameters
--------------
Parameter `C3T3` is required to be a model of the concept
\tparam C3T3 is required to be a model of the concept
`MeshComplex_3InTriangulation_3`.
The argument `c3t3`, passed by
reference, provides the initial mesh
and is modified by the algorithm
to represent the final optimized mesh.
Parameter `MeshDomain_3` is required to be a model of the concept
\tparam MeshDomain_3 is required to be a model of the concept
`MeshDomain_3`. The argument `domain` must be the `MeshDomain_3`
object used to create the `c3t3` parameter.
@ -67,12 +64,12 @@ moves, unfreezes all its incident vertices.
Return Values
--------------
The function `lloyd_optimize_mesh_3` returns a value of type `Mesh_optimization_return_code`
The function `lloyd_optimize_mesh_3` returns a value of type `CGAL::Mesh_optimization_return_code`
which is:
<UL>
<LI>`TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`MAX_ITERATION_NUMBER_REACHED` when `lloyd_optimize_mesh_3` stops because it has performed `max_iteration_number` iterations.
<LI>`CONVERGENCE_REACHED` when `lloyd_optimize_mesh_3` stops because the convergence criterion
<LI>`CGAL::TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`CGAL::MAX_ITERATION_NUMBER_REACHED` when `lloyd_optimize_mesh_3` stops because it has performed `max_iteration_number` iterations.
<LI>`CGAL::CONVERGENCE_REACHED` when `lloyd_optimize_mesh_3` stops because the convergence criterion
is achieved.
</UL>
@ -80,11 +77,12 @@ Example
--------------
\code{.cpp}
// Lloyd-smoothing until convergence reaches 0.01, freezing vertices which
// move less than 0.001*shortest_incident_edge_length
lloyd_optimize_mesh_3(c3t3, domain, parameters::convergence=0.01,
parameters::freeze_bound=0.001);
lloyd_optimize_mesh_3(c3t3,
domain,
parameters::convergence=0.01,
parameters::freeze_bound=0.001);
\endcode

View File

@ -29,13 +29,10 @@ The function outputs the mesh to an object which provides iterators to
traverse the resulting mesh data structure or can be written to a file
(see \ref Mesh_3_section_examples ).
Parameters
--------------
Parameter `C3T3` is required to be a model of
\tparam C3T3 is required to be a model of
the concept
`MeshComplex_3InTriangulation_3`. This is the return type.
The type `C3T3` is in particular required to provide a nested type
`C3T3::Triangulation` for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the
@ -43,7 +40,7 @@ triangulation `C3T3::Triangulation` are required to be models of the
concepts `MeshVertexBase_3` and `MeshCellBase_3`
respectively.
Template parameter `MeshDomain_3` is required to be a model of
\tparam MeshDomain_3 is required to be a model of
the concept `MeshDomain_3`, or of the refined concept
`MeshDomainWithFeatures_3`
if the domain has corners and curve segments that need to be accurately represented in the mesh.
@ -51,6 +48,20 @@ The argument `domain`
is the sole link through which the domain
to be discretized is known by the mesh generation algorithm.
\tparam MeshCriteria has to be a model of the concept
`MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3` if the domain has exposed features.
The argument `criteria` of
type `MeshCriteria` specifies the
size and shape requirements for mesh tetrahedra
and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements
satisfy those criteria at the end of the refinement process.
In addition, if the domain has features, the argument
`criteria` provides a sizing field to guide the discretization
of \f$ 1\f$-dimensional exposed features.
The parameter `features` allows
the user to specify if \f$ 0\f$ and \f$ 1\f$-dimensional features actually have to be
taken into account or not
@ -66,18 +77,6 @@ if parameter `features` is not specified.
of \f$ 0\f$ and \f$ 1\f$-dimensional features in the mesh.
</UL>
The template parameter `MeshCriteria` has to be a model of the concept
`MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3` if the domain has exposed features.
The argument `criteria` of
type `MeshCriteria` specifies the
size and shape requirements for mesh tetrahedra
and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements
satisfy those criteria at the end of the refinement process.
In addition, if the domain has features, the argument
`criteria` provides a sizing field to guide the discretization
of \f$ 1\f$-dimensional exposed features.
The four additional parameters are optimization parameters.
They control which optimization processes are performed
and allow the user to tune the parameters of the optimization processes.

View File

@ -21,17 +21,14 @@ representation of the domain boundaries.
\pre `time_limit` \f$ \geq\f$ 0 and 0 \f$ \leq\f$ `convergence` \f$ \leq\f$ 1 and 0 \f$ \leq\f$ `freeze_bound` \f$ \leq\f$ 1
Parameters
--------------
Parameter `C3T3` is required to be a model of the concept
\tparam C3T3 is required to be a model of the concept
`MeshComplex_3InTriangulation_3`.
The argument `c3t3`, passed by
reference, provides the initial mesh
and is modified by the algorithm
to represent the final optimized mesh.
Parameter `MeshDomain_3` is required to be a model of the concept
\tparam MeshDomain_3 is required to be a model of the concept
`MeshDomain_3`. The argument `domain` must be the `MeshDomain_3`
object used to create the `c3t3` parameter.
@ -67,12 +64,12 @@ moves, unfreezes the neighboring vertices.
Return Values
--------------
The function `odt_optimize_mesh_3` returns a value of type `Mesh_optimization_return_code`
The function `odt_optimize_mesh_3` returns a value of type `CGAL::Mesh_optimization_return_code`
which is:
<UL>
<LI>`TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`MAX_ITERATION_NUMBER_REACHED` when `odt_optimize_mesh_3` stops because it has performed `max_iteration_number` iterations.
<LI>`CONVERGENCE_REACHED` when `odt_optimize_mesh_3` stops because the convergence criterion
<LI>`CGAL::TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`CGAL::MAX_ITERATION_NUMBER_REACHED` when `odt_optimize_mesh_3` stops because it has performed `max_iteration_number` iterations.
<LI>`CGAL::CONVERGENCE_REACHED` when `odt_optimize_mesh_3` stops because the convergence criterion
is achieved.
</UL>
@ -80,11 +77,11 @@ Example
--------------
\code{.cpp}
// 100 iterations of Odt-smoothing
odt_optimize_mesh_3(c3t3, domain, parameters::max_iteration_number=100,
parameters::convergence=0);
odt_optimize_mesh_3(c3t3,
domain,
parameters::max_iteration_number = 100,
parameters::convergence = 0);
\endcode
\sa `CGAL::Mesh_optimization_return_code`

View File

@ -16,17 +16,14 @@ The perturber exits if this is not the case.
\pre `time_limit` \f$ \geq\f$ 0 and 0 \f$ \leq\f$ `sliver_bound` \f$ \leq\f$ 180
Parameters
--------------
Parameter `C3T3` is required to be a model of the concept
\tparam C3T3 is required to be a model of the concept
`MeshComplex_3InTriangulation_3`.
The argument `c3t3`, passed by
reference, provides the initial mesh
and is modified by the algorithm
to represent the final optimized mesh.
Parameter `MeshDomain_3` is required to be a model of the concept
\tparam MeshDomain_3 is required to be a model of the concept
`MeshDomain_3`. The argument `domain` must be the `MeshDomain_3`
object used to create the `c3t3` parameter.
@ -55,23 +52,23 @@ steps are successful.
Return Values
--------------
The function `perturb_mesh_3` returns a value of type `Mesh_optimization_return_code`
The function `perturb_mesh_3` returns a value of type `CGAL::Mesh_optimization_return_code`
which is:
<UL>
<LI>`BOUND_REACHED` when the targeted bound for the smallest dihedral angle in the mesh is reached.
<LI>`TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`CANT_IMPROVE_ANYMORE` when the perturbation process stops because the last step is unsuccessful.
<LI>`CGAL::BOUND_REACHED` when the targeted bound for the smallest dihedral angle in the mesh is reached.
<LI>`CGAL::TIME_LIMIT_REACHED` when the time limit is reached.
<LI>`CGAL::CANT_IMPROVE_ANYMORE` when the perturbation process stops because the last step is unsuccessful.
</UL>
Example
--------------
\code{.cpp}
// Perturb until every dihedral angle of the mesh is >= 10 degrees
// No time bound is set
perturb_mesh_3(c3t3, domain, parameters::sliver_bound=10);
perturb_mesh_3(c3t3,
domain,
parameters::sliver_bound = 10);
\endcode
\sa `CGAL::Mesh_optimization_return_code`

View File

@ -27,10 +27,13 @@ is further refined afterward.
\attention The function template `refine_mesh_3` may be used to refine a previously
computed mesh, e.g.:
\code{.cpp}
C3T3 c3t3 = CGAL::make_mesh_3<C3T3>(domain,criteria);
CGAL::refine_mesh_3(c3t3, domain, new_criteria);
\endcode
Please note that we guarantee the result if and only if the domain does
not change from one refinement to the next one.
@ -170,11 +173,15 @@ Example
--------------
\code{.cpp}
// Mesh generation with an exudation step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::exude());
refine_mesh_3(c3t3, domain, criteria, parameters::exude(parameters::time_limit=10));
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::exude());
refine_mesh_3(c3t3,
domain,
criteria,
parameters::exude(parameters::time_limit=10));
\endcode
\sa `CGAL::no_exude`
@ -205,7 +212,7 @@ if domain is a model of the refined concept `MeshDomainWithFeatures_3`.
\sa `CGAL::parameters::no_features`
*/
parameters::interal::Features_options features(MeshDomain_3 domain);
parameters::internal::Features_options features(MeshDomain_3 domain);
/*!
\ingroup PkgMesh_3Parameters
@ -227,10 +234,15 @@ Example
--------------
\code{.cpp}
// Mesh generation with lloyd optimization step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::lloyd());
refine_mesh_3(c3t3, domain, criteria, parameters::lloyd(parameters::time_limit=10));
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::lloyd());
refine_mesh_3(c3t3,
domain,
criteria,
parameters::lloyd(parameters::time_limit=10));
\endcode
@ -256,10 +268,10 @@ Example
--------------
\code{.cpp}
// Mesh generation without exudation
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_exude());
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::no_exude());
\endcode
\sa `CGAL::parameters::exude`
@ -300,10 +312,10 @@ Example
--------------
\code{.cpp}
// Mesh generation without lloyd optimization
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_lloyd());
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::no_lloyd());
\endcode
\sa `CGAL::parameters::lloyd`
@ -324,10 +336,10 @@ Example
--------------
\code{.cpp}
// Mesh generation without odt optimization
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_odt());
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::no_odt());
\endcode
\sa `CGAL::parameters::odt`
@ -353,10 +365,10 @@ Example
--------------
\code{.cpp}
// Mesh generation without perturbation
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_perturb());
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::no_perturb());
\endcode
\sa `CGAL::parameters::perturb`
@ -387,11 +399,15 @@ Example
--------------
\code{.cpp}
// Mesh generation with odt optimization step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::odt());
refine_mesh_3(c3t3, domain, criteria, parameters::odt(parameters::time_limit=10));
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::odt());
refine_mesh_3(c3t3,
domain,
criteria,
parameters::odt(parameters::time_limit=10));
\endcode
\sa `CGAL::no_odt`
@ -426,10 +442,15 @@ Example
--------------
\code{.cpp}
// Mesh generation with a perturbation step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::perturb());
refine_mesh_3(c3t3, domain, criteria, parameters::perturb(parameters::time_limit=10));
C3t3 c3t3 = make_mesh_3<c3t3>(domain,
criteria,
parameters::perturb());
refine_mesh_3(c3t3,
domain,
criteria,
parameters::perturb(parameters::time_limit=10));
\endcode