mirror of https://github.com/CGAL/cgal
Merge pull request #8658 from MaelRL/Tr-Document_point-GF
Document `point()` in all triangulations
This commit is contained in:
commit
de1fb95d15
|
|
@ -201,6 +201,18 @@ public:
|
|||
Returns the hyperbolic segment formed by the vertices of edge `e`.
|
||||
*/
|
||||
Hyperbolic_segment hyperbolic_segment(const Edge& e) const;
|
||||
|
||||
/*!
|
||||
Returns the hyperbolic point given by the finite vertex `vh`.
|
||||
*/
|
||||
Point point(const Vertex_handle vh) const;
|
||||
|
||||
/*!
|
||||
Returns the point given by vertex `i` of face `fh`.
|
||||
\pre `t.dimension()` \f$ \geq0\f$ and \f$ i \in\{0,1,2\}\f$ in dimension 2, \f$ i \in\{0,1\}\f$ in dimension 1, \f$ i = 0\f$ in dimension 0, and the vertex is finite.
|
||||
*/
|
||||
Point point(const Face_handle fh, const int i) const;
|
||||
|
||||
///@}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -740,6 +740,32 @@ public:
|
|||
Hyperbolic_segment segment(const Edge& e) const { return hyperbolic_segment(e); }
|
||||
Hyperbolic_segment segment(const Edge_circulator& e) const { return hyperbolic_segment(e); }
|
||||
|
||||
const Point& point(const Vertex_handle vh) const
|
||||
{
|
||||
CGAL_precondition(!is_infinite(vh));
|
||||
return vh->point();
|
||||
}
|
||||
|
||||
const Point& point(const Face_handle fh, const int i) const
|
||||
{
|
||||
CGAL_precondition(!is_infinite(fh->vertex(i)));
|
||||
CGAL_precondition(0 <= i && i <= 2);
|
||||
return fh->vertex(i)->point();
|
||||
}
|
||||
|
||||
Point& point(const Vertex_handle vh)
|
||||
{
|
||||
CGAL_precondition(!is_infinite(vh));
|
||||
return vh->point();
|
||||
}
|
||||
|
||||
Point& point(const Face_handle fh, const int i)
|
||||
{
|
||||
CGAL_precondition(!is_infinite(fh->vertex(i)));
|
||||
CGAL_precondition(0 <= i && i <= 2);
|
||||
return fh->vertex(i)->point();
|
||||
}
|
||||
|
||||
size_type number_of_vertices() const { return Base::number_of_vertices(); }
|
||||
Vertex_circulator adjacent_vertices(Vertex_handle v) const { return Vertex_circulator(v, *this); }
|
||||
|
||||
|
|
@ -825,32 +851,6 @@ public:
|
|||
}
|
||||
|
||||
public:
|
||||
const Point& point(const Vertex_handle vh) const
|
||||
{
|
||||
CGAL_precondition(!is_infinite(vh));
|
||||
return vh->point();
|
||||
}
|
||||
|
||||
const Point& point(const Face_handle fh, const int i) const
|
||||
{
|
||||
CGAL_precondition(!is_infinite(fh->vertex(i)));
|
||||
CGAL_precondition(0 <= i && i <= 2);
|
||||
return fh->vertex(i)->point();
|
||||
}
|
||||
|
||||
Point& point(const Vertex_handle vh)
|
||||
{
|
||||
CGAL_precondition(!is_infinite(vh));
|
||||
return vh->point();
|
||||
}
|
||||
|
||||
Point& point(const Face_handle fh, const int i)
|
||||
{
|
||||
CGAL_precondition(!is_infinite(fh->vertex(i)));
|
||||
CGAL_precondition(0 <= i && i <= 2);
|
||||
return fh->vertex(i)->point();
|
||||
}
|
||||
|
||||
bool is_valid()
|
||||
{
|
||||
if (!Base::is_valid())
|
||||
|
|
|
|||
|
|
@ -35,6 +35,9 @@
|
|||
|
||||
- Add a the non-zero rule, as well as functions to compute the conservative inner and outer hull of similar polygons.
|
||||
|
||||
### Triangulations
|
||||
- All triangulations now offer the functions `point(Vertex_handle)` and `point(Simplex, int)`, which enables users to access the geometric position of a vertex and of the i-th vertex of a simplex of a triangulation.
|
||||
|
||||
## [Release 6.0.1](https://github.com/CGAL/cgal/releases/tag/v6.0.1)
|
||||
|
||||
### [Poisson Surface Reconstruction](https://doc.cgal.org/6.0.1/Manual/packages.html#PkgPoissonSurfaceReconstruction3)
|
||||
|
|
|
|||
|
|
@ -579,7 +579,7 @@ public:
|
|||
|
||||
/*!
|
||||
Converts the `Periodic_point` `pp` (point-offset pair) to the
|
||||
corresponding `Point` in \f$ \mathbb R^3\f$.
|
||||
corresponding `Point` in \f$ \mathbb R^2\f$.
|
||||
*/
|
||||
Point point(const Periodic_point & pp ) const;
|
||||
|
||||
|
|
@ -593,6 +593,18 @@ public:
|
|||
*/
|
||||
Triangle triangle(const Periodic_triangle & t) const;
|
||||
|
||||
/*!
|
||||
Equivalent to
|
||||
the call `t.point(t.periodic_point(fh,i));`
|
||||
*/
|
||||
Point point(Face_handle fh, int i) const;
|
||||
|
||||
/*!
|
||||
Equivalent to
|
||||
the call `t.point(t.periodic_point(v));`
|
||||
*/
|
||||
Point point(Vertex_handle v) const;
|
||||
|
||||
/*!
|
||||
Equivalent to
|
||||
the call `t.segment(t.periodic_segment(f,i));`
|
||||
|
|
|
|||
|
|
@ -551,6 +551,24 @@ size_type number_of_stored_facets() const;
|
|||
/// `Periodic_triangle`, and `Periodic_tetrahedron`, which have inner type `Point`.
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
Converts the `Periodic_point` `pp` (point-offset pair) to the
|
||||
corresponding `Point` in \f$ \mathbb R^3\f$.
|
||||
*/
|
||||
Point point(const Periodic_point& pp) const;
|
||||
|
||||
/*!
|
||||
Equivalent to
|
||||
the call `t.point(t.periodic_point(v));`
|
||||
*/
|
||||
Point point(Vertex_handle v) const;
|
||||
|
||||
/*!
|
||||
Equivalent to
|
||||
the call `t.point(t.periodic_point(c,idx));`
|
||||
*/
|
||||
Point point(Cell_handle c, int idx) const;
|
||||
|
||||
/*!
|
||||
Returns the periodic point given by vertex `v`. If `t` is
|
||||
represented in the 1-sheeted covering space, the offset is always
|
||||
|
|
|
|||
|
|
@ -1192,6 +1192,18 @@ Returns the line segment corresponding to edge `*ei`.
|
|||
Segment
|
||||
segment(const Edge_iterator& ei) const;
|
||||
|
||||
/*!
|
||||
Returns the point given by vertex `i` of face `f`.
|
||||
\pre `t.dimension()` \f$ \geq0\f$ and \f$ i \in\{0,1,2\}\f$ in dimension 2, \f$ i \in\{0,1\}\f$ in dimension 1, \f$ i = 0\f$ in dimension 0, and the vertex is finite.
|
||||
*/
|
||||
const Point& point(Face_handle f, int i) const;
|
||||
|
||||
/*!
|
||||
Same as the previous method for vertex `v`.
|
||||
\pre `t.dimension()` \f$ \geq0\f$ and the vertex is finite.
|
||||
*/
|
||||
const Point& point(Vertex_handle v) const;
|
||||
|
||||
/*!
|
||||
Compute the circumcenter of the face pointed to by f. This function
|
||||
is available only if the corresponding function is provided in the
|
||||
|
|
|
|||
Loading…
Reference in New Issue