Merge branch 'gsoc2013-Visibility_doc-hemmer' of ssh://scm.cgal.org/var/git/cgal-gsoc into gsoc2013-Visibility_doc-hemmer

This commit is contained in:
Michael Hemmer 2014-06-19 19:00:26 +02:00
commit dedae8798c
5 changed files with 2637 additions and 0 deletions

View File

@ -0,0 +1,106 @@
// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Kan Huang <huangkandiy@gmail.com>
//
#ifndef CGAL_PREPROCESSED_VISIBILITY_2_H
#define CGAL_PREPROCESSED_VISIBILITY_2_H
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_linear_traits_2.h>
#include <stack>
#include <deque>
namespace CGAL {
template<class Arrangement_2>
class Preprocessed_visibility_2 {
public:
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
// Currently only consider with same type for both
typedef Arrangement_2 Input_Arrangement_2;
typedef Arrangement_2 Output_Arrangement_2;
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Kernel Kernel;
typedef typename CGAL::Arr_linear_traits_2<Kernel> Linear_traits_2;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Vector_2 Vector_2;
typedef typename Geometry_traits_2::FT Number_type;
typedef typename CGAL::Arrangement_2<Linear_traits_2> Line_Arrangement_2;
Preprocessed_visibility_2() : p_arr(NULL) {};
/*! Constructor given an arrangement and the Regularization tag. */
Preprocessed_visibility_2(Input_Arrangement_2& arr/*, Regularization_tag r_t*/): p_arr(&arr) {};
bool is_attached() {
return (p_arr != NULL);
}
void attach(Input_Arrangement_2& arr) {
p_arr = &arr;
}
void detach() {
p_arr = NULL;
}
Input_Arrangement_2 arr() {
return *p_arr;
}
void compute_visibility(const Point_2& q,
const Face_const_handle face,
Output_Arrangement_2& out_arr
) {
}
void compute_visibility(const Point_2& q,
const Halfedge_const_handle he,
Output_Arrangement_2& out_arr
) {
}
private:
Input_Arrangement_2* arr;
Line_Arrangement_2 line_arr;
void preprocess() {
}
Line_2 dual_line(const Point_2& p) {
return Line_2(p.x(), -1, -p.y());
}
};
} // namespace CGAL
#endif

View File

@ -0,0 +1,866 @@
// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Kan Huang <huangkandiy@gmail.com>
//
#ifndef CGAL_ROTATIONAL_SWEEP_VISIBILITY_2_H
#define CGAL_ROTATIONAL_SWEEP_VISIBILITY_2_H
#include <CGAL/Visibility_2/visibility_utils.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/bounding_box.h>
#include <boost/unordered_map.hpp>
namespace CGAL {
template<class Arrangement_2_ , class RegularizationTag = CGAL::Tag_true >
class Rotational_sweep_visibility_2 {
public:
typedef Arrangement_2_ Arrangement_2;
typedef typename Arrangement_2::Traits_2 Traits_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef typename Geometry_traits_2::Kernel K;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Vector_2 Vector_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typedef typename Geometry_traits_2::FT Number_type;
typedef typename Geometry_traits_2::Object_2 Object_2;
typedef RegularizationTag Regularization_tag;
typedef CGAL::Tag_true Supports_general_polygon_tag;
typedef CGAL::Tag_true Supports_simple_polygon_tag;
private:
typedef std::vector<Point_2> Points;
typedef Vertex_const_handle VH;
typedef std::vector<VH> VHs;
typedef Halfedge_const_handle EH;
typedef std::vector<EH> EHs;
class Less_edge: public std::binary_function<EH, EH, bool> {
const Geometry_traits_2* geom_traits;
public:
Less_edge() {}
Less_edge(const Geometry_traits_2* traits):geom_traits(traits) {}
bool operator() (const EH e1, const EH e2) const {
if (e1 == e2)
return false;
else {
return &(*e1)<&(*e2);
// if (e1->source() == e2->source())
// return Visibility_2::compare_xy_2(geom_traits, e1->target()->point(), e2->target()->point()) == SMALLER;
// else
// return Visibility_2::compare_xy_2(geom_traits, e1->source()->point(), e2->source()->point()) == SMALLER;
}
}
};
class Less_vertex: public std::binary_function<VH, VH, bool> {
const Geometry_traits_2* geom_traits;
public:
Less_vertex() {}
Less_vertex(const Geometry_traits_2* traits):geom_traits(traits) {}
bool operator() (const VH v1, const VH v2) const {
if (v1 == v2)
return false;
else
// I know this is dirty but it speeds up by 25%. Michael
return &(*v1)<&(*v2);
// return Visibility_2::compare_xy_2(geom_traits, v1->point(), v2->point()) == SMALLER;
}
};
class Closer_edge: public std::binary_function<EH, EH, bool> {
const Geometry_traits_2* geom_traits;
Point_2 q;
public:
Closer_edge() {}
Closer_edge(const Geometry_traits_2* traits, const Point_2& q):geom_traits(traits), q(q) {}
int vtype(const Point_2& c, const Point_2& p) const {
switch(Visibility_2::orientation_2(geom_traits, q, c, p)) {
case COLLINEAR:
if (Visibility_2::less_distance_to_point_2(geom_traits, q, c, p))
return 0;
else
return 3;
case RIGHT_TURN:
return 1;
case LEFT_TURN:
return 2;
}
}
bool operator() (const EH& e1, const EH& e2) const {
if (e1 == e2)
return false;
const Point_2& s1=e1->source()->point(),
t1=e1->target()->point(),
s2=e2->source()->point(),
t2=e2->target()->point();
if (e1->source() == e2->source()) {
int vt1 = vtype(s1, t1),
vt2 = vtype(s1, t2);
if (vt1 != vt2)
return vt1 > vt2;
else
return (Visibility_2::orientation_2(geom_traits, s1, t2, t1)==
Visibility_2::orientation_2(geom_traits, s1, t2, q));
}
if (e1->target() == e2->source()) {
// const Point_2& p1 = s1,
// p2 = t2,
// c = s2;
int vt1 = vtype(t1, s1),
vt2 = vtype(t1, t2);
if (vt1 != vt2)
return vt1 > vt2;
else
return (Visibility_2::orientation_2(geom_traits, s2, t2, s1)==
Visibility_2::orientation_2(geom_traits, s2, t2, q));
}
if (e1->source() == e2->target()) {
// const Point_2& p1 = t1,
// p2 = s2,
// c = s1;
int vt1 = vtype(s1, t1),
vt2 = vtype(s1, s2);
if (vt1 != vt2)
return vt1 > vt2;
else return (Visibility_2::orientation_2(geom_traits, s1, s2, t1)==
Visibility_2::orientation_2(geom_traits, s1, s2, q));
}
if (e1->target() == e2->target()) {
// const Point_2& p1 = s1,
// p2 = s2,
// c = t1;
int vt1 = vtype(t1, s1),
vt2 = vtype(t1, s2);
if (vt1 != vt2)
return vt1 > vt2;
else return (Visibility_2::orientation_2(geom_traits, t1, s2, s1)==
Visibility_2::orientation_2(geom_traits, t1, s2, q));
}
Orientation e1q = Visibility_2::orientation_2(geom_traits, s1, t1, q);
switch (e1q)
{
case COLLINEAR:
if (Visibility_2::collinear(geom_traits, q, s2, t2)) {
//q is collinear with e1 and e2.
return (Visibility_2::less_distance_to_point_2(geom_traits, q, s1, s2)
|| Visibility_2::less_distance_to_point_2(geom_traits, q, t1, t2));
}
else {
//q is collinear with e1 not with e2.
if (Visibility_2::collinear(geom_traits, s2, t2, s1))
return (Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, t1));
else
return (Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1));
}
case RIGHT_TURN:
switch (Visibility_2::orientation_2(geom_traits, s1, t1, s2)) {
case COLLINEAR:
return Visibility_2::orientation_2(geom_traits, s1, t1, t2)!=e1q;
case RIGHT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == LEFT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return false;
case LEFT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == RIGHT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return true;
}
case LEFT_TURN:
switch (Visibility_2::orientation_2(geom_traits, s1, t1, s2)) {
case COLLINEAR:
return Visibility_2::orientation_2(geom_traits, s1, t1, t2)!=e1q;
case LEFT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == RIGHT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return false;
case RIGHT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == LEFT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return true;
}
}
}
};
// Using hash_map or edx causes a seg fault, did not have the time to see why. Michael
// class Hash_edge: public std::unary_function<VH,typename boost::hash<const typename Arrangement_2::X_monotone_curve_2*>::result_type> {
// public:
// typename boost::hash<const typename Arrangement_2::X_monotone_curve_2*>::result_type
// operator() (const EH e1) const {
// return boost::hash<const typename Arrangement_2::X_monotone_curve_2*>()(&(e1->curve()));
// }
// };
const Geometry_traits_2 *geom_traits;
const Arrangement_2 *p_arr;
Point_2 q; //query point
Points polygon; //visibility polygon
std::map<VH, EHs, Less_vertex> incident_edges; //the edges that are
std::map<EH, int, Less_edge> edx; //index of active edges in the heap
// boost::unordered_map<EH,int,Hash_edge> edx; //index of active edges in the heap
std::set<EH, Closer_edge> active_edges; //a set of edges that intersect the current vision ray.
VHs vs; //angular sorted vertices
EHs bad_edges; //edges that pass the query point
VH cone_end1; //an end of visibility cone
VH cone_end2; //another end of visibility cone
int cone_end1_idx; //index of cone_end1->point() in visibility polygon
int cone_end2_idx; //index of cone_end2->point() in visibility polygon
bool is_vertex_query;
bool is_edge_query;
bool is_face_query;
bool is_big_cone; //whether the angle of visibility_cone is greater than pi.
public:
Rotational_sweep_visibility_2(): p_arr(NULL), geom_traits(NULL) {}
Rotational_sweep_visibility_2(const Arrangement_2& arr): p_arr(&arr) {
geom_traits = p_arr->geometry_traits();
}
const std::string name(){return std::string("R_visibility_2");}
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q, const Halfedge_const_handle e, VARR& arr_out) {
arr_out.clear();
bad_edges.clear();
this->q = q;
if (Visibility_2::compare_xy_2(geom_traits, q, e->target()->point())==EQUAL) {
is_vertex_query = true;
is_edge_query = false;
is_face_query = false;
cone_end1 = e->source();
cone_end2 = e->next()->target();
is_big_cone = CGAL::right_turn(cone_end1->point(), q, cone_end2->point());
typename Arrangement_2::Halfedge_around_vertex_const_circulator first, curr;
first = curr = e->target()->incident_halfedges();
do {
if (curr->face() == e->face())
bad_edges.push_back(curr);
else if (curr->twin()->face() == e->face())
bad_edges.push_back(curr->twin());
} while (++curr != first);
}
else {
is_vertex_query = false;
is_edge_query = true;
is_face_query = false;
cone_end1 = e->source();
cone_end2 = e->target();
bad_edges.push_back(e);
is_big_cone = false;
}
visibility_region_impl(e->face(), q);
//decide which inside of the visibility butterfly is needed.
int small_idx, big_idx;
if ( cone_end1_idx < cone_end2_idx ) {
small_idx = cone_end1_idx;
big_idx = cone_end2_idx;
}
else {
small_idx = cone_end2_idx;
big_idx = cone_end1_idx;
}
int next_idx = small_idx + 1;
bool is_between;
//indicate whether the shape between small_idx and big_idx is the visibility region required.
if (CGAL::right_turn(cone_end1->point(), q, cone_end2->point())) {
is_between = false;
while (next_idx != big_idx) {
if (CGAL::left_turn(cone_end1->point(), q, polygon[next_idx]) || CGAL::left_turn(q, cone_end2->point(), polygon[next_idx])) {
is_between = true;
break;
}
next_idx++;
}
}
else {
is_between = true;
while (next_idx != big_idx) {
if (CGAL::right_turn(cone_end1->point(), q, polygon[next_idx]) || CGAL::right_turn(q, cone_end2->point(), polygon[next_idx])) {
is_between = false;
break;
}
next_idx++;
}
}
typename Points::iterator first = polygon.begin() + small_idx;
typename Points::iterator last = polygon.begin() + big_idx;
if (is_between) {
Points polygon_out(first, last+1);
if (is_vertex_query)
polygon_out.push_back(q);
Visibility_2::report_while_handling_needles<Rotational_sweep_visibility_2>
(geom_traits, q, polygon_out, arr_out);
}
else {
Points polygon_out(polygon.begin(), first+1);
if (is_vertex_query) polygon_out.push_back(q);
for (int i = big_idx; i != polygon.size(); i++) {
polygon_out.push_back(polygon[i]);
}
Visibility_2::report_while_handling_needles<Rotational_sweep_visibility_2>
(geom_traits, q, polygon_out, arr_out);
}
conditional_regularize(arr_out, Regularization_tag());
if (arr_out.faces_begin()->is_unbounded())
return ++arr_out.faces_begin();
else
return arr_out.faces_begin();
}
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q, const Face_const_handle f, VARR& arr_out) {
arr_out.clear();
this->q = q;
is_vertex_query = false;
is_edge_query = false;
is_face_query = true;
visibility_region_impl(f, q);
Visibility_2::report_while_handling_needles<Rotational_sweep_visibility_2>(geom_traits, q, polygon, arr_out);
conditional_regularize(arr_out, Regularization_tag());
if (arr_out.faces_begin()->is_unbounded())
return ++arr_out.faces_begin();
else
return arr_out.faces_begin();
}
bool is_attached() {
return (p_arr != NULL);
}
void attach(const Arrangement_2& arr) {
p_arr = &arr;
geom_traits = p_arr->geometry_traits();
}
void detach() {
p_arr = NULL;
geom_traits = NULL;
}
const Arrangement_2& arr() {
return *p_arr;
}
private:
//get the neighbor of v along edge e
VH get_neighbor(const EH e, const VH v) {
if (e->source() == v)
return e->target();
else
return e->source();
}
//check whether ray(q->dp) intersects segment(p1, p2)
bool do_intersect_ray(const Point_2& q,
const Point_2& dp,
const Point_2& p1,
const Point_2& p2) {
return (CGAL::orientation(q, dp, p1) != CGAL::orientation(q, dp, p2) && CGAL::orientation(q, p1, dp) == CGAL::orientation(q, p1, p2));
}
//arrange vertices that on a same vision ray in a 'funnel' order
void funnel(int i, int j) {
VHs right, left;
//whether the edges incident to a vertex block the left side and right side of current vision ray.
bool block_left(false), block_right(false);
VH former = vs[i], nb;
for (int l=i; l<j; l++) {
bool left_v(false), right_v(false), has_predecessor(false);
EHs& edges = incident_edges[vs[l]];
for (int k=0; k<edges.size(); k++) {
nb = get_neighbor(edges[k], vs[l]);
if ( nb == former ) {
has_predecessor = true;
break;
}
if (CGAL::left_turn(q, vs[l]->point(), nb->point()))
left_v = true;
else
right_v = CGAL::right_turn(q, vs[l]->point(), nb->point());
}
if (has_predecessor) {
//if the current vertex connects to the vertex before by an edge,
//the vertex before can help it to block.
block_left = block_left || left_v;
block_right = block_right || right_v;
}
else {
block_left = left_v;
block_right = right_v;
}
if (block_left && block_right) {
//when both sides are blocked, there is no need to change the vertex after.
right.push_back(vs[l]);
break;
}
else {
if (block_left)
left.push_back(vs[l]);
else
right.push_back(vs[l]);
}
former = vs[l];
}
for (int l=0; l!=right.size(); l++)
vs[i+l] = right[l];
for (int l=0; l!=left.size(); l++)
vs[i+l+right.size()] = left[left.size()-1-l];
}
void visibility_region_impl(const Face_const_handle f, const Point_2& q) {
vs.clear();
polygon.clear();
active_edges = std::set<EH, Closer_edge>(Closer_edge(geom_traits, q));
incident_edges = std::map<VH, EHs, Less_vertex>(Less_vertex(geom_traits));
edx = std::map<EH, int, Less_edge>(Less_edge(geom_traits));
EHs relevant_edges; //all edges that can affect the visibility of query point.
Arrangement_2 bbox;
if (is_face_query)
input_face(f);
else
input_face(f, relevant_edges, bbox);
//the following code is the initiation of vision ray. the direction of the initial ray is between the direction
//from q to last vertex in vs and positive x-axis. By choosing this direction, we make
//sure that all plane is swept and there is not needle at the beginning of sweeping.
Vector_2 dir;
if (Direction_2(-1, 0) < Direction_2(Vector_2(q, vs.back()->point())))
dir = Vector_2(1, 0) + Vector_2(q, vs.back()->point());
else
dir = Vector_2(0, -1);
Point_2 dp = q + dir;
//initiation of active_edges. for face queries, all edges on the boundary can affect visibility.
//for non-face queries, only relevant_edges has to be considered.
if (is_face_query) {
Ccb_halfedge_const_circulator curr = f->outer_ccb();
Ccb_halfedge_const_circulator circ = curr;
do {
if (do_intersect_ray(q, dp, curr->target()->point(), curr->source()->point())) {
active_edges.insert(curr);
}
} while (++curr != circ);
typename Arrangement_2::Hole_const_iterator hi;
for (hi = f->holes_begin(); hi != f->holes_end(); ++hi) {
Ccb_halfedge_const_circulator curr = circ = *hi;
do {
if (do_intersect_ray(q, dp, curr->target()->point(), curr->source()->point()))
active_edges.insert(curr);
} while (++curr != circ);
}
}
else {
for (int i=0; i!=relevant_edges.size(); i++)
if (do_intersect_ray(q, dp, relevant_edges[i]->source()->point(), relevant_edges[i]->target()->point()))
active_edges.insert(relevant_edges[i]);
}
//angular sweep begins
// std::cout<<active_edges.size()<<std::endl;
for (int i=0; i!=vs.size(); i++) {
VH vh = vs[i];
EH closest_e = *active_edges.begin();
EHs& edges = incident_edges[vh];
EHs insert_ehs, remove_ehs;
for (int j=0; j!=edges.size(); j++) {
EH& e = edges[j];
if (active_edges.find(e) == active_edges.end())
insert_ehs.push_back(e);
else
remove_ehs.push_back(e);
}
int insert_cnt = insert_ehs.size();
int remove_cnt = remove_ehs.size();
if (insert_cnt == 1 && remove_cnt == 1) {
const EH& ctemp_eh = *active_edges.find(remove_ehs.front());
EH& temp_eh = const_cast<EH&>(ctemp_eh);
temp_eh = insert_ehs.front();
}
else {
for (int j=0; j!=remove_cnt; j++)
active_edges.erase(remove_ehs[j]);
for (int j=0; j!=insert_cnt; j++)
active_edges.insert(insert_ehs[j]);
}
if (closest_e != *active_edges.begin()) {
//when the closest edge changed
if (is_face_query) {
if (remove_cnt > 0 && insert_cnt > 0) {
//some edges are added and some are deleted, which means the vertex swept is part of visibility polygon.
update_visibility(vh->point());
}
if (remove_cnt == 0 && insert_cnt > 0) {
//only add some edges, means the view ray is blocked by new edges.
//therefore first add the intersection of view ray and former closet edge, then add the vertice swept.
update_visibility(ray_seg_intersection(q,
vh->point(),
closest_e->target()->point(),
closest_e->source()->point()));
update_visibility(vh->point());
}
if (remove_cnt > 0 && insert_cnt == 0) {
//only delete some edges, means some block is moved and the view ray can reach the segments after the block.
update_visibility(vh->point());
update_visibility(ray_seg_intersection(q,
vh->point(),
(*active_edges.begin())->target()->point(),
(*active_edges.begin())->source()->point()));
}
}
else {
//extra work here for edge/vertex query is the index of cone_end1 and cone_end2 will be recorded.
if (remove_cnt > 0 && insert_cnt > 0) {
//some edges are added and some are deleted, which means the vertice swept is part of visibility polygon.
if (update_visibility(vh->point())) {
if (vh == cone_end1)
cone_end1_idx = polygon.size()-1;
else if (vh == cone_end2)
cone_end2_idx = polygon.size()-1;
}
}
if (remove_cnt == 0 && insert_cnt > 0) {
//only add some edges, means the view ray is blocked by new edges.
//therefore first add the intersection of view ray and former closet edge, then add the vertice swept.
update_visibility(ray_seg_intersection(q,
vh->point(),
closest_e->target()->point(),
closest_e->source()->point()));
if (update_visibility(vh->point())) {
if (vh == cone_end1)
cone_end1_idx = polygon.size()-1;
else if (vh == cone_end2)
cone_end2_idx = polygon.size()-1;
}
}
if (remove_cnt > 0 && insert_cnt == 0) {
//only delete some edges, means some block is removed and the vision ray can reach the segments after the block.
if (update_visibility(vh->point())) {
if (vh == cone_end1)
cone_end1_idx = polygon.size()-1;
else if (vh == cone_end2)
cone_end2_idx = polygon.size()-1;
}
update_visibility(ray_seg_intersection(q,
vh->point(),
(*active_edges.begin())->target()->point(),
(*active_edges.begin())->source()->point()));
}
}
}
}
}
void print_edge(const EH e) {
std::cout<<e->source()->point()<<"->"<<e->target()->point()<<std::endl;
}
//compute the intersection of ray(q->dp) and segment(s, t)
//if they are collinear then return the endpoint which is closer to q.
Point_2 ray_seg_intersection(
const Point_2& q, const Point_2& dp, // the ray
const Point_2& s, const Point_2& t) // the segment
{
if (CGAL::collinear(q, dp, s)) {
if (CGAL::collinear(q, dp, t)) {
if (CGAL::compare_distance_to_point(q, s, t)==CGAL::SMALLER)
return s;
else
return t;
}
else
return s;
}
Ray_2 ray(q,dp);
Segment_2 seg(s,t);
CGAL::Object result = CGAL::intersection(ray, seg);
return *(CGAL::object_cast<Point_2>(&result));
}
//check if p has been discovered before, if not update the visibility polygon
bool update_visibility(const Point_2& p){
if (polygon.empty()) {
polygon.push_back(p);
return true;
}
else if (Visibility_2::compare_xy_2(geom_traits, polygon.back(), p) != EQUAL) {
polygon.push_back(p);
return true;
}
return false;
}
//functor to decide which vertex is swept earlier by the rotational sweeping ray
class Is_swept_earlier:public std::binary_function<VH, VH, bool> {
const Point_2& q;
const Geometry_traits_2* geom_traits;
public:
Is_swept_earlier(const Point_2& q, const Geometry_traits_2* traits):q(q), geom_traits(traits) {}
bool operator() (const VH v1, const VH v2) const {
const Point_2& p1 = v1->point();
const Point_2& p2 = v2->point();
int qua1 = quadrant(q, p1);
int qua2 = quadrant(q, p2);
if (qua1 < qua2)
return true;
if (qua1 > qua2)
return false;
if (collinear(q, p1, p2))
return (CGAL::compare_distance_to_point(q, p1, p2) == CGAL::SMALLER);
else
return CGAL::right_turn(p1, q, p2);
}
//return the quadrant of p with respect to o.
int quadrant(const Point_2& o, const Point_2& p) const {
typename Geometry_traits_2::Compare_x_2 compare_x = geom_traits->compare_x_2_object();
typename Geometry_traits_2::Compare_y_2 compare_y = geom_traits->compare_y_2_object();
Comparison_result dx = compare_x(p, o);
Comparison_result dy = compare_y(p, o);
if (dx==LARGER && dy!=SMALLER)
return 1;
if (dx!=LARGER && dy==LARGER)
return 2;
if (dx==SMALLER && dy!=LARGER)
return 3;
if (dx!=SMALLER && dy==SMALLER)
return 4;
return 0;
}
};
//when the query point is in face, every edge is good.
void input_neighbor_f( const Halfedge_const_handle e) {
VH v = e->target();
if (!incident_edges.count(v))
vs.push_back(v);
incident_edges[v].push_back(e);
incident_edges[v].push_back(e->next());
}
//check if p is in the visibility cone
bool is_in_cone(const Point_2& p) const{
if (is_big_cone)
return (!CGAL::right_turn(cone_end1->point(), q, p)) || (!CGAL::left_turn(cone_end2->point(), q, p));
else
return (!CGAL::right_turn(cone_end1->point(), q, p)) && (!CGAL::left_turn(cone_end2->point(), q, p));
}
//for vertex and edge query: the visibility is limited in a cone.
void input_edge(const Halfedge_const_handle e,
EHs& good_edges) {
for (int i=0; i<bad_edges.size(); i++)
if (e == bad_edges[i])
return;
VH v1 = e->target();
VH v2 = e->source();
//an edge will affect visibility only if it has an endpoint in the visibility cone or it crosses the boundary of the cone.
if (is_in_cone(v1->point()) || is_in_cone(v2->point()) || do_intersect_ray(q, cone_end1->point(), v1->point(), v2->point())) {
good_edges.push_back(e);
if (!incident_edges.count(v1))
vs.push_back(v1);
incident_edges[v1].push_back(e);
if (!incident_edges.count(v2))
vs.push_back(v2);
incident_edges[v2].push_back(e);
}
}
//for face query: traverse the face to get all edges
//and sort vertices in counter-clockwise order.
void input_face (Face_const_handle fh)
{
Ccb_halfedge_const_circulator curr = fh->outer_ccb();
Ccb_halfedge_const_circulator circ = curr;
do {
assert(curr->face() == fh);
input_neighbor_f(curr);
} while (++curr != circ);
typename Arrangement_2::Hole_const_iterator hi;
for (hi = fh->holes_begin(); hi != fh->holes_end(); ++hi) {
Ccb_halfedge_const_circulator curr = *hi, circ = *hi;
do {
assert(curr->face() == fh);
input_neighbor_f(curr);
} while (++curr != circ);
}
std::sort(vs.begin(), vs.end(), Is_swept_earlier(q, geom_traits));
for (int i=0; i!=vs.size(); i++) {
int j = i+1;
while (j != vs.size()) {
if (!CGAL::collinear(q, vs[i]->point(), vs[j]->point()))
break;
j++;
}
if (j-i>1)
funnel(i, j);
i = j-1;
}
}
//for vertex or edge query: traverse the face to get all edges
//and sort vertices in counter-clockwise order.
void input_face (Face_const_handle fh,
EHs& good_edges,
Arrangement_2& bbox)
{
Ccb_halfedge_const_circulator curr = fh->outer_ccb();
Ccb_halfedge_const_circulator circ = curr;
do {
assert(curr->face() == fh);
input_edge(curr, good_edges);
} while (++curr != circ);
typename Arrangement_2::Hole_const_iterator hi;
for (hi = fh->holes_begin(); hi != fh->holes_end(); ++hi) {
Ccb_halfedge_const_circulator curr = circ = *hi;
do {
assert(curr->face() == fh);
input_edge(curr, good_edges);
} while (++curr != circ);
}
//create a box that cover all vertices such that during the sweeping, the vision ray will always intersect at least an edge.
//this box doesn't intersect any relevant_edge.
Points points;
for (int i=0; i<vs.size(); i++) {
points.push_back(vs[i]->point());
}
points.push_back(q);
//first get the bounding box of all relevant points.
typename Geometry_traits_2::Iso_rectangle_2 bb = bounding_box(points.begin(), points.end());
Number_type xmin, xmax, ymin, ymax;
typename Geometry_traits_2::Compute_x_2 compute_x = geom_traits->compute_x_2_object();
typename Geometry_traits_2::Compute_y_2 compute_y = geom_traits->compute_y_2_object();
//make the box a little bigger than bb so that it won't intersect any relevant_edge.
xmin = compute_x(bb.min())-1;
ymin = compute_y(bb.min())-1;
xmax = compute_x(bb.max())+1;
ymax = compute_y(bb.max())+1;
Point_2 box[4] = {Point_2(xmin, ymin), Point_2(xmax, ymin),
Point_2(xmax, ymax), Point_2(xmin, ymax)};
Halfedge_handle e1 = bbox.insert_in_face_interior(Segment_2(box[0], box[1]), bbox.unbounded_face());
Halfedge_handle e2 = bbox.insert_from_left_vertex(Segment_2(box[1], box[2]), e1->target());
Halfedge_handle e3 = bbox.insert_from_right_vertex(Segment_2(box[2], box[3]), e2->target());
bbox.insert_at_vertices(Segment_2(box[0], box[3]), e1->source(), e3->target());
circ = curr = e1->face()->outer_ccb();
do {
VH v = curr->target();
vs.push_back(v);
incident_edges[v].push_back(curr);
incident_edges[v].push_back(curr->next());
good_edges.push_back(curr);
} while(++curr != circ);
std::sort(vs.begin(), vs.end(), Is_swept_earlier(q, geom_traits));
for (int i=0; i!=vs.size(); i++) {
int j = i+1;
while (j != vs.size()) {
if (!CGAL::collinear(q, vs[i]->point(), vs[j]->point()))
break;
j++;
}
if (j-i>1)
funnel(i, j);
i = j-1;
}
}
template <typename VARR>
void conditional_regularize(VARR& arr_out, CGAL::Tag_true) {
regularize_output(arr_out);
}
template <typename VARR>
void conditional_regularize(VARR& arr_out, CGAL::Tag_false) {
//do nothing
}
template <typename VARR>
void regularize_output(VARR& arr_out) {
typename VARR::Edge_iterator e_itr;
for (e_itr = arr_out.edges_begin();
e_itr != arr_out.edges_end();
e_itr++) {
if (e_itr->face() == e_itr->twin()->face())
arr_out.remove_edge(e_itr);
}
}
};
} // end namespace CGAL
#endif

View File

@ -0,0 +1,715 @@
// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$`
// $Id$
//
//
// Author(s): Francisc Bungiu <fbungiu@gmail.com>
// Michael Hemmer <michael.hemmer@cgal.org>
// Ning Xu <longyin0904@gmail.com>
#ifndef CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#define CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#include <CGAL/Arrangement_2.h>
#include <CGAL/tags.h>
#include <CGAL/enum.h>
#include <CGAL/Visibility_2/visibility_utils.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <stack>
#include <map>
namespace CGAL {
template<class Arrangement_2_, class RegularizationTag = CGAL::Tag_true>
class Simple_polygon_visibility_2 {
public:
// Currently only consider with same type for both
typedef Arrangement_2_ Arrangement_2;
typedef typename Arrangement_2::Traits_2 Traits_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Geometry_traits_2::Kernel K;
typedef typename Arrangement_2::Halfedge_const_handle
Halfedge_const_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef typename Arrangement_2::Halfedge_around_vertex_const_circulator
Halfedge_around_vertex_const_circulator;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Vector_2 Vector_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typedef typename Geometry_traits_2::FT Number_type;
typedef typename Geometry_traits_2::Object_2 Object_2;
typedef RegularizationTag Regularization_tag;
typedef CGAL::Tag_false Supports_general_polygon_tag;
typedef CGAL::Tag_true Supports_simple_polygon_tag;
Simple_polygon_visibility_2() : p_arr(NULL), geom_traits(NULL) {};
/*! Constructor given an arrangement and the Regularization tag. */
Simple_polygon_visibility_2(const Arrangement_2& arr):
p_arr(&arr) {
geom_traits = p_arr->geometry_traits();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
}
const std::string name(){return std::string("S_visibility_2");}
/*! Method to check if the visibility object is attached or not to
an arrangement*/
bool is_attached() {
return (p_arr != NULL);
}
/*! Attaches the visibility object to the 'arr' arrangement */
void attach(const Arrangement_2& arr) {
p_arr = &arr;
geom_traits = p_arr->geometry_traits();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
}
/*! Detaches the visibility object from the arrangement it is
attached to*/
void detach() {
p_arr = NULL;
geom_traits = NULL;
vertices.clear();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
p_cdt = boost::shared_ptr<CDT>();
}
/*! Getter method for the input arrangement*/
const Arrangement_2& arr() {
return *p_arr;
}
/*! Computes the visibility object from the query point 'q' in the face
'face' and constructs the output in 'out_arr'*/
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q,
const Face_const_handle face,
VARR& out_arr) {
assert(query_pt_is_vertex == false);
assert(query_pt_is_on_halfedge == false);
// Now retrieve the circulator to first visible vertex from triangulation
Ccb_halfedge_const_circulator circ = find_visible_start(face, q);
Ccb_halfedge_const_circulator curr = circ;
Halfedge_const_handle he;
do {
he = curr;
vertices.push_back(he->source()->point());
} while(++curr != circ);
vertices.push_back(vertices[0]);
visibility_region_impl(q);
typename std::vector<Point_2> points;
while (!s.empty()) {
Point_2 curr_point = s.top();
points.push_back(curr_point);
s.pop();
}
std::reverse(points.begin(), points.end());
CGAL::Visibility_2::report_while_handling_needles
<Simple_polygon_visibility_2>(geom_traits,
q,
points,
out_arr);
CGAL_precondition(out_arr.number_of_isolated_vertices() == 0);
CGAL_precondition(s.size() == 0);
conditional_regularize(out_arr, Regularization_tag());
vertices.clear();
if (out_arr.faces_begin()->is_unbounded()) {
return ++out_arr.faces_begin();
}
else {
return out_arr.faces_begin();
}
}
/*! Computes the visibility region of the query point 'q' located on the
halfedge 'he' and constructs the output in 'out_arr'*/
template <typename VARR>
typename VARR::Face_handle
compute_visibility(
const Point_2& q,
const Halfedge_const_handle he,
VARR& out_arr )
{
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
bool query_on_target = false;
if (q != he->source()->point()) {
if (q != he->target()->point()) {
vertices.push_back(he->target()->point());
query_pt_is_on_halfedge = true;
}
else {
query_pt_is_vertex = true;
query_on_target = true;
}
} else {
vertices.push_back( he->target()->point() );
query_pt_is_vertex = true;
}
Ccb_halfedge_const_circulator circ = he;
circ++;
Ccb_halfedge_const_circulator curr = circ;
do {
Halfedge_const_handle he_handle = curr;
Point_2 curr_vertex = he_handle->target()->point();
vertices.push_back(curr_vertex);
} while (++curr != circ);
if ( query_on_target ) {
vertices.push_back( vertices[0] );
}
visibility_region_impl(q);
typename std::vector<Point_2> points;
if (!s.empty()) {
Point_2 prev_pt = s.top();
if (prev_pt != q) {
points.push_back(prev_pt);
}
else if (query_pt_is_vertex) {
points.push_back(prev_pt);
}
if (!s.empty()) {
s.pop();
}
while(!s.empty()) {
Point_2 curr_pt = s.top();
if (curr_pt != q) {
points.push_back(curr_pt);
}
else if (query_pt_is_vertex) {
points.push_back(curr_pt);
}
s.pop();
}
}
std::reverse(points.begin(), points.end());
CGAL::Visibility_2::report_while_handling_needles
<Simple_polygon_visibility_2>(geom_traits,
q,
points,
out_arr);
CGAL_precondition(out_arr.number_of_isolated_vertices() == 0);
CGAL_precondition(s.size() == 0);
conditional_regularize(out_arr, Regularization_tag());
vertices.clear();
if (out_arr.faces_begin()->is_unbounded()) {
return ++out_arr.faces_begin();
}
else {
return out_arr.faces_begin();
}
}
private:
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Constrained_triangulation_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::No_intersection_tag Itag;
typedef CGAL::Constrained_triangulation_2<K, TDS, Itag> CDT;
private:
const Arrangement_2 *p_arr;
/*! Boost pointer to the constrained Delaunay triangulation object*/
boost::shared_ptr<CDT> p_cdt;
/*! Mapping of the vertices of the input to the corresponding circulator
needed for finding the first visible vertex in case of face queries*/
std::map<Point_2, typename Arrangement_2::Ccb_halfedge_const_circulator>
point_itr_map;
const Geometry_traits_2 *geom_traits;
/*! Stack of visibile points; manipulated when going through the sequence
of input vertices; contains the vertices of the visibility region after
the run of the algorithm*/
std::stack<Point_2> s;
/*! Sequence of input vertices*/
std::vector<Point_2> vertices;
/*! State of visibility region algorithm*/
enum {LEFT, RIGHT, SCANA, SCANB, SCANC, SCAND, FINISH} upcase;
bool query_pt_is_vertex;
bool query_pt_is_on_halfedge;
/*! Regularize output if flag is set to true*/
template <typename VARR>
void conditional_regularize(VARR& out_arr, CGAL::Tag_true) {
regularize_output(out_arr);
}
/*! No need to regularize output if flag is set to false*/
template <typename VARR>
void conditional_regularize(VARR& out_arr, CGAL::Tag_false) {
//do nothing
}
/*! Regularizes the output - removes edges that have the same face on both
sides */
template <typename VARR>
void regularize_output(VARR& out_arr) {
typename VARR::Edge_iterator e_itr;
for (e_itr = out_arr.edges_begin() ;
e_itr != out_arr.edges_end() ; e_itr++) {
typename VARR::Halfedge_handle he = e_itr;
typename VARR::Halfedge_handle he_twin = he->twin();
if (he->face() == he_twin->face()) {
out_arr.remove_edge(he);
}
}
}
/*! Initialized the constrained Delaunay triangulation using the edges of
the outer boundary of 'face' */
void init_cdt(const Face_const_handle &face) {
std::vector<std::pair<Point_2,Point_2> > constraints;
typename Arrangement_2::Ccb_halfedge_const_circulator circ =
face->outer_ccb();
typename Arrangement_2::Ccb_halfedge_const_circulator curr = circ;
typename Arrangement_2::Halfedge_const_handle he;
do {
he = curr;
Point_2 source = he->source()->point();
Point_2 target = he->target()->point();
point_itr_map.insert(std::make_pair(source, curr));
constraints.push_back(std::make_pair(source,target));
} while(++curr != circ);
p_cdt = boost::shared_ptr<CDT>(new CDT(constraints.begin(),constraints.end()));
}
/*! Finds a visible vertex from the query point 'q' in 'face'
to start the algorithm from*/
Ccb_halfedge_const_circulator find_visible_start(Face_const_handle face, const Point_2 &q) {
init_cdt(face);
typename CDT::Face_handle fh = p_cdt->locate(q);
Point_2 start_point = fh->vertex(0)->point();
// Now retrieve the circulator to first visible vertex from triangulation
Ccb_halfedge_const_circulator circ = point_itr_map[start_point];
Halfedge_const_handle he_curr = circ;
Halfedge_around_vertex_const_circulator incident_circ = he_curr->source()->incident_halfedges();
Halfedge_around_vertex_const_circulator incident_curr = incident_circ;
do {
Ccb_halfedge_const_circulator curr_inc = incident_curr;
Halfedge_const_handle he_curr_inc = curr_inc;
if (he_curr_inc->face() == face) {
Ccb_halfedge_const_circulator incident_next = incident_curr;
incident_next++;
Halfedge_const_handle he_next_inc = incident_next;
if (CGAL::Visibility_2::orientation_2(geom_traits,
he_curr_inc->source()->point(),
he_curr_inc->target()->point(),
q) == CGAL::LEFT_TURN
|| CGAL::Visibility_2::orientation_2(geom_traits,
he_next_inc->source()->point(),
he_next_inc->target()->point(),
q) == CGAL::LEFT_TURN) {
Ccb_halfedge_const_circulator result_circ = incident_next;
Halfedge_const_handle he_print = result_circ;
return result_circ;
}
}
} while (++incident_curr != incident_circ);
}
/*! Main method of the algorithm - initializes the stack and variables
and calles the corresponding methods acc. to the algorithm's state;
'q' - query point;
'i' - current vertex' index
'w' - endpoint of ray shot from query point */
void visibility_region_impl(const Point_2& q) {
int i = 0;
Point_2 w;
CGAL::Orientation orient = CGAL::Visibility_2::orientation_2(geom_traits,
q,
vertices[0],
vertices[1]);
if ( orient != CGAL::RIGHT_TURN ) {
upcase = LEFT;
i = 1;
w = vertices[1];
s.push(vertices[0]);
s.push(vertices[1]);
}
else {
upcase = SCANA;
i = 1;
w = vertices[1];
s.push(vertices[0]);
}
Ray_2 ray_origin( q, vertices[0] );
do {
switch(upcase) {
case LEFT:
left(i, w, q);
break;
case RIGHT:
right(i, w, q);
break;
case SCANA:
scana(i, w, q);
break;
case SCANB:
scanb(i, w, q);
break;
case SCANC:
scanc(i, w, q);
break;
case SCAND:
scand(i, w, q);
break;
}
if ( upcase == LEFT ) {
Point_2 s_t = s.top();
s.pop();
if ( ( CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, q, vertices[0], s.top() ) == CGAL::RIGHT_TURN ) &&
( CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, q, vertices[0],s_t ) == CGAL::LEFT_TURN ) ) {
Segment_2 seg( s.top(), s_t );
if ( CGAL::Visibility_2::do_intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
( geom_traits, seg, ray_origin ) ) {
Object_2 result = CGAL::Visibility_2::intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
( geom_traits, seg, ray_origin );
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
assert( ipoint != NULL );
s_t = *ipoint;
upcase = SCANB;
}
}
s.push( s_t );
}
} while(upcase != FINISH);
}
/*! Method that handles the left turns in the vertex algorithm */
void left(int& i, Point_2& w, const Point_2& query_pt) {
if (i >= vertices.size() - 1) {
upcase = FINISH;
}
else {
Point_2 s_t = s.top();
s.pop();
Point_2 s_t_prev = s.top();
s.push( s_t );
CGAL::Orientation orient1 = CGAL::Visibility_2::orientation_2
<Geometry_traits_2>
( geom_traits,
query_pt,
vertices[i],
vertices[i+1] );
if ( orient1 != CGAL::RIGHT_TURN ) {
// Case L2
upcase = LEFT;
s.push( vertices[i+1] );
w = vertices[i+1];
i++;
} else {
CGAL::Orientation orient2 = CGAL::Visibility_2::orientation_2
<Geometry_traits_2>
( geom_traits,
s_t_prev,
vertices[i],
vertices[i+1] );
if ( orient2 == CGAL::RIGHT_TURN ) {
// Case L3
upcase = SCANA;
w = vertices[i+1];
i++;
} else {
// Case L4
upcase = RIGHT;
w = vertices[i];
i++;
}
}
}
}
/*! Scans the stack such that all vertices that were pushed before to the
stack and are now not visible anymore. */
void right(int& i, Point_2& w, const Point_2& query_pt) {
Point_2 s_j;
Point_2 s_j_prev;
Point_2 u;
int mode = 0;
CGAL::Orientation orient1, orient2;
s_j_prev = s.top();
orient2 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, query_pt, s_j_prev, vertices[i] );
while ( s.size() > 1 ) {
s_j = s_j_prev;
orient1 = orient2;
s.pop();
s_j_prev = s.top();
orient2 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, query_pt, s_j_prev, vertices[i] );
if ( orient1 != CGAL::LEFT_TURN && orient2 != CGAL::RIGHT_TURN ) {
mode = 1;
break;
}
Segment_2 seg2( vertices[i-1], vertices[i] );
Segment_2 seg( s_j_prev, s_j );
if ( ( vertices[i-1] != s_j )
&& ( CGAL::Visibility_2::do_intersect_2
<Geometry_traits_2, Segment_2, Segment_2>
(geom_traits, seg, seg2) ) ) {
Object_2 result = CGAL::Visibility_2::intersect_2
<Geometry_traits_2, Segment_2, Segment_2>( geom_traits, seg, seg2 );
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
assert( ipoint != NULL );
u = *ipoint;
mode = 2;
break;
}
}
assert( mode != 0 );
if ( mode == 1 ) {
orient1 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, query_pt, vertices[i], vertices[i+1] );
orient2 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, vertices[i-1], vertices[i], vertices[i+1] );
if ( orient1 == CGAL::RIGHT_TURN ) {
// Case R1
// Since the next action is RIGHT, we do not compute the intersection
// of (s_j,s_j_prev) and the ray (query_pt, vertices[i]),
// thus, (s_j,s_j_prev) is not shortcutted, but it is harmless
upcase = RIGHT;
s.push( s_j );
w = vertices[i];
i++;
} else if ( orient2 == CGAL::RIGHT_TURN ) {
// Case R2
Ray_2 ray( query_pt, vertices[i] );
Segment_2 seg( s_j_prev, s_j );
Object_2 result = CGAL::Visibility_2::intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
( geom_traits, seg, ray );
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
assert( ipoint != NULL );
u = *ipoint;
if ( s.top() != u ) {
s.push( u );
}
upcase = LEFT;
s.push( vertices[i] );
s.push( vertices[i+1] );
w = vertices[i+1];
i++;
} else {
// Case R3
Ray_2 ray( query_pt, vertices[i] );
Segment_2 seg( s_j_prev, s_j );
Object_2 result = CGAL::Visibility_2::intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
( geom_traits, seg, ray );
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
assert( ipoint != NULL );
u = *ipoint;
if ( s.top() != u ) {
s.push( u );
}
upcase = SCANC;
w = vertices[i];
i++;
}
} else if ( mode == 2 ) {
// Case R4
upcase = SCAND;
w = u;
}
}
/*! Scans the vertices starting from index 'i' for the first visible vertex
out of the back hidden window */
void scana(int& i, Point_2& w, const Point_2& query_pt) {
// Scan v_i, v_i+1, ..., v_n for the first edge to intersect (z, s_t)
Point_2 u;
int k = scan_edges( i, query_pt, s.top(), u, true );
CGAL::Orientation orient1 = CGAL::Visibility_2::orientation_2
<Geometry_traits_2>
( geom_traits,
query_pt,
vertices[k],
vertices[k+1] );
if ( orient1 == CGAL::RIGHT_TURN ) {
bool fwd = CGAL::Visibility_2::collinear_are_ordered_along_line_2
<Geometry_traits_2>
( geom_traits, query_pt, s.top(), u );
if ( !fwd ) {
// Case A1
upcase = RIGHT;
i = k+1;
w = u;
} else {
// Case A2
upcase = SCAND;
i = k+1;
w = u;
}
} else {
// Case A3
upcase = LEFT;
i = k+1;
s.push( u );
if ( u != vertices[k+1] ) {
s.push( vertices[k+1] );
}
w = vertices[k+1];
}
}
/*! Find the first edge interecting the segment (v_0, s_t) */
void scanb(int& i, Point_2& w, const Point_2& query_pt) {
if ( i == vertices.size() - 1 ) {
upcase = FINISH;
return;
}
Point_2 u;
int k = scan_edges( i, s.top(), vertices[0], u, false );
if ( (k+1 == vertices.size()-1) && (vertices[0] == u) ) {
// Case B1
upcase = FINISH;
s.push( vertices[0] );
} else {
// Case B2
upcase = RIGHT;
i = k+1;
w = u;
}
}
/*! Finds the exit from a general front hidden window by finding the first
vertex to the right of the ray defined by the query_point and w*/
void scanc(int& i, Point_2& w, const Point_2& query_pt) {
Point_2 u;
int k = scan_edges( i, s.top(), w, u, false );
upcase = RIGHT;
i = k+1;
w = u;
}
/*! find the first edge intersecting the given window (s_t, w) */
void scand(int& i, Point_2& w, const Point_2& query_pt) {
Point_2 u;
int k = scan_edges( i, s.top(), w, u, false );
upcase = LEFT;
i = k+1;
s.push( u );
if ( u != vertices[k+1] ) {
s.push( vertices[k+1] );
}
w = vertices[k+1];
}
/*! Scan edges v_i,v_{i+1},...,v_n, until find an edge intersecting given ray
or given segment. is_ray = true -> ray, false -> segment.
The intersection point is returned by u */
int scan_edges( int i, const Point_2& ray_begin, const Point_2& ray_end, Point_2& u, bool is_ray ) {
CGAL::Orientation old_orient = CGAL::RIGHT_TURN;
Ray_2 ray( ray_begin, ray_end );
Segment_2 s2( ray_begin, ray_end );
int k;
Object_2 result;
for ( k = i; k+1 < vertices.size(); k++ ) {
CGAL::Orientation curr_orient = CGAL::Visibility_2::orientation_2
( geom_traits,
ray_begin,
ray_end,
vertices[k+1] );
if ( curr_orient != old_orient ) {
// Orientation switch, an intersection may occur
Segment_2 seg( vertices[k], vertices[k+1] );
if ( is_ray ) {
if (CGAL::Visibility_2::do_intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
(geom_traits, seg, ray) ) {
result = CGAL::Visibility_2::intersect_2
< Geometry_traits_2, Segment_2, Ray_2 >
( geom_traits, seg, ray );
break;
}
} else {
if (CGAL::Visibility_2::do_intersect_2
<Geometry_traits_2, Segment_2, Segment_2>
(geom_traits, seg, s2) ) {
result = CGAL::Visibility_2::intersect_2
< Geometry_traits_2, Segment_2, Segment_2 >
( geom_traits, seg, s2 );
break;
}
}
}
old_orient = curr_orient;
}
assert( k+1<vertices.size() );
const Point_2 * ipoint = CGAL::object_cast<Point_2>( &result );
if ( ipoint ) {
u = *ipoint;
} else {
u = vertices[k+1];
}
return k;
}
};
} // namespace CGAL
#endif

View File

@ -0,0 +1,579 @@
// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Michael Hemmer <michael.hemmer@cgal.org>
//
#ifndef CGAL_TRIANGULAR_EXPANSION_VISIBILITY_2__H
#define CGAL_TRIANGULAR_EXPANSION_VISIBILITY_2__H
#include <CGAL/Arrangement_2.h>
#include <boost/shared_ptr.hpp>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
namespace CGAL {
template<class Arrangement_2_ , class RegularizationTag = CGAL::Tag_true >
class Triangular_expansion_visibility_2 {
typedef typename Arrangement_2_::Geometry_traits_2 Geometry_traits_2;
typedef typename Geometry_traits_2::Kernel K;
public:
// Currently only consider with same type for both
typedef Arrangement_2_ Arrangement_2;
typedef typename Arrangement_2::Traits_2 Traits_2;
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename K::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Vector_2 Vector_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typedef typename Geometry_traits_2::FT Number_type;
typedef typename Geometry_traits_2::Object_2 Object_2;
// TODO
typedef RegularizationTag Regularization_tag;
typedef CGAL::Tag_true Supports_general_polygon_tag;
typedef CGAL::Tag_true Supports_simple_polygon_tag;
private:
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Constrained_triangulation_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::No_intersection_tag Itag;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, TDS, Itag> CDT;
public:
const std::string name(){return std::string("T_visibility_2");}
private:
const Arrangement_2* p_arr;
boost::shared_ptr<CDT> p_cdt;
std::vector<Segment_2> needles;
public:
Triangular_expansion_visibility_2() : p_arr(NULL){}
/*! Constructor given an arrangement and the Regularization tag. */
Triangular_expansion_visibility_2 (const Arrangement_2& arr)
: p_arr(&arr){
init_cdt();
}
bool is_attached() {
//std::cout << "is_attached" << std::endl;
return (p_arr != NULL);
}
void attach(const Arrangement_2& arr) {
// todo observe changes in arr;
if(p_arr != &arr){
p_arr = &arr;
init_cdt();
}
//std::cout << "attach done" << std::endl;
}
void detach() {
//std::cout << "detach" << std::endl;
p_arr = NULL;
p_cdt = boost::shared_ptr<CDT>();
}
const Arrangement_2& arr() {
return *p_arr;
}
typename CDT::Edge get_edge(typename CDT::Face_handle fh, int i){
return std::make_pair(fh,i);
}
Point_2 ray_seg_intersection(
const Point_2& q, const Point_2& b, // the ray
const Point_2& s, const Point_2& t) // the segment
{
Ray_2 ray(q,b);
Segment_2 seg(s,t);
assert(typename K::Do_intersect_2()(ray,seg));
CGAL::Object obj = typename K::Intersect_2()(ray,seg);
Point_2 result = object_cast<Point_2>(obj);
return result;
}
void collect_needle(
const Point_2& q,
const typename CDT::Vertex_handle vh,
const typename CDT::Face_handle fh,
int index){
// the expanded edge should not be constrained
assert(!p_cdt->is_constrained(get_edge(fh,index)));
assert(!p_cdt->is_infinite(fh));
// go into the new face
const typename CDT::Face_handle nfh(fh->neighbor(index));
assert(!p_cdt->is_infinite(nfh));
// get indices of neighbors
int nindex = nfh->index(fh); // index of new vertex and old face
int rindex = p_cdt->ccw(nindex); // index of face behind right edge
int lindex = p_cdt-> cw(nindex); // index of face behind left edge
// get vertices seen from entering edge
const typename CDT::Vertex_handle nvh(nfh->vertex(nindex));
const typename CDT::Vertex_handle rvh(nfh->vertex(p_cdt->cw (nindex)));
const typename CDT::Vertex_handle lvh(nfh->vertex(p_cdt->ccw(nindex)));
assert(!p_cdt->is_infinite(nvh));
assert(!p_cdt->is_infinite(lvh));
assert(!p_cdt->is_infinite(rvh));
// get edges seen from entering edge
typename CDT::Edge re = get_edge(nfh,p_cdt->ccw(nindex));
typename CDT::Edge le = get_edge(nfh,p_cdt-> cw(nindex));
// do orientation computation once for new vertex
typename K::Orientation_2 orientation =
p_cdt->geom_traits().orientation_2_object();
CGAL::Orientation orient = orientation(q,vh->point(),nvh->point());
//std::cout << "\n collect_needle" <<std::endl;
//std::cout << "q "<< q << std::endl ;
//std::cout << "vh->point() "<< vh->point() << std::endl;
//std::cout << "lvh->point() "<< lvh->point() << std::endl ;
//std::cout << "nvh->point() "<< nvh->point() << std::endl ;
//std::cout << "rvh->point() "<< rvh->point() << std::endl<< std::endl;
switch ( orient ) {
case CGAL::COUNTERCLOCKWISE:
// looking on to the right edge
if(p_cdt->is_constrained(re)){
if(vh!=rvh){
Point_2 p = ray_seg_intersection(q,vh->point(),nvh->point(),rvh->point());
//std::cout << vh->point() <<" -1- "<< p <<std::endl;
needles.push_back(Segment_2(vh->point(),p));
}
}else{
collect_needle(q,vh,nfh,rindex);
}
break;
case CGAL::CLOCKWISE:
// looking on to the left edge
if(p_cdt->is_constrained(le)){
if(vh!=lvh){
Point_2 p = ray_seg_intersection(q,vh->point(),nvh->point(),lvh->point());
//std::cout << vh->point() <<" -2- "<< p <<std::endl;
needles.push_back(Segment_2(vh->point(),p));
}
}else{
collect_needle(q,vh,nfh,lindex);
}
break;
default:
assert(orient == CGAL::COLLINEAR);
// looking on nvh, so it must be reported
// if it wasn't already (triangles rotate around vh)
if(vh != nvh){
//std::cout << vh->point() <<" -3- "<< nvh->point() <<std::endl;
needles.push_back(Segment_2(vh->point(),nvh->point()));
}
// but we may also contiue looking along the vertex
if(!p_cdt->is_constrained(re)){
collect_needle(q,nvh,nfh,rindex);
}
if(!p_cdt->is_constrained(le)){
collect_needle(q,nvh,nfh,lindex);
}
break;
}
}
template<class OIT>
OIT expand_edge(
const Point_2& q,
const Point_2& left,
const Point_2& right,
typename CDT::Face_handle fh,
int index,
OIT oit){
// the expanded edge should not be constrained
assert(!p_cdt->is_constrained(get_edge(fh,index)));
assert(!p_cdt->is_infinite(fh));
// go into the new face
const typename CDT::Face_handle nfh(fh->neighbor(index));
assert(!p_cdt->is_infinite(nfh));
// get indices of neighbors
int nindex = nfh->index(fh); // index of new vertex and old face
int rindex = p_cdt->ccw(nindex); // index of face behind right edge
int lindex = p_cdt-> cw(nindex); // index of face behind left edge
// get vertices seen from entering edge
const typename CDT::Vertex_handle nvh(nfh->vertex(nindex));
const typename CDT::Vertex_handle rvh(nfh->vertex(p_cdt->cw (nindex)));
const typename CDT::Vertex_handle lvh(nfh->vertex(p_cdt->ccw(nindex)));
assert(!p_cdt->is_infinite(nvh));
assert(!p_cdt->is_infinite(lvh));
assert(!p_cdt->is_infinite(rvh));
// get edges seen from entering edge
typename CDT::Edge re = get_edge(nfh,p_cdt->ccw(nindex));
typename CDT::Edge le = get_edge(nfh,p_cdt-> cw(nindex));
// do orientation computation once for new vertex
typename K::Orientation_2 orientation =
p_cdt->geom_traits().orientation_2_object();
CGAL::Orientation ro = orientation(q,right,nvh->point());
CGAL::Orientation lo = orientation(q,left ,nvh->point());
assert(typename K::Orientation_2()(q,left ,lvh->point()) != CGAL::CLOCKWISE);
assert(typename K::Orientation_2()(q,right,rvh->point()) != CGAL::COUNTERCLOCKWISE);
//std::cout << (ro == CGAL::COUNTERCLOCKWISE) << " " << (lo == CGAL::CLOCKWISE) << std::endl;
//right edge is seen if new vertex is counter clockwise of right boarder
if(ro == CGAL::COUNTERCLOCKWISE){
if(p_cdt->is_constrained(re)){
// the edge is constrained
// report intersection with right boarder ray
// if it is not already the right vertex (already reported)
if(right != rvh->point()){
*oit++ = ray_seg_intersection(q,right,nvh->point(),rvh->point());
}
// then report intersection with left boarder if it exists
if(lo == CGAL::COUNTERCLOCKWISE){
*oit++ = ray_seg_intersection(q,left,nvh->point(),rvh->point());
}
}else{
// the edge is not a constrained
if(lo == CGAL::COUNTERCLOCKWISE){
// no split needed and return
//std::cout<< "h1"<< std::endl;
oit = expand_edge(q,left,right,nfh,rindex,oit);
//std::cout<< "h1 done"<< std::endl;
return oit;
}else{
// spliting at new vertex
//std::cout<< "h2"<< std::endl;
*oit++ = expand_edge(q,nvh->point(),right,nfh,rindex,oit);
//std::cout<< "h2 done"<< std::endl;
}
}
}
//std::cout << "q "<< q << std::endl ;
//std::cout << "lvh->point() "<< lvh->point() << std::endl;
//std::cout << "left "<< left << std::endl ;
//std::cout << "nvh->point() "<< nvh->point() << std::endl ;
//std::cout << "right "<< right << std::endl ;
//std::cout << "rvh->point() "<< rvh->point() << std::endl<< std::endl;
// determin whether new vertex needs to be reported
if(ro != CGAL::CLOCKWISE && lo != CGAL::COUNTERCLOCKWISE){
*oit++ = nvh->point();
}
if(!Regularization_tag::value){
assert(!(ro == CGAL::COLLINEAR && lo == CGAL::COLLINEAR));
// we have to check whether a needle starts here.
if(p_cdt->is_constrained(le) && !p_cdt->is_constrained(re) && ro == CGAL::COLLINEAR)
collect_needle(q,nvh,nfh,rindex);
if(p_cdt->is_constrained(re) && !p_cdt->is_constrained(le) && lo == CGAL::COLLINEAR)
collect_needle(q,nvh,nfh,lindex);
}
//left edge is seen if new vertex is clockwise of left boarder
if(lo == CGAL::CLOCKWISE){
if(p_cdt->is_constrained(le)){
// the edge is constrained
// report interesection with right boarder if exists
if(ro == CGAL::CLOCKWISE){
*oit++ = ray_seg_intersection(q,right,nvh->point(),lvh->point());
}
// then report intersection with left boarder ray
// if it is not already the left vertex (already reported)
if(left != lvh->point()){
*oit++ = ray_seg_intersection(q,left,nvh->point(),lvh->point());
}
return oit;
}else{
// the edge is not a constrained
if(ro == CGAL::CLOCKWISE){
// no split needed and return
//std::cout<< "h3"<< std::endl;
oit = expand_edge(q,left,right,nfh,lindex,oit);
//std::cout<< "h3 done"<< std::endl;
return oit;
}else{
// spliting at new vertex
//std::cout<< "h4"<< std::endl;
oit = expand_edge(q,left,nvh->point(),nfh,lindex,oit);
//std::cout<< "h4 done"<< std::endl;
return oit;
}
}
}
return oit;
}
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q,
const Face_const_handle face,
VARR& out_arr
){
//std::cout << "query in face interior" << std::endl;
out_arr.clear();
needles.clear();
assert(!face->is_unbounded());
std::vector<Point_2> raw_output;
typename CDT::Face_handle fh = p_cdt->locate(q);
raw_output.push_back(fh->vertex(1)->point());
if(!p_cdt->is_constrained(get_edge(fh,0))){
//std::cout<< "edge 0 is not constrained" << std::endl;
expand_edge(
q,
fh->vertex(2)->point(),
fh->vertex(1)->point(),
fh,0,std::back_inserter(raw_output));
}
raw_output.push_back(fh->vertex(2)->point());
if(!p_cdt->is_constrained(get_edge(fh,1))){
//std::cout << "edge 1 is not constrained" << std::endl;
expand_edge(
q,
fh->vertex(0)->point(),
fh->vertex(2)->point(),
fh,1,std::back_inserter(raw_output));
}
raw_output.push_back(fh->vertex(0)->point());
if(!p_cdt->is_constrained(get_edge(fh,2))){
//std::cout << "edge 2 is not constrained" << std::endl;
expand_edge(
q,
fh->vertex(1)->point(),
fh->vertex(0)->point(),
fh,2,std::back_inserter(raw_output));
}
return output(raw_output,out_arr);
}
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q,
const Halfedge_const_handle he,
VARR& out_arr) {
//std::cout << "visibility_region he" << std::endl;
assert(!he->face()->is_unbounded());
out_arr.clear();
needles.clear();
std::vector<Point_2> raw_output;
typename CDT::Locate_type location;
int index;
typename CDT::Face_handle fh = p_cdt->locate(q,location,index);
assert(location == CDT::EDGE || location == CDT::VERTEX);
// the following code tries to figure out which triangle one should start in.
if(location == CDT::EDGE){
//std::cout << "query on edge" << std::endl;
// this is the easy part, there are only two possible faces
// index indicates the edge = vertex on the other side of the edge
// the next vertex in cw order should be the target of given edge
if(fh->vertex(p_cdt->cw(index))->point() != he->target()->point()){
//std::cout << "need to swap face" << std::endl;
// take face on the other side if this is not the case
typename CDT::Face_handle nfh = fh->neighbor(index);
index = nfh->index(fh);
fh = nfh;
}
assert(fh->vertex(p_cdt->cw(index))->point() == he->target()->point());
assert(!p_cdt->is_infinite(fh->vertex(index)));
// output the edge the query lies on
raw_output.push_back(he->source()->point());
raw_output.push_back(he->target()->point());
if(!p_cdt->is_constrained(get_edge(fh,p_cdt->ccw(index)))){
expand_edge(
q,
fh->vertex(index)->point(), //left
he->target()->point() , //right
fh,
p_cdt->ccw(index),
std::back_inserter(raw_output));
}
raw_output.push_back(fh->vertex(index)->point());
if(!p_cdt->is_constrained(get_edge(fh,p_cdt->cw(index)))){
expand_edge(
q,
he->source()->point() , //left
fh->vertex(index)->point(), //right
fh,
p_cdt->cw(index),
std::back_inserter(raw_output));
}
}
if(location == CDT::VERTEX){
//std::cout << "query on vertex" << std::endl;
//bool query_point_on_vertex_is_not_working_yet = false;
//assert(query_point_on_vertex_is_not_working_yet);
assert(q == he->target()->point());
assert(fh->vertex(index)->point() == he->target()->point());
// push points that are seen anyway
// raw_output.push_back(he->source()->point()); inserted last
raw_output.push_back(he->target()->point());
raw_output.push_back(he->next()->target()->point());
// now start in the triangle that contains he->next()
while(
p_cdt->is_infinite(fh->vertex(p_cdt->ccw(index))) ||
he->next()->target()->point() != fh->vertex(p_cdt->ccw(index))->point()){
typename CDT::Face_handle nfh = fh->neighbor(p_cdt->ccw(index));
int nindex = nfh->index(fh);
index = p_cdt->ccw(nindex);
fh = nfh;
assert(he->target()->point() == fh->vertex(index)->point());
}
assert(he->next()->source()->point() == fh->vertex(index)->point());
assert(he->next()->target()->point() == fh->vertex(p_cdt->ccw(index))->point());
assert(!p_cdt->is_infinite(fh));
assert(p_cdt->is_constrained(get_edge(fh,p_cdt->cw(index))));
while(he->source()->point() != fh->vertex(p_cdt->ccw(index))->point()){
if(!p_cdt->is_constrained(get_edge(fh,index))){
expand_edge(
q,
fh->vertex(p_cdt-> cw(index))->point(), //left
fh->vertex(p_cdt->ccw(index))->point(), //right
fh,
index,
std::back_inserter(raw_output));
}
// push left end point of edge into output
raw_output.push_back(fh->vertex(p_cdt-> cw(index))->point());
// take the next triangle around q in ccw order
typename CDT::Face_handle nfh = fh->neighbor(p_cdt->ccw(index));
int nindex = nfh->index(fh);
index = p_cdt->ccw(nindex);
fh = nfh;
assert(fh->vertex(index)->point() == he->target()->point());
}
}
return output(raw_output,out_arr);
}
template <typename VARR>
typename VARR::Face_handle
output(std::vector<Point_2>& raw_output, VARR& out_arr){
if(needles.size()>0){
std::vector<Segment_2> segments(needles.begin(),needles.end());
for(unsigned int i = 0; i <raw_output.size();i++){
// //std::cout << raw_output[i] << " -- "
// << raw_output[(i+1)%raw_output.size()] << std::endl;
segments.push_back(Segment_2(raw_output[i],raw_output[(i+1)%raw_output.size()]));
}
CGAL::insert_non_intersecting_curves(out_arr,segments.begin(),segments.end());
//CGAL::insert(out_arr,segments.begin(),segments.end());
}else{
typename VARR::Vertex_handle v_last, v_first;
v_last = v_first =
out_arr.insert_in_face_interior(raw_output[0], out_arr.unbounded_face());
for(unsigned int i = 0; i <raw_output.size()-1;i++){
// //std::cout << raw_output[i] << " -- "
// << raw_output[(i+1)%raw_output.size()] << std::endl;
if(raw_output[i]<raw_output[(i+1)]){
v_last = out_arr.insert_from_left_vertex (Segment_2(raw_output[i], raw_output[i+1]), v_last)->target();
}else{
v_last = out_arr.insert_from_right_vertex(Segment_2(raw_output[i], raw_output[i+1]), v_last)->target();
}
}
out_arr.insert_at_vertices(Segment_2(raw_output.front(),raw_output.back()),v_last,v_first);
}
assert(out_arr.number_of_faces()== 2);
if(out_arr.faces_begin()->is_unbounded())
return ++out_arr.faces_begin();
else
return out_arr.faces_begin();
}
void init_cdt(){
//std::cout<< "==============" <<std::endl;
//std::cout<< "Input Polygon:" <<std::endl;
//todo, avoid copy by using modified iterator
std::vector<std::pair<Point_2,Point_2> > constraints;
for(typename Arrangement_2::Edge_const_iterator eit = p_arr->edges_begin();
eit != p_arr->edges_end(); eit++){
Point_2 source = eit->source()->point();
Point_2 target = eit->target()->point();
//std::cout << source << " -- " << target << std::endl;
constraints.push_back(std::make_pair(source,target));
}
//std::cout << "init_cdt new CDT" << std::endl;
p_cdt = boost::shared_ptr<CDT>(new CDT(constraints.begin(),constraints.end()));
//std::cout << "init_cdt done" << std::endl;
//std::cout << std::endl;
}
};
} // namespace CGAL
#endif //CGAL_TRIANGULAR_EXPANSION_VISIBILITY_2__H

View File

@ -0,0 +1,371 @@
// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Francisc Bungiu <fbungiu@gmail.com>
// Michael Hemmer <michael.hemmer@cgal.org>
#ifndef CGAL_VISIBILITY_UTILS_H
#define CGAL_VISIBILITY_UTILS_H
#include <vector>
#include <CGAL/tags.h>
#include <CGAL/enum.h>
namespace CGAL {
namespace Visibility_2 {
template <class Arrangement_2>
int count_edges_in_face(typename Arrangement_2::Face_const_handle fch) {
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
Ccb_halfedge_const_circulator circ = fch->outer_ccb();
Ccb_halfedge_const_circulator curr = circ;
int edge_cnt(0);
do {
edge_cnt++;
} while (++curr != circ);
return edge_cnt;
}
template <class Edge_const_iterator>
void print_edge(Edge_const_iterator eit) {
std::cout << "[" << eit->curve() << "]" << std::endl;
}
template <class Face_const_handle, class Ccb_halfedge_const_circulator>
void print_simple_face(Face_const_handle fh) {
Ccb_halfedge_const_circulator cir = fh->outer_ccb();
Ccb_halfedge_const_circulator curr = cir;
do {
std::cout << "[" << curr->curve() << "]" << std::endl;
} while (++ curr != cir);
}
template <class Arrangement_2>
void print_arrangement(const Arrangement_2& arr) {
typedef typename Arrangement_2::Edge_const_iterator Edge_const_iterator;
Edge_const_iterator eit;
std::cout << arr.number_of_edges() << " edges:" << std::endl;
for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
print_edge(eit);
}
template <class Arrangement_2>
void print_arrangement_by_face(const Arrangement_2& arr) {
typedef typename Arrangement_2::Face_const_iterator Face_const_iterator;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
Face_const_iterator fit;
for (fit = arr.faces_begin() ; fit != arr.faces_end() ; fit++) {
if (!fit->is_unbounded()) {
std::cout << "FACE\n";
print_simple_face<Face_const_iterator, Ccb_halfedge_const_circulator>(fit);
std::cout << "END FACE\n";
}
}
}
template <class Geometry_traits_2>
Orientation orientation_2(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2& p,
const typename Geometry_traits_2::Point_2& q,
const typename Geometry_traits_2::Point_2& r) {
typename Geometry_traits_2::Orientation_2 orient =
geom_traits->orientation_2_object();
return orient(p, q, r);
}
template <class Geometry_traits_2>
bool less_distance_to_point_2(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2& p,
const typename Geometry_traits_2::Point_2& q,
const typename Geometry_traits_2::Point_2& r) {
typename Geometry_traits_2::Less_distance_to_point_2 less_dist =
geom_traits->less_distance_to_point_2_object();
return less_dist(p, q, r);
}
template <class Geometry_traits_2>
bool collinear(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2& p,
const typename Geometry_traits_2::Point_2& q,
const typename Geometry_traits_2::Point_2& r) {
typename Geometry_traits_2::Collinear_2 collinear_fnct =
geom_traits->collinear_2_object();
return collinear_fnct(p, q, r);
}
template <class Geometry_traits_2, class _Curve_first, class _Curve_second >
typename Geometry_traits_2::Object_2 intersect_2(const Geometry_traits_2 *geom_traits,
const _Curve_first& s1,
const _Curve_second& s2) {
typedef typename Geometry_traits_2::Kernel Kernel;
const Kernel *kernel = static_cast<const Kernel*> (geom_traits);
typename Kernel::Intersect_2 intersect_fnct = kernel->intersect_2_object();
return intersect_fnct(s1, s2);
}
template <class Geometry_traits_2>
CGAL::Comparison_result compare_xy_2(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2 &p,
const typename Geometry_traits_2::Point_2 &q) {
typename Geometry_traits_2::Compare_xy_2 cmp =
geom_traits->compare_xy_2_object();
return cmp(p, q);
}
template <class Geometry_traits_2, class Type1, class Type2>
typename Geometry_traits_2::FT compute_squared_distance_2(
const Geometry_traits_2 *geom_traits,
const Type1& p,
const Type2& seg) {
typename Geometry_traits_2::Compute_squared_distance_2 compute_dist =
geom_traits->compute_squared_distance_2_object();
return compute_dist(p, seg);
}
template <class Geometry_traits_2, class Type1, class Type2>
bool do_intersect_2(const Geometry_traits_2 *geom_traits,
const Type1& c1,
const Type2& c2) {
typename Geometry_traits_2::Do_intersect_2 intersect =
geom_traits->do_intersect_2_object();
return intersect(c1, c2);
}
template <class Geometry_traits_2>
bool collinear_are_ordered_along_line_2(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2 &p,
const typename Geometry_traits_2::Point_2 &q,
const typename Geometry_traits_2::Point_2 &r) {
typename Geometry_traits_2::Collinear_are_ordered_along_line_2 coll =
geom_traits->collinear_are_ordered_along_line_2_object();
return coll(p, q, r);
}
template <class Geometry_traits_2, class Type1, class Type2>
typename Geometry_traits_2::Point_2 construct_projected_point_2(
const Geometry_traits_2 *geom_traits,
const Type1& s,
const Type2& p) {
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::FT Number_type;
typename Geometry_traits_2::Construct_projected_point_2 construct_proj =
geom_traits->construct_projected_point_2_object();
Point_2 proj_pt = construct_proj(s.supporting_line(), p);
if (s.has_on(proj_pt)) {
return proj_pt;
}
else {
Number_type d_to_src = compute_squared_distance_2
<Geometry_traits_2, Point_2, Point_2>(geom_traits, proj_pt, s.source());
Number_type d_to_trg = compute_squared_distance_2
<Geometry_traits_2, Point_2, Point_2>(geom_traits, proj_pt, s.target());
if (d_to_src < d_to_trg) {
return s.source();
}
else {
return s.target();
}
}
}
//construct an arrangement of visibility region from a vector of circular ordered vertices with respect to the query point
template <class Visibility_2, class Visibility_arrangement_2>
void report_while_handling_needles(
const typename Visibility_2::Arrangement_2::Geometry_traits_2 *geom_traits,
const typename Visibility_2::Arrangement_2::Point_2& q,
std::vector<typename Visibility_2::Arrangement_2::Point_2>& points,
Visibility_arrangement_2& arr_out) {
typedef typename Visibility_2::Arrangement_2 Arrangement_2;
typedef typename Arrangement_2::Point_2 Point_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typename std::vector<Segment_2>::size_type i = 0;
if (points.front() == points.back()) {
points.pop_back();
}
while (collinear(geom_traits,
q,
points[i],
points.back())) {
points.push_back(points[i]);
i++;
}
points.push_back(points[i]);
typename Visibility_arrangement_2::Halfedge_handle he_handle;
typename Visibility_arrangement_2::Vertex_handle v_trg; //the handle of vertex where the next segment is inserted
typename Visibility_arrangement_2::Vertex_handle v_fst; //the handle of vertex inserted first
typename Visibility_arrangement_2::Vertex_handle v_needle_end; //the handle of vertex of the end of a needle
v_trg = v_fst = arr_out.insert_in_face_interior(points[i], arr_out.unbounded_face());
//find a point that is right after a needle
while (i+1 < points.size()) {
if ( collinear(geom_traits,
points[i],
points[i+1],
q)) {
typename Visibility_arrangement_2::Vertex_handle v_needle_begin = v_trg;
std::vector<Point_2> forward_needle; //vertices of the needle that are not between q and v_needle_begin; their direction is leaving q;
std::vector<Point_2> backward_needle; //vertices of the needle that are not between q and v_needle_begin; their direction is towards q;
std::vector<Point_2> part_in_q_side; //vertices of the needle that are between q and v_needle_begin
part_in_q_side.push_back(points[i]);
forward_needle.push_back((points[i]));
bool same_side_of_q = (compare_xy_2(geom_traits, points[i], q)==compare_xy_2(geom_traits, points[i], points[i+1]));
if (same_side_of_q)
part_in_q_side.push_back(points[i+1]);
else
forward_needle.push_back(points[i+1]);
i++;
while (i+1< points.size() && orientation_2(geom_traits,
points[i],
points[i+1],
q ) == CGAL::COLLINEAR) {
if (same_side_of_q) {
part_in_q_side.push_back(points[i+1]);
}
else {
if (compare_xy_2(geom_traits, part_in_q_side.front(), q)
== compare_xy_2(geom_traits, part_in_q_side.front(), points[i+1])) {
same_side_of_q = true;
part_in_q_side.push_back(points[i+1]);
}
else {
if (less_distance_to_point_2(geom_traits, q, points[i], points[i+1]))
forward_needle.push_back(points[i+1]);
else
backward_needle.push_back(points[i+1]);
}
}
i++;
}
//obtain the end point of a needle
Point_2 end_of_needle;
if (same_side_of_q)
end_of_needle = part_in_q_side.back();
else {
if (backward_needle.empty()) {
end_of_needle = forward_needle.back();
}
else {
end_of_needle = backward_needle.back();
}
}
std::reverse(backward_needle.begin(), backward_needle.end());
std::vector<Point_2> merged_needle;
// merge the forward_needle and backward_needle
unsigned int itr_fst = 0, itr_snd = 0;
while (itr_fst < forward_needle.size() &&
itr_snd < backward_needle.size()) {
if (less_distance_to_point_2(geom_traits,
q,
forward_needle[itr_fst],
backward_needle[itr_snd])) {
merged_needle.push_back(forward_needle[itr_fst]);
itr_fst++;
}
else {
merged_needle.push_back(backward_needle[itr_snd]);
itr_snd++;
}
}
while (itr_fst < forward_needle.size()) {
merged_needle.push_back(forward_needle[itr_fst]);
itr_fst++;
}
while (itr_snd < backward_needle.size()) {
merged_needle.push_back(backward_needle[itr_snd]);
itr_snd++;
}
for (unsigned int p = 0 ; p+1 < merged_needle.size() ; p++) {
if (CGAL::Visibility_2::compare_xy_2<Geometry_traits_2>(geom_traits, merged_needle[p], merged_needle[p+1]) == CGAL::SMALLER) {
he_handle = arr_out.insert_from_left_vertex(Segment_2(merged_needle[p], merged_needle[p+1]), v_trg);
}
else {
he_handle = arr_out.insert_from_right_vertex(Segment_2(merged_needle[p], merged_needle[p+1]), v_trg);
}
v_trg = he_handle->target();
if (merged_needle[p+1] == end_of_needle) {
v_needle_end = v_trg;
}
}
if (same_side_of_q) {
//insert the part of needle between q and v_needle_begin
v_trg = v_needle_begin;
for (unsigned int p = 0 ; p+1 < part_in_q_side.size() ; p++) {
if (CGAL::Visibility_2::compare_xy_2<Geometry_traits_2>(geom_traits, part_in_q_side[p], part_in_q_side[p+1]) == CGAL::SMALLER) {
he_handle = arr_out.insert_from_left_vertex(Segment_2(part_in_q_side[p], part_in_q_side[p+1]), v_trg);
}
else {
he_handle = arr_out.insert_from_right_vertex(Segment_2(part_in_q_side[p], part_in_q_side[p+1]), v_trg);
}
v_trg = he_handle->target();
}
}
else
v_trg = v_needle_end;
}
else {
if (CGAL::Visibility_2::compare_xy_2<Geometry_traits_2>(geom_traits, v_trg->point(), points[i+1]) == CGAL::SMALLER) {
he_handle = arr_out.insert_from_left_vertex(Segment_2(points[i], points[i+1]), v_trg);
}
else {
he_handle = arr_out.insert_from_right_vertex(Segment_2(points[i], points[i+1]), v_trg);
}
v_trg = he_handle->target();
i++;
}
if (i+2 == points.size()) {
//close the boundary
v_trg = he_handle->target();
arr_out.insert_at_vertices(Segment_2(points[points.size()-2], points[points.size()-1]), v_trg, v_fst);
break;
}
}
}
} // end namespace Visibility_2
} // end namespace CGAL
#endif