mirror of https://github.com/CGAL/cgal
Using CGAL::square()
This commit is contained in:
parent
3a254451e2
commit
e07672ab37
|
|
@ -100,9 +100,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
FT y0 = t.center().y();
|
||||
|
||||
// and add to covariance matrix
|
||||
covariance[0] += transformation[0][0] + area * x0*x0;
|
||||
covariance[0] += transformation[0][0] + area * CGAL::square(x0);
|
||||
covariance[1] += transformation[0][1] + area * x0*y0;
|
||||
covariance[2] += transformation[1][1] + area * y0*y0;
|
||||
covariance[2] += transformation[1][1] + area * CGAL::square(y0);
|
||||
|
||||
mass += area;
|
||||
}
|
||||
|
|
@ -111,9 +111,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
|
||||
// Translate the 2nd order moment calculated about the origin to
|
||||
// the center of mass to get the covariance.
|
||||
covariance[0] -= mass * (c.x() * c.x());
|
||||
covariance[0] -= mass * (CGAL::square(c.x()));
|
||||
covariance[1] -= mass * (c.x() * c.y());
|
||||
covariance[2] -= mass * (c.y() * c.y());
|
||||
covariance[2] -= mass * (CGAL::square(c.y()));
|
||||
|
||||
// solve for eigenvalues and eigenvectors.
|
||||
// eigen values are sorted in ascending order,
|
||||
|
|
@ -206,9 +206,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
FT y0 = t.center().y();
|
||||
|
||||
// and add to covariance matrix
|
||||
covariance[0] += transformation[0][0] + length * x0*x0;
|
||||
covariance[0] += transformation[0][0] + length * CGAL::square(x0);
|
||||
covariance[1] += transformation[0][1] + length * x0*y0;
|
||||
covariance[2] += transformation[1][1] + length * y0*y0;
|
||||
covariance[2] += transformation[1][1] + length * CGAL::square(y0);
|
||||
|
||||
mass += length;
|
||||
}
|
||||
|
|
@ -217,9 +217,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
|
||||
// Translate the 2nd order moment calculated about the origin to
|
||||
// the center of mass to get the covariance.
|
||||
covariance[0] -= mass * (c.x() * c.x());
|
||||
covariance[0] -= mass * (CGAL::square(c.x()));
|
||||
covariance[1] -= mass * (c.x() * c.y());
|
||||
covariance[2] -= mass * (c.y() * c.y());
|
||||
covariance[2] -= mass * (CGAL::square(c.y()));
|
||||
|
||||
// solve for eigenvalues and eigenvectors.
|
||||
// eigen values are sorted in ascending order,
|
||||
|
|
|
|||
|
|
@ -69,9 +69,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
{
|
||||
const Point& p = *it;
|
||||
Vector d = p - c; // centered data point
|
||||
covariance[0] += d.x() * d.x();
|
||||
covariance[0] += CGAL::square(d.x());
|
||||
covariance[1] += d.x() * d.y();
|
||||
covariance[2] += d.y() * d.y();
|
||||
covariance[2] += CGAL::square(d.y());
|
||||
}
|
||||
|
||||
// solve for eigenvalues and eigenvectors.
|
||||
|
|
|
|||
|
|
@ -104,9 +104,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
FT xav0 = (x1-x0)/FT(2);
|
||||
FT yav0 = (y2-y0)/FT(2);
|
||||
// and add to covariance matrix
|
||||
covariance[0] += transformation[0][0] + area * (x0*xav0*2 + x0*x0);
|
||||
covariance[0] += transformation[0][0] + area * (x0*xav0*2 + CGAL::square(x0));
|
||||
covariance[1] += transformation[0][1] + area * (x0*yav0 + xav0*y0 + x0*y0);
|
||||
covariance[2] += transformation[1][1] + area * (y0*yav0*2 + y0*y0);
|
||||
covariance[2] += transformation[1][1] + area * (y0*yav0*2 + CGAL::square(y0));
|
||||
|
||||
mass += area;
|
||||
}
|
||||
|
|
@ -115,9 +115,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
|
||||
// Translate the 2nd order moment calculated about the origin to
|
||||
// the center of mass to get the covariance.
|
||||
covariance[0] -= mass * (c.x() * c.x());
|
||||
covariance[0] -= mass * (CGAL::square(c.x()));
|
||||
covariance[1] -= mass * (c.x() * c.y());
|
||||
covariance[2] -= mass * (c.y() * c.y());
|
||||
covariance[2] -= mass * (CGAL::square(c.y()));
|
||||
|
||||
// solve for eigenvalues and eigenvectors.
|
||||
// eigen values are sorted in ascending order,
|
||||
|
|
|
|||
|
|
@ -104,9 +104,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
|
||||
// Translate the 2nd order moment calculated about the origin to
|
||||
// the center of mass to get the covariance.
|
||||
covariance[0] -= mass * (c.x() * c.x());
|
||||
covariance[0] -= mass * CGAL::square(c.x()));
|
||||
covariance[1] -= mass * (c.x() * c.y());
|
||||
covariance[2] -= mass * (c.y() * c.y());
|
||||
covariance[2] -= mass * (CGAL::square(c.y()));
|
||||
|
||||
// solve for eigenvalues and eigenvectors.
|
||||
// eigen values are sorted in ascending order,
|
||||
|
|
|
|||
|
|
@ -101,9 +101,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
FT yav0 = (delta[2]+delta[3])/FT(3);
|
||||
|
||||
// and add to the covariance matrix
|
||||
covariance[0] += transformation[0][0] + area * (x0*xav0*2 + x0*x0);
|
||||
covariance[0] += transformation[0][0] + area * (x0*xav0*2 + CGAL::square(x0));
|
||||
covariance[1] += transformation[0][1] + area * (x0*yav0 + xav0*y0 + x0*y0);
|
||||
covariance[2] += transformation[1][1] + area * (y0*yav0*2 + y0*y0);
|
||||
covariance[2] += transformation[1][1] + area * (y0*yav0*2 + CGAL::square(y0));
|
||||
|
||||
mass += area;
|
||||
}
|
||||
|
|
@ -112,9 +112,9 @@ linear_least_squares_fitting_2(InputIterator first,
|
|||
|
||||
// Translate the 2nd order moment calculated about the origin to
|
||||
// the center of mass to get the covariance.
|
||||
covariance[0] -= mass * (c.x() * c.x());
|
||||
covariance[0] -= mass * (CGAL::square(c.x()));
|
||||
covariance[1] -= mass * (c.x() * c.y());
|
||||
covariance[2] -= mass * (c.y() * c.y());
|
||||
covariance[2] -= mass * (CGAL::square(c.y()));
|
||||
|
||||
// std::cout<<"cov: "<<covariance[0]*covariance[2]<<" =? "<<covariance[1]*covariance[1]<<std::endl;
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue