replaced '\ccPureGlobalScope' by 'CGAL::' in C++ arguments of '\cc...' macros

This commit is contained in:
Sven Schönherr 2000-09-13 13:38:25 +00:00
parent 13d2d38600
commit e1bf76e050
18 changed files with 116 additions and 106 deletions

View File

@ -32,8 +32,7 @@ $P=\{p\}$.
An inclusion-minimal subset $S$ of $P$ with $ma(S)=ma(P)$ is called a
\emph{support set}, the points in $S$ are the \emph{support points}.
A support set has size at most $d+2$, and all its points lie on the
boundary of $ma(P)$. In general, neither the support set nor its size
are necessarily unique.
boundary of $ma(P)$. In general, the support set is not necessarily unique.
The underlying algorithm can cope with all kinds of input, e.g.~$P$ may be
empty or points may occur more than once. The algorithm computes a support
@ -186,18 +185,21 @@ two-, three-, and $d$-dimensional \cgal~kernel, respectively.
\ccMemberFunction{ Point center( ) const;}{
returns the center of \ccVar.
\ccPrecond \ccVar\ is not empty and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond \ccVar\ is not empty.}
\ccMemberFunction{ FT squared_inner_radius( ) const;}{
returns the squared inner radius of \ccVar.
\ccPrecond \ccVar\ is not empty and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond \ccVar\ is not empty.}
\ccMemberFunction{ FT squared_outer_radius( ) const;}{
returns the squared outer radius of \ccVar.
\ccPrecond \ccVar\ is not empty and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond \ccVar\ is not empty.}
\medskip
\ccGlueBegin
@ -232,7 +234,7 @@ and the outer sphere. The boundary is the union of both spheres. By
definition, an empty annulus has no boundary and no bounded side, i.e.~its
unbounded side equals the whole space $\E_d$.
\ccMemberFunction{ \ccPureGlobalScope Bounded_side
\ccMemberFunction{ CGAL::Bounded_side
bounded_side( const Point& p) const;}{
returns \ccGlobalScope\ccc{ON_BOUNDED_SIDE},
\ccGlobalScope\ccc{ON_BOUNDARY}, or
@ -262,8 +264,7 @@ unbounded side equals the whole space $\E_d$.
\ccMemberFunction{ bool is_degenerate( ) const;}{
returns \ccc{true}, iff \ccVar\ is degenerate, i.e.~if \ccVar\
is empty or equal to a single point, equivalently if the
number of support points is less than 2.}
is empty or equal to a single point.}
% -----------------------------------------------------------------------------
\ccModifiers
@ -303,6 +304,8 @@ An object \ccVar\ is valid, iff
\item \ccVar\ is the smallest annulus containing its support set $S$, and
\item $S$ is minimal, i.e.\ no support point is redundant.
\end{itemize}
\emph{Note:} In this release only the first item is considered by the
validity check.
\ccMemberFunction{ bool is_valid( bool verbose = false,
int level = 0 ) const;}{
@ -340,10 +343,10 @@ An object \ccVar\ is valid, iff
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_sphere_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_sphere_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------
@ -355,10 +358,10 @@ constraints and a linear objective function. The solution is obtained
using our exact solver for linear and quadratic
programs~\cite{gs-eegqp-00}.
The creation time is almost always linear in the number of points.
Access functions and predicates take constant time, inserting a point
might take up to linear time. The clear operation and the check for
validity each take linear time.
The creation time is almost always linear in the number of points. Access
functions and predicates take constant time, inserting a point takes almost
always linear time. The clear operation and the check for validity each
take linear time.
% -----------------------------------------------------------------------------

View File

@ -32,8 +32,7 @@ $P=\{p\}$.
An inclusion-minimal subset $S$ of $P$ with $ma(S)=ma(P)$ is called a
\emph{support set}, the points in $S$ are the \emph{support points}.
A support set has size at most $d+2$, and all its points lie on the
boundary of $ma(P)$. In general, neither the support set nor its size
are necessarily unique.
boundary of $ma(P)$. In general, the support set is not necessarily unique.
The underlying algorithm can cope with all kinds of input, e.g.~$P$ may be
empty or points may occur more than once. The algorithm computes a support
@ -186,18 +185,21 @@ two-, three-, and $d$-dimensional \cgal~kernel, respectively.
\ccMemberFunction{ Point center( ) const;}{
returns the center of \ccVar.
\ccPrecond \ccVar\ is not empty and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond \ccVar\ is not empty.}
\ccMemberFunction{ FT squared_inner_radius( ) const;}{
returns the squared inner radius of \ccVar.
\ccPrecond \ccVar\ is not empty and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond \ccVar\ is not empty.}
\ccMemberFunction{ FT squared_outer_radius( ) const;}{
returns the squared outer radius of \ccVar.
\ccPrecond \ccVar\ is not empty and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond \ccVar\ is not empty.}
\medskip
\ccGlueBegin
@ -232,7 +234,7 @@ and the outer sphere. The boundary is the union of both spheres. By
definition, an empty annulus has no boundary and no bounded side, i.e.~its
unbounded side equals the whole space $\E_d$.
\ccMemberFunction{ \ccPureGlobalScope Bounded_side
\ccMemberFunction{ CGAL::Bounded_side
bounded_side( const Point& p) const;}{
returns \ccGlobalScope\ccc{ON_BOUNDED_SIDE},
\ccGlobalScope\ccc{ON_BOUNDARY}, or
@ -262,8 +264,7 @@ unbounded side equals the whole space $\E_d$.
\ccMemberFunction{ bool is_degenerate( ) const;}{
returns \ccc{true}, iff \ccVar\ is degenerate, i.e.~if \ccVar\
is empty or equal to a single point, equivalently if the
number of support points is less than 2.}
is empty or equal to a single point.}
% -----------------------------------------------------------------------------
\ccModifiers
@ -303,6 +304,8 @@ An object \ccVar\ is valid, iff
\item \ccVar\ is the smallest annulus containing its support set $S$, and
\item $S$ is minimal, i.e.\ no support point is redundant.
\end{itemize}
\emph{Note:} In this release only the first item is considered by the
validity check.
\ccMemberFunction{ bool is_valid( bool verbose = false,
int level = 0 ) const;}{
@ -340,10 +343,10 @@ An object \ccVar\ is valid, iff
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_sphere_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_sphere_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------
@ -355,10 +358,10 @@ constraints and a linear objective function. The solution is obtained
using our exact solver for linear and quadratic
programs~\cite{gs-eegqp-00}.
The creation time is almost always linear in the number of points.
Access functions and predicates take constant time, inserting a point
might take up to linear time. The clear operation and the check for
validity each take linear time.
The creation time is almost always linear in the number of points. Access
functions and predicates take constant time, inserting a point takes almost
always linear time. The clear operation and the check for validity each
take linear time.
% -----------------------------------------------------------------------------

View File

@ -183,7 +183,7 @@ reconstructing $me(P)$ from a given support set $S$ of $P$.
By definition, an empty \ccRefName\ has no boundary and no bounded side,
i.e.\ its unbounded side equals the whole space $\E_2$.
\ccMemberFunction{ \ccPureGlobalScope Bounded_side
\ccMemberFunction{ CGAL::Bounded_side
bounded_side( const Point& p) const;}{
returns \ccGlobalScope\ccc{ON_BOUNDED_SIDE},
\ccGlobalScope\ccc{ON_BOUNDARY}, or
@ -290,7 +290,7 @@ anxious user that the traits class implementation is correct.
\ccInclude{CGAL/IO/Window_stream.h}
\ccFunction{ CGAL::Window_stream&
operator << ( \ccPureGlobalScope Window_stream& ws,
operator << ( CGAL::Window_stream& ws,
const Min_ellipse_2<Traits>& min_ellipse);}{
writes \ccVar\ to window stream \ccc{ws}.
\ccRequire The window stream output operator is defined for
@ -299,8 +299,8 @@ anxious user that the traits class implementation is correct.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_circle_2<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2_traits_2<R>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_circle_2<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_ellipse_2_traits_2<R>}\\[1ex]
\ccRefIdfierPage{Min_ellipse_2_traits}
% -----------------------------------------------------------------------------

View File

@ -50,12 +50,12 @@ Only default and copy constructor are required.
% -----------------------------------------------------------------------------
\ccHasModels
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2_traits_2<R>}
\ccRefIdfierPage{CGAL::Min_ellipse_2_traits_2<R>}
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2<Traits>}
\ccRefIdfierPage{CGAL::Min_ellipse_2<Traits>}
% -----------------------------------------------------------------------------
@ -132,7 +132,7 @@ whole plane $\E_2$.
Each of the following predicates is only needed, if the corresponding
predicate of \ccc{Min_ellipse_2} is used.
\ccMemberFunction{ \ccPureGlobalScope Bounded_side
\ccMemberFunction{ CGAL::Bounded_side
bounded_side( const Point& p) const;}{
returns \ccGlobalScope\ccc{ON_BOUNDED_SIDE},
\ccGlobalScope\ccc{ON_BOUNDARY}, or

View File

@ -52,7 +52,7 @@ The template parameter \ccc{R} is a model for \ccc{Kernel}.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_ellipse_2<Traits>}\\[1ex]
\ccRefIdfierPage{Min_ellipse_2_traits}
% -----------------------------------------------------------------------------

View File

@ -183,7 +183,7 @@ reconstructing $me(P)$ from a given support set $S$ of $P$.
By definition, an empty \ccRefName\ has no boundary and no bounded side,
i.e.\ its unbounded side equals the whole space $\E_2$.
\ccMemberFunction{ \ccPureGlobalScope Bounded_side
\ccMemberFunction{ CGAL::Bounded_side
bounded_side( const Point& p) const;}{
returns \ccGlobalScope\ccc{ON_BOUNDED_SIDE},
\ccGlobalScope\ccc{ON_BOUNDARY}, or
@ -290,7 +290,7 @@ anxious user that the traits class implementation is correct.
\ccInclude{CGAL/IO/Window_stream.h}
\ccFunction{ CGAL::Window_stream&
operator << ( \ccPureGlobalScope Window_stream& ws,
operator << ( CGAL::Window_stream& ws,
const Min_ellipse_2<Traits>& min_ellipse);}{
writes \ccVar\ to window stream \ccc{ws}.
\ccRequire The window stream output operator is defined for
@ -299,8 +299,8 @@ anxious user that the traits class implementation is correct.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_circle_2<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2_traits_2<R>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_circle_2<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_ellipse_2_traits_2<R>}\\[1ex]
\ccRefIdfierPage{Min_ellipse_2_traits}
% -----------------------------------------------------------------------------

View File

@ -50,12 +50,12 @@ Only default and copy constructor are required.
% -----------------------------------------------------------------------------
\ccHasModels
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2_traits_2<R>}
\ccRefIdfierPage{CGAL::Min_ellipse_2_traits_2<R>}
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2<Traits>}
\ccRefIdfierPage{CGAL::Min_ellipse_2<Traits>}
% -----------------------------------------------------------------------------
@ -132,7 +132,7 @@ whole plane $\E_2$.
Each of the following predicates is only needed, if the corresponding
predicate of \ccc{Min_ellipse_2} is used.
\ccMemberFunction{ \ccPureGlobalScope Bounded_side
\ccMemberFunction{ CGAL::Bounded_side
bounded_side( const Point& p) const;}{
returns \ccGlobalScope\ccc{ON_BOUNDED_SIDE},
\ccGlobalScope\ccc{ON_BOUNDARY}, or

View File

@ -52,7 +52,7 @@ The template parameter \ccc{R} is a model for \ccc{Kernel}.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_ellipse_2<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_ellipse_2<Traits>}\\[1ex]
\ccRefIdfierPage{Min_ellipse_2_traits}
% -----------------------------------------------------------------------------

View File

@ -100,14 +100,14 @@ object.
% -----------------------------------------------------------------------------
\ccHasModels
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}
% -----------------------------------------------------------------------------

View File

@ -89,9 +89,9 @@ object.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------

View File

@ -89,9 +89,9 @@ object.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------

View File

@ -89,9 +89,9 @@ object.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------

View File

@ -100,14 +100,14 @@ object.
% -----------------------------------------------------------------------------
\ccHasModels
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}
% -----------------------------------------------------------------------------

View File

@ -89,9 +89,9 @@ object.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------

View File

@ -89,9 +89,9 @@ object.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------

View File

@ -89,9 +89,9 @@ object.
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Min_annulus_d_traits_3<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d<Traits>}\\[1ex]
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Min_annulus_d_traits_3<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Min_annulus_d_traits}
% -----------------------------------------------------------------------------

View File

@ -28,9 +28,8 @@ An object of the class \ccRefName\ represents the (squared) distance
between two convex polytopes, given as the convex hulls of two finite point
sets in $d$-dimensional Euclidean space $\E_d$. For point sets $P$ and $Q$
we denote by $pd(P,Q)$ the distance between the convex hulls of $P$ and
$Q$. Note that $pd(P,Q)$ can be degenerate, i.e.~$pd(P,Q)=0$ if the convex
hulls of $P$ and $Q$ intersect, and $pd(P,Q)=\infty$ if $P$ or $Q$ is
empty.
$Q$. Note that $pd(P,Q)$ can be degenerate, i.e.~$pd(P,Q)=\infty$ if $P$
or $Q$ is empty.
Two inclusion-minimal subsets $S_P$ of $P$ and $S_Q$ of $Q$ with
$pd(S_P,S_Q)=pd(P,Q)$ are called \emph{pair of support sets}, the points in
@ -192,18 +191,21 @@ using the two-, three-, and $d$-dimensional \cgal~kernel, respectively.
\ccMemberFunction{ Point realizing_point_p( ) const;}{
returns the realizing point of $P$.
\ccPrecond $pd(P,Q)$ is finite and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond $pd(P,Q)$ is finite.}
\ccMemberFunction{ Point realizing_point_q( ) const;}{
returns the realizing point of $Q$.
\ccPrecond $pd(P,Q)$ is finite and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond $pd(P,Q)$ is finite.}
\ccMemberFunction{ FT squared_distance( ) const;}{
returns the squared distance of \ccVar, i.e.~$(pd(P,Q))^2$.
\ccPrecond $pd(P,Q)$ is finite and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond $pd(P,Q)$ is finite.}
\medskip
\ccGlueBegin
@ -256,7 +258,7 @@ using the two-, three-, and $d$-dimensional \cgal~kernel, respectively.
\ccMemberFunction{ bool is_degenerate( ) const;}{
returns \ccc{true}, iff $pd(P,Q)$ is degenerate,
i.e.~$pd(P,Q)=0$ or $pd(P,Q)=\infty$.}
i.e.~$pd(P,Q)$ is not finite.}
% -----------------------------------------------------------------------------
\ccModifiers
@ -384,9 +386,9 @@ An object \ccVar\ is valid, iff
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Polytope_distance_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Polytope_distance_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Polytope_distance_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Polytope_distance_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Polytope_distance_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Polytope_distance_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Polytope_distance_d_traits}
% -----------------------------------------------------------------------------

View File

@ -28,9 +28,8 @@ An object of the class \ccRefName\ represents the (squared) distance
between two convex polytopes, given as the convex hulls of two finite point
sets in $d$-dimensional Euclidean space $\E_d$. For point sets $P$ and $Q$
we denote by $pd(P,Q)$ the distance between the convex hulls of $P$ and
$Q$. Note that $pd(P,Q)$ can be degenerate, i.e.~$pd(P,Q)=0$ if the convex
hulls of $P$ and $Q$ intersect, and $pd(P,Q)=\infty$ if $P$ or $Q$ is
empty.
$Q$. Note that $pd(P,Q)$ can be degenerate, i.e.~$pd(P,Q)=\infty$ if $P$
or $Q$ is empty.
Two inclusion-minimal subsets $S_P$ of $P$ and $S_Q$ of $Q$ with
$pd(S_P,S_Q)=pd(P,Q)$ are called \emph{pair of support sets}, the points in
@ -192,18 +191,21 @@ using the two-, three-, and $d$-dimensional \cgal~kernel, respectively.
\ccMemberFunction{ Point realizing_point_p( ) const;}{
returns the realizing point of $P$.
\ccPrecond $pd(P,Q)$ is finite and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond $pd(P,Q)$ is finite.}
\ccMemberFunction{ Point realizing_point_q( ) const;}{
returns the realizing point of $Q$.
\ccPrecond $pd(P,Q)$ is finite and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond $pd(P,Q)$ is finite.}
\ccMemberFunction{ FT squared_distance( ) const;}{
returns the squared distance of \ccVar, i.e.~$(pd(P,Q))^2$.
\ccPrecond $pd(P,Q)$ is finite and an implicit conversion
from \ccc{ET} to \ccc{RT} must be available.}
\ccRequire An implicit conversion from \ccc{ET} to \ccc{RT} is
available.
\ccPrecond $pd(P,Q)$ is finite.}
\medskip
\ccGlueBegin
@ -256,7 +258,7 @@ using the two-, three-, and $d$-dimensional \cgal~kernel, respectively.
\ccMemberFunction{ bool is_degenerate( ) const;}{
returns \ccc{true}, iff $pd(P,Q)$ is degenerate,
i.e.~$pd(P,Q)=0$ or $pd(P,Q)=\infty$.}
i.e.~$pd(P,Q)$ is not finite.}
% -----------------------------------------------------------------------------
\ccModifiers
@ -384,9 +386,9 @@ An object \ccVar\ is valid, iff
% -----------------------------------------------------------------------------
\ccSeeAlso
\ccRefIdfierPage{\ccPureGlobalScope Polytope_distance_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Polytope_distance_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{\ccPureGlobalScope Polytope_distance_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{CGAL::Polytope_distance_d_traits_2<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Polytope_distance_d_traits_3<R,ET,NT>}\\
\ccRefIdfierPage{CGAL::Polytope_distance_d_traits_d<R,ET,NT>}\\[1ex]
\ccRefIdfierPage{Polytope_distance_d_traits}
% -----------------------------------------------------------------------------