mirror of https://github.com/CGAL/cgal
Merge remote-tracking branch 'cgal/master' into SMDS_3-Fix_stack-GF
This commit is contained in:
commit
e2832dfe6d
|
|
@ -11,7 +11,9 @@ and the primitives stored in the AABB tree.
|
|||
|
||||
\cgalRefines{SearchGeomTraits_3}
|
||||
|
||||
\cgalHasModel All models of the concept `Kernel`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of the concept `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\sa `CGAL::AABB_tree<AABBTraits>`
|
||||
|
|
|
|||
|
|
@ -12,11 +12,13 @@ The concept `AABBPrimitive` describes the requirements for the primitives stored
|
|||
|
||||
The `Primitive` type can be, e.g., a wrapper around a `Handle`. Assume for instance that the input objects are the triangle faces of a mesh stored as a `CGAL::Polyhedron_3`. The `Datum` would be a `Triangle_3` and the `Id` would be a polyhedron `Face_handle`. Method `datum()` can return either a `Triangle_3` constructed on the fly from the face handle or a `Triangle_3` stored internally. This provides a way for the user to trade memory for efficiency.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_false,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_segment_primitive<Iterator,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_triangle_primitive<Iterator,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_false,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_false,CacheDatum>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_false,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_segment_primitive<Iterator,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_triangle_primitive<Iterator,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_false,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_false,CacheDatum>}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class AABBPrimitive {
|
||||
|
|
|
|||
|
|
@ -21,9 +21,11 @@ The `Datum` would be a `Triangle_3` and the `Id` a `std::size_t`. The shared dat
|
|||
`std::vector<Triangle_3>`.
|
||||
The method `datum(const Shared_data&)` then returns a triangle from the vector.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_true,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_true,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_true,CacheDatum>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_true,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_true,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_true,CacheDatum>}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class AABBPrimitiveWithSharedData {
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ define the Intersection_distance functor.
|
|||
|
||||
\cgalRefines{AABBGeomTraits}
|
||||
|
||||
\cgalHasModel All models of the concept `Kernel`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of the concept `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\sa `CGAL::AABB_tree<AABBTraits>`
|
||||
|
|
|
|||
|
|
@ -7,7 +7,9 @@ The concept `AABBRayIntersectionTraits` is a refinement of the concept
|
|||
`AABBTraits` it also requires function objects to calculate the
|
||||
distance of an intersection along a ray.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::AABB_tree<AABBTraits>`
|
||||
\sa `AABBPrimitive`
|
||||
|
|
|
|||
|
|
@ -5,7 +5,9 @@
|
|||
|
||||
The concept `AABBTraits` provides the geometric primitive types and methods for the class `CGAL::AABB_tree<AABBTraits>`.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\cgalRefines{SearchGeomTraits_3}
|
||||
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ namespace CGAL {
|
|||
* while the AABB tree holding the primitive is in use.
|
||||
* The triangle type of the primitive (`Datum`) is `CGAL::Kernel_traits< boost::property_traits< VertexPointPMap >::%value_type >::%Kernel::Triangle_3`.
|
||||
*
|
||||
* \cgalModels `AABBPrimitiveWithSharedData`
|
||||
* \cgalModels{AABBPrimitiveWithSharedData}
|
||||
*
|
||||
*\tparam FaceGraph is a model of the face graph concept.
|
||||
*\tparam VertexPointPMap is a property map with `boost::graph_traits<FaceGraph>::%vertex_descriptor`
|
||||
|
|
|
|||
|
|
@ -41,8 +41,10 @@ namespace CGAL {
|
|||
* of `VertexPointPMap` (using the `Kernel_traits` mechanism).
|
||||
* The segment type of the primitive (`Datum`) is `CGAL::Kernel_traits< boost::property_traits< VertexPointPMap >::%value_type >::%Kernel::Segment_3`.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_false`,
|
||||
* and `AABBPrimitiveWithSharedData` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_true`.
|
||||
* \cgalModelsBareBegin
|
||||
* \cgalModelsBare{`AABBPrimitive` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_false`}
|
||||
* \cgalModelsBare{`AABBPrimitiveWithSharedData` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_true`}
|
||||
* \cgalModelsBareEnd
|
||||
*
|
||||
* \tparam HalfedgeGraph is a model of the halfedge graph concept.
|
||||
* as key type and a \cgal Kernel `Point_3` as value type.
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ namespace CGAL {
|
|||
/// AABB tree is built should not be deleted while the AABB tree
|
||||
/// is in use.
|
||||
///
|
||||
/// \cgalModels `AABBPrimitive`
|
||||
/// \cgalModels{AABBPrimitive}
|
||||
/// \tparam GeomTraits must provide a \c %Point_3
|
||||
/// type, used as \c Point, and a \c %Segment_3 type, used as \c
|
||||
/// Datum and constructible from two arguments of type \c
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ namespace CGAL {
|
|||
/// the polyhedron from which the AABB tree is built should not be
|
||||
/// deleted while the AABB tree is in use.
|
||||
///
|
||||
/// \cgalModels `AABBPrimitive`
|
||||
/// \cgalModels{AABBPrimitive}
|
||||
/// \tparam GeomTraits must provides a \c %Point_3
|
||||
/// type, used as \c Point, and a \c %Triangle_3 type, used as \c
|
||||
/// Datum and constructible from three arguments of type \c
|
||||
|
|
|
|||
|
|
@ -53,8 +53,10 @@ public:
|
|||
* The two property maps which are template parameters of the class enable to get the datum and the reference point of
|
||||
* the primitive from the identifier. The last template parameter controls whether the primitive class holds a copy of the datum.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive` if `ExternalPropertyMaps` is `CGAL::Tag_false`.
|
||||
* \cgalModels `AABBPrimitiveWithSharedData` if `ExternalPropertyMaps` is `CGAL::Tag_true`.
|
||||
* \cgalModelsBareBegin
|
||||
* \cgalModelsBare{`AABBPrimitive` if `ExternalPropertyMaps` is `CGAL::Tag_false`}
|
||||
* \cgalModelsBare{`AABBPrimitiveWithSharedData` if `ExternalPropertyMaps` is `CGAL::Tag_true`}
|
||||
* \cgalModelsBareEnd
|
||||
*
|
||||
* \tparam ObjectPropertyMap is a model of `ReadablePropertyMap` with `Id` as
|
||||
* `key_type`. It must be a model of `CopyConstructible`, `DefaultConstructible`, and `CopyAssignable`.
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ namespace internal {
|
|||
* The iterator from which the primitive is built should not be invalided
|
||||
* while the AABB tree holding the primitive is in use.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive`
|
||||
* \cgalModels{AABBPrimitive}
|
||||
*
|
||||
* \tparam GeomTraits is a traits class providing the nested type `Point_3` and `Segment_3`.
|
||||
* It also provides the functor `Construct_source_3` that has an operator taking a `Segment_3`
|
||||
|
|
|
|||
|
|
@ -149,9 +149,8 @@ class AABB_tree;
|
|||
/// computations, and it handles points as query type for distance
|
||||
/// queries.
|
||||
///
|
||||
/// \cgalModels AABBTraits
|
||||
/// \cgalModels AABBRayIntersectionTraits
|
||||
|
||||
/// \cgalModels{AABBTraits,AABBRayIntersectionTraits}
|
||||
///
|
||||
/// \tparam GeomTraits must be a model of the concept \ref AABBGeomTraits,
|
||||
/// and provide the geometric types as well as the intersection tests and computations.
|
||||
/// \tparam Primitive provide the type of primitives stored in the AABB_tree.
|
||||
|
|
|
|||
|
|
@ -55,7 +55,7 @@ namespace internal {
|
|||
* The iterator from which the primitive is built should not be invalided
|
||||
* while the AABB tree holding the primitive is in use.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive`
|
||||
* \cgalModels{AABBPrimitive}
|
||||
*
|
||||
* \tparam GeomTraits is a traits class providing the nested type `Point_3` and `Triangle_3`.
|
||||
* It also provides the functor `Construct_vertex_3` that has an operator taking a `Triangle_3`
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ namespace CGAL {
|
|||
// the TriangleMesh from which the AABB tree is built should not be
|
||||
// deleted while the AABB tree is in use.
|
||||
//
|
||||
// \cgalModels `AABBPrimitive`
|
||||
// \cgalModels{AABBPrimitive}
|
||||
// \tparam GeomTraits must provides a \c %Point_3
|
||||
// type, used as \c Point, and a \c %Triangle_3 type, used as \c
|
||||
// Datum and constructible from three arguments of type \c
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ together with a few geometric predicates and constructions on these objects.
|
|||
|
||||
\cgalRefines{DelaunayTriangulationTraits_3}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of the concept `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class AdvancingFrontSurfaceReconstructionTraits_3
|
||||
{
|
||||
|
|
|
|||
|
|
@ -169,8 +169,8 @@ Every \cgal `Kernel` comes with two <I>real number types</I>
|
|||
(number types embeddable into the real numbers). One of them is a
|
||||
`FieldNumberType`, and the other a `RingNumberType`. The
|
||||
coordinates of the basic kernel objects (points, vectors, etc.) come
|
||||
from one of these types (the `FieldNumberType` in case of Cartesian
|
||||
kernels, and the `RingNumberType` for Homogeneous kernels).
|
||||
from one of these types (the `FieldNumberType` in case of %Cartesian
|
||||
kernels, and the `RingNumberType` for %Homogeneous kernels).
|
||||
|
||||
The concept `FieldNumberType` combines the requirements of the
|
||||
concepts `Field` and `RealEmbeddable`, while
|
||||
|
|
@ -277,4 +277,3 @@ subsequent chapters.
|
|||
|
||||
*/
|
||||
} /* namespace CGAL */
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
|
||||
An instance of `Algebraic_structure_traits` is a model of `AlgebraicStructureTraits`, where <span class="textsc">T</span> is the associated type.
|
||||
|
||||
\cgalModels `AlgebraicStructureTraits`
|
||||
\cgalModels{AlgebraicStructureTraits}
|
||||
|
||||
*/
|
||||
template< typename T >
|
||||
|
|
@ -22,7 +22,7 @@ namespace CGAL {
|
|||
Tag indicating that a type is a model of the
|
||||
`EuclideanRing` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `EuclideanRing`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -38,7 +38,7 @@ struct Euclidean_ring_tag : public Unique_factorization_domain_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `Field` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `Field`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -54,7 +54,7 @@ struct Field_tag : public Integral_domain_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `FieldWithKthRoot` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `FieldWithKthRoot`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -70,7 +70,7 @@ struct Field_with_kth_root_tag : public Field_with_sqrt_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `FieldWithRootOf`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -86,7 +86,7 @@ struct Field_with_root_of_tag : public Field_with_kth_root_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `FieldWithSqrt` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `FieldWithSqrt`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -102,7 +102,7 @@ struct Field_with_sqrt_tag : public Field_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `IntegralDomain` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `IntegralDomain`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -118,7 +118,7 @@ struct Integral_domain_tag : public Integral_domain_without_division_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `IntegralDomainWithoutDivision` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `IntegralDomainWithoutDivision`
|
||||
|
||||
|
|
@ -133,7 +133,7 @@ struct Integral_domain_without_division_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `UniqueFactorizationDomain` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `UniqueFactorizationDomain`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
An instance of `Fraction_traits` is a model of `FractionTraits`,
|
||||
where `T` is the associated type.
|
||||
|
||||
\cgalModels `FractionTraits`
|
||||
\cgalModels{FractionTraits}
|
||||
|
||||
*/
|
||||
template< typename T >
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
|
||||
An instance of `Real_embeddable_traits` is a model of `RealEmbeddableTraits`, where <span class="textsc">T</span> is the associated type.
|
||||
|
||||
\cgalModels `RealEmbeddableTraits`
|
||||
\cgalModels{RealEmbeddableTraits}
|
||||
|
||||
*/
|
||||
template< typename T >
|
||||
|
|
|
|||
|
|
@ -28,7 +28,9 @@ algebraic operations within that structure.
|
|||
\sa `CGAL::Field_with_kth_root_tag`
|
||||
\sa `CGAL::Field_with_root_of_tag`
|
||||
|
||||
\cgalHasModel `CGAL::Algebraic_structure_traits<T>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Algebraic_structure_traits<T>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -5,20 +5,22 @@
|
|||
The concept `FieldNumberType` combines the requirements of the concepts
|
||||
`Field` and `RealEmbeddable`.
|
||||
A model of `FieldNumberType` can be used as a template parameter
|
||||
for Cartesian kernels.
|
||||
for %Cartesian kernels.
|
||||
|
||||
\cgalRefines{Field,RealEmbeddable}
|
||||
|
||||
\cgalHasModel float
|
||||
\cgalHasModel double
|
||||
\cgalHasModel `CGAL::Gmpq`
|
||||
\cgalHasModel `CGAL::Interval_nt`
|
||||
\cgalHasModel `CGAL::Interval_nt_advanced`
|
||||
\cgalHasModel `CGAL::Lazy_exact_nt<FieldNumberType>`
|
||||
\cgalHasModel `CGAL::Quotient<RingNumberType>`
|
||||
\cgalHasModel `leda_rational`
|
||||
\cgalHasModel `leda_bigfloat`
|
||||
\cgalHasModel `leda_real`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{float}
|
||||
\cgalHasModels{double}
|
||||
\cgalHasModels{CGAL::Gmpq}
|
||||
\cgalHasModels{CGAL::Interval_nt}
|
||||
\cgalHasModels{CGAL::Interval_nt_advanced}
|
||||
\cgalHasModels{CGAL::Lazy_exact_nt<FieldNumberType>}
|
||||
\cgalHasModels{CGAL::Quotient<RingNumberType>}
|
||||
\cgalHasModels{leda_rational}
|
||||
\cgalHasModels{leda_bigfloat}
|
||||
\cgalHasModels{leda_real}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `RingNumberType`
|
||||
\sa `Kernel`
|
||||
|
|
@ -32,4 +34,3 @@ public:
|
|||
/// @}
|
||||
|
||||
}; /* end FieldNumberType */
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,9 @@ A model of `FractionTraits` is associated with a type `Type`.
|
|||
In case the associated type is a `Fraction`, a model of `FractionTraits` provides the relevant functionality for decomposing and re-composing as well
|
||||
as the numerator and denominator type.
|
||||
|
||||
\cgalHasModel `CGAL::Fraction_traits<T>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Fraction_traits<T>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `FractionTraits_::Decompose`
|
||||
\sa `FractionTraits_::Compose`
|
||||
|
|
|
|||
|
|
@ -6,9 +6,11 @@
|
|||
A model of the concept `FromIntConstructible` is required
|
||||
to be constructible from int.
|
||||
|
||||
\cgalHasModel int
|
||||
\cgalHasModel long
|
||||
\cgalHasModel double
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{int}
|
||||
\cgalHasModels{long}
|
||||
\cgalHasModels{double}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -7,7 +7,9 @@ A model of `RealEmbeddableTraits` is associated to a number type
|
|||
`Type` and reflects the properties of this type with respect
|
||||
to the concept `RealEmbeddable`.
|
||||
|
||||
\cgalHasModel `CGAL::Real_embeddable_traits<T>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Real_embeddable_traits<T>}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class RealEmbeddableTraits {
|
||||
|
|
|
|||
|
|
@ -6,23 +6,25 @@
|
|||
The concept `RingNumberType` combines the requirements of the concepts
|
||||
`IntegralDomainWithoutDivision` and `RealEmbeddable`.
|
||||
A model of `RingNumberType` can be used as a template parameter
|
||||
for Homogeneous kernels.
|
||||
for homogeneous kernels.
|
||||
|
||||
\cgalRefines{IntegralDomainWithoutDivision,RealEmbeddable}
|
||||
|
||||
\cgalHasModel \cpp built-in number types
|
||||
\cgalHasModel `CGAL::Gmpq`
|
||||
\cgalHasModel `CGAL::Gmpz`
|
||||
\cgalHasModel `CGAL::Interval_nt`
|
||||
\cgalHasModel `CGAL::Interval_nt_advanced`
|
||||
\cgalHasModel `CGAL::Lazy_exact_nt<RingNumberType>`
|
||||
\cgalHasModel `CGAL::MP_Float`
|
||||
\cgalHasModel `CGAL::Gmpzf`
|
||||
\cgalHasModel `CGAL::Quotient<RingNumberType>`
|
||||
\cgalHasModel `leda_integer`
|
||||
\cgalHasModel `leda_rational`
|
||||
\cgalHasModel `leda_bigfloat`
|
||||
\cgalHasModel `leda_real`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{\cpp built-in number types}
|
||||
\cgalHasModels{CGAL::Gmpq}
|
||||
\cgalHasModels{CGAL::Gmpz}
|
||||
\cgalHasModels{CGAL::Interval_nt}
|
||||
\cgalHasModels{CGAL::Interval_nt_advanced}
|
||||
\cgalHasModels{CGAL::Lazy_exact_nt<RingNumberType>}
|
||||
\cgalHasModels{CGAL::MP_Float}
|
||||
\cgalHasModels{CGAL::Gmpzf}
|
||||
\cgalHasModels{CGAL::Quotient<RingNumberType>}
|
||||
\cgalHasModels{leda_integer}
|
||||
\cgalHasModels{leda_rational}
|
||||
\cgalHasModels{leda_bigfloat}
|
||||
\cgalHasModels{leda_real}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `FieldNumberType`
|
||||
|
||||
|
|
@ -32,4 +34,3 @@ class RingNumberType {
|
|||
public:
|
||||
|
||||
}; /* end RingNumberType */
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ approximation of an algebraic real root is a slightly modified
|
|||
(filtered) version of the one presented in \cgalCite{abbott-qir-06}. The
|
||||
method has quadratic convergence.
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_1`
|
||||
\cgalModels{AlgebraicKernel_d_1}
|
||||
|
||||
\sa `AlgebraicKernel_d_1`
|
||||
\sa `Polynomial_d`
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ above. `ROOT` should be one of the integer types. See also the
|
|||
documentation of `Sqrt_extension<NT,ROOT>`.
|
||||
\cgalAdvancedEnd
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_2`
|
||||
\cgalModels{AlgebraicKernel_d_2}
|
||||
|
||||
\sa `AlgebraicKernel_d_1`
|
||||
\sa `AlgebraicKernel_d_2`
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ rational univariate polynomial root isolation. It is a model of the
|
|||
isolate integer polynomials, the operations of this kernel have the
|
||||
overhead of converting the polynomials to integer.
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_1`
|
||||
\cgalModels{AlgebraicKernel_d_1}
|
||||
|
||||
\sa `Algebraic_kernel_rs_gmpz_d_1`
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ This univariate algebraic kernel uses the Rs library to perform
|
|||
integer univariate polynomial root isolation. It is a model of the
|
||||
`AlgebraicKernel_d_1` concept.
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_1`
|
||||
\cgalModels{AlgebraicKernel_d_1}
|
||||
|
||||
\sa `Algebraic_kernel_rs_gmpz_d_1`
|
||||
|
||||
|
|
|
|||
|
|
@ -8,8 +8,10 @@ algebraic functionalities on univariate polynomials of general degree \f$ d\f$.
|
|||
|
||||
\cgalRefines{CopyConstructible,Assignable}
|
||||
|
||||
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1`
|
||||
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Algebraic_kernel_rs_gmpz_d_1}
|
||||
\cgalHasModels{CGAL::Algebraic_kernel_rs_gmpq_d_1}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `AlgebraicKernel_d_2`
|
||||
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ if `Alpha_shape_face_base_2` is intended to be used with an alpha-shape class ba
|
|||
\link Tag_true `Tag_true`\endlink, triggers exact comparisons between alpha values. See the description
|
||||
provided in the documentation of `Alpha_shape_2` for more details. The default value is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeFace_2`
|
||||
\cgalModels{AlphaShapeFace_2}
|
||||
|
||||
\sa `Triangulation_face_base_2`
|
||||
\sa `Regular_triangulation_face_base_2`
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ if `Alpha_shape_vertex_base_2` is intended to be used with an alpha-shape class
|
|||
\link Tag_true `Tag_true`\endlink, triggers exact comparisons between alpha values. See the description
|
||||
provided in the documentation of `Alpha_shape_2` for more details. The default value is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeVertex_2`
|
||||
\cgalModels{AlphaShapeVertex_2}
|
||||
|
||||
\sa `Triangulation_vertex_base_2`
|
||||
\sa `Regular_triangulation_vertex_base_2`
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeFace_2` describes the requirements for the base face of a
|
|||
RegularTriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_2TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_face_base_2` (templated with the appropriate triangulation face base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Alpha_shape_face_base_2 (templated with the appropriate triangulation face base class)}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
class AlphaShapeFace_2 {
|
||||
|
|
|
|||
|
|
@ -9,8 +9,10 @@ class of the underlying Delaunay triangulation of a basic alpha shape.
|
|||
\cgalRefines{DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
|
||||
Periodic_2DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsBare{Projection traits such as `CGAL::Projection_traits_xy_3<K>`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeVertex_2` describes the requirements for the base vertex
|
|||
RegularTriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_2TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class)}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class AlphaShapeVertex_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -9,8 +9,10 @@ of the underlying regular triangulation of a weighted alpha shape.
|
|||
|
||||
\cgalRefines{RegularTriangulationTraits_2 if the underlying triangulation of the alpha shape is a regular triangulation.}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`,}
|
||||
\cgalHasModelsBare{Projection traits such as `CGAL::Projection_traits_xy_3<K>`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ provided in the documentation of `Alpha_shape_3` for more details. The default v
|
|||
must be \link Tag_true `Tag_true`\endlink if the underlying triangulation of the alpha shape to be used is a regular triangulation
|
||||
and \link Tag_false `Tag_false`\endlink otherwise. The default is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeCell_3`
|
||||
\cgalModels{AlphaShapeCell_3}
|
||||
|
||||
\sa `Delaunay_triangulation_cell_base_3`
|
||||
\sa `Regular_triangulation_cell_base_3`
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ provided in the documentation of `Alpha_shape_3` for more details. The default v
|
|||
must be \link Tag_true `Tag_true`\endlink if the underlying triangulation of the alpha shape to be used is a regular triangulation
|
||||
and \link Tag_false `Tag_false`\endlink otherwise. The default is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeVertex_3`
|
||||
\cgalModels{AlphaShapeVertex_3}
|
||||
|
||||
\sa `Triangulation_vertex_base_3`
|
||||
\sa `Regular_triangulation_vertex_base_3`
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ to the `Alpha_shape_3` class.
|
|||
By default, it is instantiated with `Delaunay_triangulation_cell_base_3<Traits>`,
|
||||
which is appropriate for basic alpha shapes.
|
||||
|
||||
\cgalModels `FixedAlphaShapeCell_3`
|
||||
\cgalModels{FixedAlphaShapeCell_3}
|
||||
|
||||
\sa `Alpha_shape_cell_base_3`
|
||||
\sa `Delaunay_triangulation_cell_base_3`
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ to the `Alpha_shape_3` class.
|
|||
By default, it is instantiated with `Triangulation_vertex_base_3<Traits>`,
|
||||
which is appropriate for basic alpha shapes.
|
||||
|
||||
\cgalModels `FixedAlphaShapeVertex_3`
|
||||
\cgalModels{FixedAlphaShapeVertex_3}
|
||||
|
||||
\sa `Alpha_shape_vertex_base_3`
|
||||
\sa `Triangulation_vertex_base_3`
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeCell_3` describes the requirements for the base cell of a
|
|||
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class)}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Alpha_status`
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,9 @@ of the underlying Delaunay triangulation of a basic alpha shape.
|
|||
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
|
||||
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeVertex_3` describes the requirements for the base vertex
|
|||
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation.
|
||||
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class)}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Alpha_status`
|
||||
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `FixedAlphaShapeCell_3` describes the requirements for the base cell
|
|||
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class)}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class FixedAlphaShapeCell_3 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -10,7 +10,9 @@ of the underlying Delaunay triangulation of a basic alpha shape with a fixed val
|
|||
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
|
||||
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa CGAL::Exact_predicates_inexact_constructions_kernel (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `FixedAlphaShapeVertex_3` describes the requirements for the base ve
|
|||
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class)}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class FixedAlphaShapeVertex_3 {
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ for the geometric traits class of the underlying regular triangulation of a weig
|
|||
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -10,7 +10,9 @@ of the underlying regular triangulation of a weighted alpha shape.
|
|||
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,10 +9,12 @@ The concept `AlphaWrapOracle` defines the requirements for an Alpha Wrap <em>Ora
|
|||
that answers a number of queries over the input of the algorithm.
|
||||
The oracle is the template parameter of the class `CGAL::Alpha_wraps_3_::Alpha_wrap_3`.
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Point_set_oracle`
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Segment_soup_oracle`
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Triangle_mesh_oracle`
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Triangle_soup_oracle`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Point_set_oracle}
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Segment_soup_oracle}
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Triangle_mesh_oracle}
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Triangle_soup_oracle}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
template <typename GeomTraits>
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ you require Kernel. Stitch_borders doesn't even have clear geometric traits requ
|
|||
The concept `AlphaWrapTraits_3` defines the requirements for the geometric traits class
|
||||
of an alpha wrap oracle.
|
||||
|
||||
\cgalHasModel Any 3D %kernel is a model of this traits concept.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{Any 3D %kernel is a model of this traits concept}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class AlphaWrapTraits_3
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ ag.incident_edges(ag.infinite_vertex());
|
|||
ag.incident_edges(ag.infinite_vertex(), f);
|
||||
\endcode
|
||||
|
||||
\cgalModels `DelaunayGraph_2`
|
||||
\cgalModels{DelaunayGraph_2}
|
||||
|
||||
\sa `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
|
||||
\sa `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ The default values for the template parameters are as follows:
|
|||
`FK = CGAL::Simple_cartesian<CGAL::Interval_nt<false> >`,
|
||||
`FM = CM`.
|
||||
|
||||
\cgalModels `ApolloniusGraphTraits_2`
|
||||
\cgalModels{ApolloniusGraphTraits_2}
|
||||
|
||||
\sa `Kernel`
|
||||
\sa `ApolloniusGraphTraits_2`
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ vertex base required by the
|
|||
`Apollonius_graph_hierarchy_vertex_base_2` is templated by a class `Agvb` which must be a model
|
||||
of the `ApolloniusGraphVertexBase_2` concept.
|
||||
|
||||
\cgalModels `ApolloniusGraphHierarchyVertexBase_2`
|
||||
\cgalModels{ApolloniusGraphHierarchyVertexBase_2}
|
||||
|
||||
\sa `CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>`
|
||||
\sa `CGAL::Triangulation_data_structure_2<Vb,Fb>`
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ default value for `Method_tag` is `CGAL::Integral_domain_without_division_tag`.
|
|||
The way the predicates are evaluated is discussed in
|
||||
\cgalCite{cgal:ke-ppawv-02}, \cgalCite{cgal:ke-rctac-03}.
|
||||
|
||||
\cgalModels `ApolloniusGraphTraits_2`
|
||||
\cgalModels{ApolloniusGraphTraits_2}
|
||||
|
||||
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
|
||||
\sa `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ discarded. By default `StoreHidden` is set to `true`.
|
|||
By default this parameter is
|
||||
instantiated by `Triangulation_ds_vertex_base_2<>`.
|
||||
|
||||
\cgalModels `ApolloniusGraphVertexBase_2`
|
||||
\cgalModels{ApolloniusGraphVertexBase_2}
|
||||
|
||||
\sa `CGAL::Triangulation_data_structure_2<Vb,Fb>`
|
||||
\sa `CGAL::Apollonius_graph_hierarchy_vertex_base_2<Gt>`
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ The class `Apollonius_site_2` is a model for the concept
|
|||
`ApolloniusSite_2`. It is parametrized by a template parameter
|
||||
`K` which must be a model of the `Kernel` concept.
|
||||
|
||||
\cgalModels `ApolloniusSite_2`
|
||||
\cgalModels{ApolloniusSite_2}
|
||||
|
||||
\cgalHeading{Types}
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,9 @@ We only describe the additional requirements with respect to the
|
|||
|
||||
\cgalRefines{TriangulationDataStructure_2}
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_data_structure_2<Vb,Fb>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Triangulation_data_structure_2<Vb,Fb>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `TriangulationDataStructure_2`
|
||||
\sa `ApolloniusGraphVertexBase_2`
|
||||
|
|
|
|||
|
|
@ -19,7 +19,9 @@ next and previous level graphs.
|
|||
`ApolloniusGraphHierarchyVertexBase_2` does not introduce any
|
||||
types in addition to those of `ApolloniusGraphVertexBase_2`.
|
||||
|
||||
\cgalHasModel `CGAL::Apollonius_graph_hierarchy_vertex_base_2<CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden> >`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Apollonius_graph_hierarchy_vertex_base_2<CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden> >}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `ApolloniusGraphDataStructure_2`
|
||||
\sa `CGAL::Apollonius_graph_hierarchy_2<Gt,Agds>`
|
||||
|
|
|
|||
|
|
@ -12,8 +12,10 @@ it provides a type `Site_2`, which must be a model of the concept
|
|||
constructions for sites and several function object
|
||||
types for the predicates.
|
||||
|
||||
\cgalHasModel `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
|
||||
\cgalHasModel `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
|
||||
\cgalHasModels{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
|
||||
\sa `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
|
||||
|
|
|
|||
|
|
@ -12,7 +12,9 @@ sites. The container stores the hidden sites related to the vertex.
|
|||
|
||||
\cgalRefines{TriangulationVertexBase_2}
|
||||
|
||||
\cgalHasModel `CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `ApolloniusGraphDataStructure_2`
|
||||
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
|
||||
|
|
|
|||
|
|
@ -117,8 +117,8 @@ special type of objects. They must, however, supply the relevant
|
|||
traits class, which mainly involves algebraic computations. A traits
|
||||
class also encapsulates the number types used to represent coordinates
|
||||
of geometric objects and to carry out algebraic operations on them. It
|
||||
encapsulates the type of coordinate system used (e.g., Cartesian and
|
||||
Homogeneous), and the geometric or algebraic computation methods
|
||||
encapsulates the type of coordinate system used (e.g., %Cartesian and
|
||||
homogeneous), and the geometric or algebraic computation methods
|
||||
themselves. The precise minimal sets of requirements the actual traits
|
||||
classes must conform to are organized as a hierarchy of concepts; see
|
||||
Section \ref aos_sec-geom_traits.
|
||||
|
|
@ -4780,7 +4780,7 @@ or line segments. The \link Arr_conic_traits_2::Curve_2
|
|||
`Curve_2`\endlink and the derived \link
|
||||
Arr_conic_traits_2::X_monotone_curve_2 `X_monotone_curve_2`\endlink
|
||||
classes also support basic access functions such as `source()`,
|
||||
`target()`, and `orientation()`.
|
||||
`target()`, and `%orientation()`.
|
||||
|
||||
<!-- ------------------------------------------------------------------------- -->
|
||||
\cgalFigureBegin{aos_fig-conics,conics.png}
|
||||
|
|
@ -5067,7 +5067,7 @@ substitute the template parameters `RatKernel`, `AlgKernel`, and
|
|||
the same requirements of the corresponding types used to instantiate
|
||||
the `Arr_conic_traits_2` class template. Here, the use of the
|
||||
`CORE_algebraic_number_traits` class is also recommended with
|
||||
Cartesian kernels instantiated with the `Rational` and `Algebraic`
|
||||
%Cartesian kernels instantiated with the `Rational` and `Algebraic`
|
||||
number types defined by this class. The examples given in this manual
|
||||
use the type definitions listed below. These types are defined in the
|
||||
header file `arr_Bezier.h`.
|
||||
|
|
|
|||
|
|
@ -52,8 +52,7 @@ the `Are_mergeable_2` operation does not enforce the input curves
|
|||
to have the same direction as a precondition. Moreover, `Arr_Bezier_curve_traits_2`
|
||||
supports the merging of curves of opposite directions.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
\cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
|
||||
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ the types `leda::integer` and `CORE::BigInt` are supported as well
|
|||
as any instance of `CGAL::Sqrt_extension` that is instantiated with
|
||||
one of the integral types above.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ namespace CGAL {
|
|||
* `Arr_default_dcel<Traits>`.
|
||||
* </UL>
|
||||
*
|
||||
* \cgalModels `ArrangementBasicTopologyTraits`
|
||||
* \cgalModels{ArrangementBasicTopologyTraits}
|
||||
*
|
||||
* \sa `Arr_default_dcel<Traits>`
|
||||
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
|
||||
|
|
|
|||
|
|
@ -32,8 +32,7 @@ namespace CGAL {
|
|||
* same direction as a precondition. Moreover, `Arr_circle_segment_traits_2`
|
||||
* supports the merging of curves of opposite directions.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
*
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
@ -168,7 +167,7 @@ public:
|
|||
|
||||
|
||||
/*! The `Point_2` number-type nested within the traits class represents
|
||||
* a Cartesian point whose coordinates are algebraic numbers of type
|
||||
* a %Cartesian point whose coordinates are algebraic numbers of type
|
||||
* `CoordNT`.
|
||||
*/
|
||||
class Point_2 {
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ This class is a traits class for \cgal arrangements, built on top of a model of
|
|||
concept `CircularKernel`.
|
||||
It provides curves of type `CGAL::Circular_arc_2<CircularKernel>`.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename CircularKernel >
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ of both types
|
|||
|
||||
It uses the <A HREF="https://www.boost.org/doc/html/variant.html">std::variant</A>.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename CircularKernel >
|
||||
|
|
|
|||
|
|
@ -80,9 +80,7 @@ namespace CGAL {
|
|||
* to have the same direction as a precondition. Moreover, `Arr_conic_traits_2`
|
||||
* supports the merging of curves of opposite directions.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
*
|
||||
* \cgalHeading{Types}
|
||||
*/
|
||||
|
|
@ -274,7 +272,7 @@ public:
|
|||
*/
|
||||
Point_2(const Algebraic& hx, const Algebraic& hy, const Algebraic& hz);
|
||||
|
||||
/*! constructs from Cartesian coordinates.
|
||||
/*! constructs from %Cartesian coordinates.
|
||||
*/
|
||||
Point_2(const Algebraic& x, const Algebraic& y);:
|
||||
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ both resulting subcurves. In case two (or more) \f$ x\f$-monotone curves
|
|||
overlap, their data sets are consolidated, and are inserted into the set
|
||||
of the \f$ x\f$-monotone curve that represents the overlap.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename Traits, typename Data >
|
||||
|
|
|
|||
|
|
@ -49,7 +49,7 @@ namespace CGAL {
|
|||
* `d1` and `d2`. The \f$ x\f$-monotone curve that represents the overlap is
|
||||
* associated with the output of this functor.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2}
|
||||
*/
|
||||
template <typename Tr, typename XData, typename Mrg, typename CData, typename Cnv>
|
||||
class Arr_curve_data_traits_2 : public Tr {
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ must be instantiated with models of the concepts
|
|||
`ArrangementDcelVertex`, `ArrangementDcelHalfedge`,
|
||||
and `ArrangementDcelFace` respectively.
|
||||
|
||||
\cgalModels `ArrangementDcel`
|
||||
\cgalModels{ArrangementDcel}
|
||||
|
||||
*/
|
||||
template< typename V, typename H, typename F >
|
||||
|
|
@ -29,7 +29,7 @@ public:
|
|||
The basic \dcel face type. Serves as a basis class for an extended
|
||||
face record with auxiliary data fields.
|
||||
|
||||
\cgalModels `ArrangementDcelFace`
|
||||
\cgalModels{ArrangementDcelFace}
|
||||
|
||||
*/
|
||||
class Arr_face_base {
|
||||
|
|
@ -43,7 +43,7 @@ The basic \dcel halfedge type. Serves as a basis class for an
|
|||
extended halfedge record with auxiliary data fields. The `Curve`
|
||||
parameter is the type of \f$ x\f$-monotone curves associated with the vertices.
|
||||
|
||||
\cgalModels `ArrangementDcelHalfedge`
|
||||
\cgalModels{ArrangementDcelHalfedge}
|
||||
|
||||
*/
|
||||
template< typename Curve >
|
||||
|
|
@ -58,7 +58,7 @@ The basic \dcel vertex type. Serves as a basis class for an extended
|
|||
vertex record with auxiliary data fields. The `Point` parameter is
|
||||
the type of points associated with the vertices.
|
||||
|
||||
\cgalModels `ArrangementDcelVertex`
|
||||
\cgalModels{ArrangementDcelVertex}
|
||||
|
||||
*/
|
||||
template< typename Point >
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ the base vertex and halfedge types, respectively. Thus, the default
|
|||
\dcel records store no other information, except for the topological
|
||||
incidence relations and the geometric data attached to vertices and edges.
|
||||
|
||||
\cgalModels `ArrangementDcelWithRebind`
|
||||
\cgalModels{ArrangementDcelWithRebind}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ of type `Arrangement` that store no auxiliary data with their \dcel records, whe
|
|||
\dcel data as well. This class simply gives empty implementation for all
|
||||
traits-class functions.
|
||||
|
||||
\cgalModels `OverlayTraits`
|
||||
\cgalModels{OverlayTraits}
|
||||
|
||||
\sa `overlay`
|
||||
|
||||
|
|
@ -43,7 +43,7 @@ it uses the functor `OvlFaceData`, which accepts a `FaceData_A` object
|
|||
and a `FaceData_B` object and computes a corresponding `FaceData_R`
|
||||
object, in order to set the auxiliary data of the overlay face.
|
||||
|
||||
\cgalModels `OverlayTraits`
|
||||
\cgalModels{OverlayTraits}
|
||||
|
||||
\sa `overlay`
|
||||
\sa `CGAL::Arr_face_extended_dcel<Traits,FData,V,H,F>`
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ The default values follow:
|
|||
|
||||
</TABLE>
|
||||
|
||||
\cgalModels `ArrangementDcelWithRebind`
|
||||
\cgalModels{ArrangementDcelWithRebind}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -57,7 +57,7 @@ The `Arr_extended_face` class-template extends the face topological-features of
|
|||
\dcel. It is parameterized by a face base-type `FaceBase` and a data type
|
||||
`FData` used to extend the face base-type.
|
||||
|
||||
\cgalModels `ArrangementDcelFace`
|
||||
\cgalModels{ArrangementDcelFace}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -109,7 +109,7 @@ The `Arr_extended_halfedge` class-template extends the halfedge topological-feat
|
|||
the \dcel. It is parameterized by a halfedge base-type `HalfedgeBase`
|
||||
and a data type `HData` used to extend the halfedge base-type.
|
||||
|
||||
\cgalModels `ArrangementDcelHalfedge`
|
||||
\cgalModels{ArrangementDcelHalfedge}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -162,7 +162,7 @@ topological-features of the \dcel. It is parameterized by a
|
|||
vertex base-type `VertexBase` and a data type `VData` used to extend
|
||||
the vertex base-type.
|
||||
|
||||
\cgalModels `ArrangementDcelVertex`
|
||||
\cgalModels{ArrangementDcelVertex}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -235,7 +235,7 @@ as follows:
|
|||
|
||||
</TABLE>
|
||||
|
||||
\cgalModels `ArrangementDcelWithRebind`
|
||||
\cgalModels{ArrangementDcelWithRebind}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
|
|||
|
|
@ -19,10 +19,7 @@ existing faces might be removed, the notification mechanism is used
|
|||
to dynamically maintain the mapping of face handles to indices.
|
||||
|
||||
|
||||
\cgalModels DefaultConstructible
|
||||
\cgalModels CopyConstructible
|
||||
\cgalModels Assignable
|
||||
\cgalModels `ReadablePropertyMap`
|
||||
\cgalModels{DefaultConstructible,CopyConstructible,Assignable,ReadablePropertyMap}
|
||||
|
||||
\sa `Arr_observer<Arrangement>`
|
||||
\sa `Arr_vertex_index_map<Arrangement>`
|
||||
|
|
|
|||
|
|
@ -39,9 +39,7 @@ namespace CGAL {
|
|||
* normalized vector \f$(x,y)\f$ in the \f$xy\f$-plane that bisects the
|
||||
* identification curve.
|
||||
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementSphericalBoundaryTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementSphericalBoundaryTraits_2}
|
||||
*/
|
||||
|
||||
template <typename Kernel, typename X, typename Y>
|
||||
|
|
@ -52,9 +50,7 @@ namespace CGAL {
|
|||
* not-necessarily normalized 3D direction extended with information that
|
||||
* specifies the location of the point pre-image in the parameter space.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `DefaultConstructible`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels{Assignable,DefaultConstructible,CopyConstructible}
|
||||
*/
|
||||
class Point_2 {
|
||||
public:
|
||||
|
|
@ -118,9 +114,7 @@ namespace CGAL {
|
|||
* intersect the identified left and right sides of the boundary of the
|
||||
* parameter space.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `DefaultConstructible`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels{Assignable,DefaultConstructible,CopyConstructible}
|
||||
*/
|
||||
class X_monotone_curve_2 {
|
||||
public:
|
||||
|
|
@ -287,10 +281,7 @@ namespace CGAL {
|
|||
|
||||
/*! Construction functor of a point.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels `AdaptableUnaryFunction`
|
||||
* \cgalModels `AdaptableTernaryFunction`
|
||||
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableTernaryFunction}
|
||||
*/
|
||||
/*!
|
||||
*/
|
||||
|
|
@ -325,11 +316,7 @@ namespace CGAL {
|
|||
|
||||
/*! Construction functor of \f$x\f$-monotone geodesic arcs.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels `AdaptableUnaryFunction`
|
||||
* \cgalModels `AdaptableBinaryFunction`
|
||||
* \cgalModels `AdaptableTernaryFunction`
|
||||
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableBinaryFunction,AdaptableTernaryFunction}
|
||||
*/
|
||||
class Construct_x_monotone_curve_2 {
|
||||
public:
|
||||
|
|
@ -393,11 +380,7 @@ namespace CGAL {
|
|||
|
||||
/*! Construction functor of geodesic arcs.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels `AdaptableUnaryFunction`
|
||||
* \cgalModels `AdaptableBinaryFunction`
|
||||
* \cgalModels `AdaptableTernaryFunction`
|
||||
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableBinaryFunction,AdaptableTernaryFunction}
|
||||
*/
|
||||
class Construct_curve_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -47,8 +47,7 @@ when the application frequently issues point-location queries on a
|
|||
rather static arrangement that the changes applied to it are mainly
|
||||
insertions of curves and not deletions of them.
|
||||
|
||||
\cgalModels `ArrangementPointLocation_2`
|
||||
\cgalModels `ArrangementVerticalRayShoot_2`
|
||||
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
|
||||
\sa `ArrangementPointLocation_2`
|
||||
\sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ This class is a traits class for \cgal arrangements, built on top of a
|
|||
model of concept `CircularKernel`. It provides curves of type
|
||||
`CGAL::Line_arc_2<CircularKernel>`.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename CircularKernel >
|
||||
|
|
|
|||
|
|
@ -21,9 +21,7 @@ namespace CGAL {
|
|||
* we can find out its actual type and convert it to the respective kernel
|
||||
* object (say, to a `Kernel::Ray_2`).
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementOpenBoundaryTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementOpenBoundaryTraits_2}
|
||||
*/
|
||||
template< typename Kernel >
|
||||
class Arr_linear_traits_2 {
|
||||
|
|
|
|||
|
|
@ -13,8 +13,7 @@ The query time is therefore linear in the complexity of the arrangement.
|
|||
Naturally, this point-location strategy could turn into a heavy
|
||||
time-consuming process when applied to dense arrangements.
|
||||
|
||||
\cgalModels `ArrangementPointLocation_2`
|
||||
\cgalModels `ArrangementVerticalRayShoot_2`
|
||||
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
|
||||
\sa `ArrangementPointLocation_2`
|
||||
\sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ instantiations for the kernel. Using other (inexact) number types
|
|||
`Simple_cartesian<double>`) is also possible, at the user's own
|
||||
risk.
|
||||
|
||||
\cgalModels `ArrangementLandmarkTraits_2`
|
||||
\cgalModels{ArrangementLandmarkTraits_2}
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -32,9 +32,7 @@ the `Are_mergeable_2` operation does not enforce the input curves
|
|||
to have the same direction as a precondition. Moreover, `Arr_non_caching_segment_traits_2`
|
||||
supports the merging of curves of opposite directions.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels `ArrangementLandmarkTraits_2`
|
||||
\cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
\cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
|
||||
\sa `Arr_segment_traits_2<Kernel>`
|
||||
|
||||
|
|
|
|||
|
|
@ -72,10 +72,9 @@ namespace CGAL {
|
|||
* set the macro `CGAL_ALWAYS_LEFT_TO_RIGHT` to 1 before any \cgal header is
|
||||
* included.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels `ArrangementApproximateTraits_2` (if the type that substitutes
|
||||
* the template parameter `SubcurveTraits_2` models the concept as well)
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,
|
||||
* ArrangementApproximateTraits_2 (if the type that substitutes
|
||||
* the template parameter `SubcurveTraits_2` models the concept as well)}
|
||||
*
|
||||
* \sa `Arr_algebraic_segment_traits_2<Coefficient>`
|
||||
* \sa `Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>`
|
||||
|
|
|
|||
|
|
@ -77,12 +77,9 @@ namespace CGAL {
|
|||
* the macro `CGAL_ALWAYS_LEFT_TO_RIGHT` to 1 before any \cgal header is
|
||||
* included.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels `ArrangementConstructXMonotoneCurveTraits_2`
|
||||
* \cgalModels `ArrangementConstructCurveTraits_2`
|
||||
* \cgalModels `ArrangementApproximateTraits_2` (if the type that substitutes
|
||||
* the template parameter `SegmentTraits_2` models the concept as well)
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,`ArrangementConstructXMonotoneCurveTraits_2`
|
||||
* ArrangementConstructCurveTraits_2,ArrangementApproximateTraits_2 (if the type that substitutes
|
||||
* the template parameter `SegmentTraits_2` models the concept as well)}
|
||||
*
|
||||
* \sa `Arr_polycurve_traits_2<SubcurveTraits_2>`
|
||||
* \sa `Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>`
|
||||
|
|
|
|||
|
|
@ -52,9 +52,7 @@ namespace CGAL {
|
|||
to have the same direction as a precondition. Moreover, `Arr_rational_function_traits_2`
|
||||
supports the merging of curves of opposite directions.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
\cgalModels `ArrangementOpenBoundaryTraits_2`
|
||||
\cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,ArrangementOpenBoundaryTraits_2}
|
||||
*/
|
||||
template< typename AlgebraicKernel_d_1 >
|
||||
class Arr_rational_function_traits_2 {
|
||||
|
|
@ -134,10 +132,7 @@ Functor to construct a `Curve_2`. To enable caching the class is not
|
|||
default constructible and must be obtained via the function
|
||||
`construct_curve_2_object()`, which is a member of the traits.
|
||||
|
||||
\cgalModels `Assignable`
|
||||
\cgalModels `CopyConstructible`
|
||||
\cgalModels `AdaptableBinaryFunction`
|
||||
\cgalModels `AdaptableUnaryFunction`
|
||||
\cgalModels{Assignable,CopyConstructible,AdaptableBinaryFunction,AdaptableUnaryFunction}
|
||||
|
||||
*/
|
||||
class Construct_curve_2 {
|
||||
|
|
@ -289,10 +284,7 @@ Functor to construct a `X_monotone_curve_2`. To enable caching the class
|
|||
is not default constructible and must be obtained via the function
|
||||
`construct_x_monotone_curve_2_object()`, which is a member of the traits.
|
||||
|
||||
\cgalModels `Assignable`
|
||||
\cgalModels `CopyConstructible`
|
||||
\cgalModels `AdaptableBinaryFunction`
|
||||
\cgalModels `AdaptableUnaryFunction`
|
||||
\cgalModels{Assignable,CopyConstructible,AdaptableBinaryFunction,AdaptableUnaryFunction}
|
||||
|
||||
*/
|
||||
class Construct_x_monotone_curve_2 {
|
||||
|
|
@ -460,7 +452,7 @@ const Algebraic_real_1& lower, const Algebraic_real_1& upper); const
|
|||
The `Curve_2` class nested within the traits is used
|
||||
to represent rational functions which may be restricted to a certain x-range.
|
||||
|
||||
\cgalModels `ArrTraits::Curve_2`
|
||||
\cgalModels{ArrTraits::Curve_2}
|
||||
|
||||
*/
|
||||
class Curve_2 {
|
||||
|
|
@ -531,7 +523,7 @@ Algebraic_real_1 right_x() const;
|
|||
/*!
|
||||
|
||||
|
||||
\cgalModels `ArrTraits::Point_2`
|
||||
\cgalModels{ArrTraits::Point_2}
|
||||
|
||||
*/
|
||||
class Point_2 {
|
||||
|
|
@ -633,7 +625,7 @@ The `X_monotone_curve_2` class nested within the traits is used
|
|||
to represent \f$ x\f$-monotone parts of rational functions. In particular, such an \f$ x\f$-monotone curve
|
||||
may not contain a vertical asymptote in its interior \f$ x\f$-range.
|
||||
|
||||
\cgalModels `ArrTraits::XMonotoneCurve_2`
|
||||
\cgalModels{ArrTraits::XMonotoneCurve_2}
|
||||
|
||||
*/
|
||||
class X_monotone_curve_2 {
|
||||
|
|
|
|||
|
|
@ -52,9 +52,7 @@ namespace CGAL {
|
|||
* same direction as a precondition. Moreover, `Arr_segment_traits_2` supports
|
||||
* the merging of curves of opposite directions.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
*/
|
||||
template <typename Kernel>
|
||||
class Arr_segment_traits_2 : public Kernel {
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ namespace CGAL {
|
|||
* `Arr_default_dcel<Traits>`.
|
||||
* </UL>
|
||||
*
|
||||
* \cgalModels `ArrangementBasicTopologyTraits`
|
||||
* \cgalModels{ArrangementBasicTopologyTraits}
|
||||
*
|
||||
* \sa `Arr_default_dcel<Traits>`
|
||||
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
|
||||
|
|
|
|||
|
|
@ -26,8 +26,7 @@ is relatively large.
|
|||
|
||||
This strategy supports arbitrary subdivisions, including unbounded ones.
|
||||
|
||||
\cgalModels `ArrangementPointLocation_2`
|
||||
\cgalModels `ArrangementVerticalRayShoot_2`
|
||||
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
|
||||
\sa `ArrangementPointLocation_2`
|
||||
\sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -15,8 +15,7 @@ namespace CGAL {
|
|||
* (especially when the number of modifications applied to the arrangement is
|
||||
* high) and provided only for educational purposes.
|
||||
*
|
||||
* \cgalModels `ArrangementPointLocation_2`
|
||||
* \cgalModels `ArrangementVerticalRayShoot_2`
|
||||
* \cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
*
|
||||
* \sa `ArrangementPointLocation_2`
|
||||
* \sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ namespace CGAL {
|
|||
* `Arr_default_dcel<Traits>`.
|
||||
* </UL>
|
||||
*
|
||||
* \cgalModels `ArrangementBasicTopologyTraits`
|
||||
* \cgalModels{ArrangementBasicTopologyTraits}
|
||||
*
|
||||
* \sa `Arr_default_dcel<Traits>`
|
||||
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
|
||||
|
|
|
|||
|
|
@ -19,10 +19,7 @@ existing vertices might be removed, the notification mechanism is used
|
|||
to dynamically maintain the mapping of vertex handles to indices.
|
||||
|
||||
|
||||
\cgalModels DefaultConstructible
|
||||
\cgalModels CopyConstructible
|
||||
\cgalModels Assignable
|
||||
\cgalModels `ReadablePropertyMap`
|
||||
\cgalModels{DefaultConstructible,CopyConstructible,Assignable,ReadablePropertyMap}
|
||||
|
||||
\sa `Arr_observer<Arrangement>`
|
||||
\sa `Arr_face_index_map<Arrangement>`
|
||||
|
|
|
|||
|
|
@ -23,8 +23,7 @@ It is therefore recommended to use the "walk" point-location strategy
|
|||
for arrangements that are constantly changing, especially if the number
|
||||
of issued queries is not large.
|
||||
|
||||
\cgalModels `ArrangementPointLocation_2`
|
||||
\cgalModels `ArrangementVerticalRayShoot_2`
|
||||
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
|
||||
\sa `ArrangementPointLocation_2`
|
||||
\sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -18,8 +18,7 @@ defined by the `Arrangement` template-parameter, as well as the `VertexData`,
|
|||
`HalfedgeData` and `FaceData` types, can all be written to an input stream using
|
||||
the `<<` operator and read from an input stream using the `>>` operator.
|
||||
|
||||
\cgalModels `ArrangementInputFormatter`
|
||||
\cgalModels `ArrangementOutputFormatter`
|
||||
\cgalModels{ArrangementInputFormatter,ArrangementOutputFormatter}
|
||||
|
||||
\sa `PkgArrangementOnSurface2Read`
|
||||
\sa `PkgArrangementOnSurface2Write`
|
||||
|
|
@ -50,8 +49,7 @@ The `Arr_face_extended_text_formatter` class assumes that the nested `Point_2` a
|
|||
defined by the `Arrangement` template-parameter and that the `FaceData` type
|
||||
can all be written to an input stream using the `<<` operator and read from an input stream using the `>>` operator.
|
||||
|
||||
\cgalModels `ArrangementInputFormatter`
|
||||
\cgalModels `ArrangementOutputFormatter`
|
||||
\cgalModels{ArrangementInputFormatter,ArrangementOutputFormatter}
|
||||
|
||||
\sa `PkgArrangementOnSurface2Read`
|
||||
\sa `PkgArrangementOnSurface2Write`
|
||||
|
|
@ -81,8 +79,7 @@ defined by the `Arrangement` template-parameter can both be written to an input
|
|||
stream using the `<<` operator and read from an input stream using the `>>`
|
||||
operator.
|
||||
|
||||
\cgalModels `ArrangementInputFormatter`
|
||||
\cgalModels `ArrangementOutputFormatter`
|
||||
\cgalModels{ArrangementInputFormatter,ArrangementOutputFormatter}
|
||||
|
||||
\sa `PkgArrangementOnSurface2Read`
|
||||
\sa `PkgArrangementOnSurface2Write`
|
||||
|
|
|
|||
|
|
@ -15,8 +15,7 @@ the base arrangement, while the derived class is responsible for reading and
|
|||
writing the set of curves inducing the arrangement and maintaining the
|
||||
relations between these curves and the edges they induce.
|
||||
|
||||
\cgalModels `ArrangementWithHistoryInputFormatter`
|
||||
\cgalModels `ArrangementWithHistoryOutputFormatter`
|
||||
\cgalModels{ArrangementWithHistoryInputFormatter,ArrangementWithHistoryOutputFormatter}
|
||||
|
||||
\sa `PkgArrangementOnSurface2Read`
|
||||
\sa `PkgArrangementOnSurface2Write`
|
||||
|
|
|
|||
|
|
@ -5,7 +5,9 @@ namespace ArrTraits {
|
|||
*
|
||||
* \cgalRefines{Functor}
|
||||
*
|
||||
* \cgalHasModel ArrangementApproximateTraits_2::Approximate_2
|
||||
* \cgalHasModelsBegin
|
||||
* \cgalHasModels{ArrangementApproximateTraits_2::Approximate_2}
|
||||
* \cgalHasModelsEnd
|
||||
*/
|
||||
class Approximate_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -5,7 +5,9 @@ namespace ArrTraits {
|
|||
*
|
||||
* \cgalRefines{Functor}
|
||||
*
|
||||
* \cgalHasModel ArrangementXMonotoneTraits_2::Are_mergeable_2
|
||||
* \cgalHasModelsBegin
|
||||
* \cgalHasModels{ArrangementXMonotoneTraits_2::Are_mergeable_2}
|
||||
* \cgalHasModelsEnd
|
||||
*/
|
||||
class AreMergeable_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -5,7 +5,9 @@ namespace ArrTraits {
|
|||
*
|
||||
* \cgalRefines{AdaptableTernaryFunction}
|
||||
*
|
||||
* \cgalHasModel ArrangementOpenBoundaryTraits_2::Compare_x_near_boundary_2
|
||||
* \cgalHasModelsBegin
|
||||
* \cgalHasModels{ArrangementOpenBoundaryTraits_2::Compare_x_near_boundary_}
|
||||
* \cgalHasModelsEnd
|
||||
*/
|
||||
class CompareXNearBoundary_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -5,9 +5,11 @@ namespace ArrTraits {
|
|||
*
|
||||
* \cgalRefines{AdaptableFunctor}
|
||||
*
|
||||
* \cgalHasModel ArrangementHorizontalSideTraits_2::Compare_x_on_boundary_2
|
||||
* \cgalHasModel ArrangementOpenBoundaryTraits_2::Compare_x_on_boundary_2
|
||||
* \cgalHasModel ArrangementSphericalBoundaryTraits_2::Compare_x_on_boundary_2
|
||||
* \cgalHasModelsBegin
|
||||
* \cgalHasModels{ArrangementHorizontalSideTraits_2::Compare_x_on_boundary_2}
|
||||
* \cgalHasModels{ArrangementOpenBoundaryTraits_2::Compare_x_on_boundary_2}
|
||||
* \cgalHasModels{ArrangementSphericalBoundaryTraits_2::Compare_x_on_boundary_2}
|
||||
* \cgalHasModelsEnd
|
||||
*/
|
||||
class CompareXOnBoundaryOfCurveEnd_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -5,9 +5,11 @@ namespace ArrTraits {
|
|||
*
|
||||
* \cgalRefines{AdaptableFunctor}
|
||||
*
|
||||
* \cgalHasModel ArrangementClosedBottomTraits_2::Compare_x_on_boundary_2
|
||||
* \cgalHasModel ArrangementClosedTopTraits_2::Compare_x_on_boundary_2
|
||||
* \cgalHasModel ArrangementIdentifiedHorizontalTraits_2::Compare_x_on_boundary_2
|
||||
* \cgalHasModelsBegin
|
||||
* \cgalHasModels{ArrangementClosedBottomTraits_2::Compare_x_on_boundary_2}
|
||||
* \cgalHasModels{ArrangementClosedTopTraits_2::Compare_x_on_boundary_2}
|
||||
* \cgalHasModels{ArrangementIdentifiedHorizontalTraits_2::Compare_x_on_boundary_2}
|
||||
* \cgalHasModelsEnd
|
||||
*/
|
||||
class CompareXOnBoundary_2 {
|
||||
public:
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue