diff --git a/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/RealEmbeddable.tex b/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/RealEmbeddable.tex index d0d748118dc..981bcaa5d98 100644 --- a/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/RealEmbeddable.tex +++ b/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/RealEmbeddable.tex @@ -21,8 +21,8 @@ and functors :\\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval} \\ Remark:\\ -If a number type is a model of both IntegralDomainWithoutDivision and -RealComparable, it follows that the ring represented by such a number type +If a number type is a model of both \ccc{IntegralDomainWithoutDivision} and +\ccc{RealComparable}, it follows that the ring represented by such a number type is a sub-ring of the real numbers and hence has characteristic zero. %( see http://mathworld.wolfram.com/CharacteristicField.html ).