Merge branch 'master' into inventory-dockerfile-GF

This commit is contained in:
Nicolas Saillant 2024-12-05 15:37:01 +01:00
commit e6bf48c50f
189 changed files with 6540 additions and 7594 deletions

View File

@ -1,75 +0,0 @@
name: Filter Testsuite
on:
issue_comment:
types: [created]
workflow_dispatch:
permissions: {}
jobs:
build:
permissions:
pull-requests: write # to create comment
if: (github.event.comment.user.login == 'sloriot' || github.event.comment.user.login == 'lrineau') && contains(github.event.comment.body, '/testme')
runs-on: ubuntu-latest
steps:
- uses: actions/github-script@v7
id: get_label
with:
result-encoding: string
script: |
//get branch name and username
const pr_url = context.payload.issue.pull_request.url
const pr_content = await github.request(pr_url)
const label = pr_content.data.head.label
const base = pr_content.data.base.ref
console.log(label)
return label+":"+base
- name: Run Testsuite
run: |
mkdir -p ~/.ssh
#ssh key
(
cat <<EOF
${{ secrets.ssh_key }}
EOF
)>> ~/.ssh/id_rsa
chmod 600 /home/runner/.ssh/id_rsa
#ssh public key
(
cat <<EOF
${{ secrets.ssh_key_pub }}
EOF
)>> ~/.ssh/id_rsa.pub
chmod 644 /home/runner/.ssh/id_rsa.pub
#known hosts
wget --no-check-certificate https://cgal.geometryfactory.com/CGAL/ssh_known_hosts -O ~/.ssh/known_hosts
#config file
wget --no-check-certificate https://cgal.geometryfactory.com/CGAL/ssh_config -O ~/.ssh/config
#list of hosts
wget --no-check-certificate https://cgal.geometryfactory.com/CGAL/ssh_host_list -O ~/ssh_host_list
#ssh command
LABEL="${{ steps.get_label.outputs.result }}"
USER_NAME=$(echo $LABEL | cut -d':' -f 1)
BRANCH_NAME=$(echo $LABEL | cut -d':' -f 2)
BASE=$(echo $LABEL | cut -d':' -f 3)
PR_NUMBER=${{ github.event.issue.number }}
mapfile -t HOSTS < ~/ssh_host_list;
for i in ${!HOSTS[@]}; do
HOST=$(echo ${HOSTS[$i]}|cut -d' ' -f 1 )
PATH_TO_SCRIPT=$(echo ${HOSTS[$i]}|cut -d' ' -f 2 )
echo "ssh ${HOST} ${PATH_TO_SCRIPT}/run_testsuite_from_branch_name.sh $USER_NAME $BRANCH_NAME $BASE $PR_NUMBER"
ssh ${HOST} "${PATH_TO_SCRIPT}/run_testsuite_from_branch_name.sh $USER_NAME $BRANCH_NAME $BASE $PR_NUMBER"
done
- name: Post address
uses: actions/github-script@v7
with:
script: |
const address = "Testsuite launched. Results will appear on the following page: https://cgal.geometryfactory.com/~cgaltest/test_suite/TESTRESULTS/index.shtml "
github.issues.createComment({
owner: "CGAL",
repo: "cgal",
issue_number: ${{ github.event.issue.number }},
body: address
});

View File

@ -10,17 +10,18 @@ jobs:
reuse:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: REUSE version
uses: fsfe/reuse-action@v4
- name: Checkout
uses: actions/checkout@v4
- name: Display reuse-tool version
uses: fsfe/reuse-action@v5
with:
args: --version
- name: REUSE lint
uses: fsfe/reuse-action@v4
- name: REUSE Compliance Check
uses: fsfe/reuse-action@v5
with:
args: --include-submodules lint
- name: REUSE SPDX SBOM
uses: fsfe/reuse-action@v4
uses: fsfe/reuse-action@v5
with:
args: spdx
- name: install dependencies
@ -29,7 +30,7 @@ jobs:
run: |
mkdir -p ./release
cmake -DDESTINATION=./release -DCGAL_VERSION=9.9 -P ./Scripts/developer_scripts/cgal_create_release_with_cmake.cmake
- name: REUSE lint release tarball
uses: fsfe/reuse-action@v4
- name: REUSE Compliance Check of release tarball
uses: fsfe/reuse-action@v5
with:
args: --root ./release/CGAL-9.9 --include-submodules lint

View File

@ -54,7 +54,7 @@ void validate(std::any & v, const std::vector<std::string> & values,
Option_parser::my_validate<Option_parser::Strategy_id>(v, values);
}
/*! Constructor */
/*! constructs */
Option_parser::Option_parser() :
m_generic_opts("Generic options"),
m_config_opts("Configuration options"),
@ -136,7 +136,7 @@ Option_parser::Option_parser() :
m_positional_opts.add("input-file", -1);
}
/*! Parse the options */
/*! parses the options */
void Option_parser::operator()(int argc, char * argv[])
{
po::store(po::command_line_parser(argc, argv).
@ -225,20 +225,20 @@ void Option_parser::operator()(int argc, char * argv[])
}
}
/*! Obtain the base file-name */
/*! obtains the base file-name */
const std::string & Option_parser::get_file_name(unsigned int i) const
{
return m_variable_map["input-file"].as<Input_path>()[i];
}
/*! Obtain the full file-name */
/*! obtains the full file-name */
const std::string & Option_parser::get_full_name(unsigned int i) const
{ return m_full_names[i]; }
/*! Obtain number of type options */
/*! obtains number of type options */
unsigned int Option_parser::get_number_opts(Type_id &)
{ return sizeof(s_type_opts) / sizeof(char *); }
/*! Obtain number of strategy options */
/*! obtains number of strategy options */
unsigned int Option_parser::get_number_opts(Strategy_id &)
{ return sizeof(s_strategy_opts) / sizeof(char *); }

View File

@ -62,17 +62,17 @@ public:
typedef Vector_strategy_id::iterator Vector_strategy_id_iter;
public:
/*! \brief obtains number of type options */
/*! obtains number of type options */
static unsigned int get_number_opts(Type_id &);
/*! \brief obtains number of strategy options */
/*! obtains number of strategy options */
static unsigned int get_number_opts(Strategy_id &);
/*! Compare the i-th type option to a given option */
/*! compares the i-th type option to a given option */
static bool compare_opt(unsigned int i, const char * opt, Type_id &)
{ return strcmp(s_type_opts[i], opt) == 0; }
/*! Compare the i-th strategy option to a given option */
/*! compares the i-th strategy option to a given option */
static bool compare_opt(unsigned int i, const char * opt, Strategy_id &)
{ return strcmp(s_strategy_opts[i], opt) == 0; }
@ -94,19 +94,19 @@ public:
Input_file_missing_error(std::string & str) : error(str) {}
};
/*! Parse the options */
/*! parses the options */
void operator()(int argc, char * argv[]);
/*! Obtain the verbosity level */
/*! obtains the verbosity level */
unsigned int get_verbose_level() const { return m_verbose_level; }
/*! Obtain the number of input files */
/*! obtains the number of input files */
unsigned int get_number_files() const { return m_number_files; }
/*! \brief obtains the base file-name */
/*! obtains the base file-name */
const std::string & get_file_name(unsigned int i) const;
/*! \brief obtains the full file-name */
/*! obtains the full file-name */
const std::string & get_full_name(unsigned int i) const;
bool get_postscript() const { return m_postscript; }
@ -117,10 +117,10 @@ public:
const char * get_strategy_name(Strategy_code id) const
{ return s_strategy_opts[id]; }
/*! Obtain the window width */
/*! obtains the window width */
unsigned int get_width() const { return m_win_width; }
/*! Obtain the window height */
/*! obtains the window height */
unsigned int get_height() const { return m_win_height; }
template <class MyId>

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University(Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University(Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,4 +1,4 @@
// Copyright(c) 2023, 2024 Tel-Aviv University (Israel).
// Copyright (c) 2023, 2024 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).

View File

@ -1,355 +1,343 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_algebraic_segment_traits_2` is a model of the
* `ArrangementTraits_2` concept that handles planar algebraic curves of
* arbitrary degree, and \f$ x\f$-monotone of such curves. A planar (real)
* <I>algebraic curve</I> is the vanishing set of a polynomial in two variables,
* that is, the curve is defined by the defining equation \f[
* f(x):=\sum_{i+j\leq n} a_{ij} x^i y^j =0, \f] where \f$ n\f$ is the degree of
* the curve.
*
* The traits class allows the construction of algebraic curves, by specifying
* their implicit equation. \f$ x\f$-monotone and vertical segments of a curve
* can also be defined; unbounded curves and segments are supported. The
* template parameter `Coefficient` defines the innermost coefficient type of
* the polynomials. Currently, the types `leda::integer` and `CORE::BigInt` are
* supported as well as any instance of `CGAL::Sqrt_extension` that is
* instantiated with one of the integral types above.
*
* \cgalModels{ArrangementTraits_2}
*/
The traits class `Arr_algebraic_segment_traits_2` is a model of the `ArrangementTraits_2`
concept that handles planar algebraic curves of arbitrary degree,
and \f$ x\f$-monotone of such curves.
A planar (real) <I>algebraic curve</I>
is the vanishing set of a polynomial in two variables, that is, the
curve is defined by the defining equation
\f[ f(x):=\sum_{i+j\leq n} a_{ij} x^i y^j =0, \f]
where \f$ n\f$ is the degree of the curve.
The traits class allows the construction of algebraic curves,
by specifying their implicit equation. \f$ x\f$-monotone and vertical segments
of a curve can also be defined; unbounded curves and segments are supported.
The template parameter `Coefficient` defines
the innermost coefficient type of the polynomials. Currently,
the types `leda::integer` and `CORE::BigInt` are supported as well
as any instance of `CGAL::Sqrt_extension` that is instantiated with
one of the integral types above.
\cgalModels{ArrangementTraits_2}
*/
template <typename Coefficient>
class Arr_algebraic_segment_traits_2 {
public:
/// \name Types
/// @{
/*! Value to specify whether a point should be in the interior of a segment, or
* its minimal point, or its maximal point in lexicographic order.
*/
enum Site_of_point { POINT_IN_INTERIOR = 0, MIN_ENDPOINT = -1, MAX_ENDPOINT = 1 };
/*! the type for bivariate polynomials, with innermost coefficient type
* `Coefficient`. Constitutes a model of the concept `Polynomial_d` with two
* variables.
*
* \sa `CGAL::Polynomial_d`
*/
typedef unspecified_type Polynomial_2;
/*! model for the concept `AlgebraicKernel_1`
*/
typedef unspecified_type Algebraic_kernel_1;
/*! represents coordinates of points.
* Typedef from `Algebraic_kernel_1::Algebraic_real_1`
*/
typedef unspecified_type Algebraic_real_1;
/*! Typedef from `Algebraic_kernel_1::Bound`
*/
typedef unspecified_type Bound;
/// @}
/// \name Accessing functor objects
/// @{
/*!
*/
Construct_curve_2 construct_curve_2_object() const;
/*!
*/
Construct_point_2 construct_point_2_object() const;
/*!
*/
Construct_x_monotone_segment_2 construct_x_monotone_segment_2_object() const;
/// @}
/*!
*/
class Construct_curve_2 {
public:
/// \name Object Creation Functors
/// @{
/*! Returns a `Curve_2` object that represents the curve defined by the
* polynomial `p`
*/
Curve_2 operator() (Polynomial_2 p);
/*! Returns a `Curve_2` object specified by `s`. The passed string represents
* the defining polynomial of the curve and must be given in a MAPLE-readable
* format using "x" as first and "y" as second variable, e.g.,
* \f$(x^3*y-2*x)*(-6*x-y^3*x^6)\f$ for integer coefficients, and
* \f$3/2*x*y^4-5/7*x^2+3/1\f$ for rational coefficients.
*/
Curve_2 operator() (std::string s);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_curve_2 */
/*!
*/
class Construct_point_2 {
public:
/// \name Object Creation Functors
/// @{
/*! Returns a `Point_2` object that represents the `arcno`-th
* point in the fiber of `cv` at \f$ x\f$-coordinate `x`,
* counted from the bottom, starting with zero.
* \pre (`cv` must not have a vertical line at `x`,
* and \f$ 0\leq arcno < c\f$, where \f$ c\f$ is the number of points
* in the fiber of `cv` at `x`.)
*/
Point_2 operator() (Algebraic_real_1 x, Curve_2 cv, int arcno);
/*! Returns a `Point_2` object that represents the
* point on `xcv` at \f$ x\f$-coordinate `x`
* \pre (`x` is in the \f$ x\f$-range of `xcv`.)
*/
Point_2 operator() (Algebraic_real_1 x, X_monotone_curve_2 xcv);
/*! Returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (Algebraic_real_1 x, Algebraic_real_1 y);
/*! Returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (Coefficient x, Coefficient y);
/*! Returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (Bound x, Bound y);
/*! Returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (int x, int y);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_point_2 */
/*!
*/
class Construct_x_monotone_segment_2 {
public:
/// \name Object Creation Functors
/// @{
/*! inserts a sequence of `X_monotone_curve_2` objects (terminal segments) into
* an output container given through an output iterator. These terminal segments
* compose an \f$x\f$-monotone (or vertical) segment of a given curve that
* starts in `end_min`, and ends in `end_max`.
*
* \param cv The input curve.
* \param end_min The starting point.
* \param end_max The ending point.
* \param oi The output iterator that points at the output container.
* \return The past-the-end iterator of the output container.
*
* \pre `end_min` must have a unique \f$x\f$-monotone segment to its right, or
* `end_max` must have a unique \f$x\f$-monotone segment to its left.
* Furthermore, `end_min` and `end_max` must be connected by an
* \f$x\f$-monotone segment of `cv`)
*/
template <typename OutputIterator>
OutputIterator operator() (Curve_2 cv, Point_2 end_min, Point_2 end_max,
OutputIterator oi);
/*! inserts a sequence of `X_monotone_curve_2` objects into an output container
* given through an output iterator. These segments form an \f$x\f$-monotone
* (or vertical) segment of the curve `cv`.
*
* If `site_of_p==POINT_IN_INTERIOR`, the maximal segment is
* returned that contains `p` in its interior.
*
* returned that contains `p` as its left endpoint.
*
* returned that contains `p` as its left endpoint.
*
* \pre (If `site_of_p==POINT_IN_INTERIOR`, `p`
* must be an interior point of an \f$x\f$-monotone or a vertical
* segment.
* must either have a unique \f$x\f$-monotone segment to the right,
* or a vertical segment from `p` upwards.
* must either have a unique \f$x\f$-monotone segment to the left,
* or a vertical segment from `p` downwards.)
*/
template <typename OutputIterator>
OutputIterator operator() (Curve_2 cv, Point_2 p, Site_of_point site_of_p,
OutputIterator out);
/*! inserts a sequence of `X_monotone_curve_2` objects into an output container
* given through an output iterator. These segments form a straight-line
* segment connecting the points `p` and `q`. If `p` and `q` share the same
* \f$x\f$-coordinate, the constructed vertical segment consists of only one
* `X_monotone_curve_2` object and can be computed efficiently. In the
* non-vertical case, the construction is only possible if `p` and `q` have both
* rational x- and y-coordinates.
*
* \pre (`p` must not be equal to `q`.)
*/
template <typename OutputIterator>
OutputIterator operator() (Point_2 p, Point_2 q, OutputIterator out);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_x_monotone_segment_2 */
/*! Models the `ArrangementTraits_2::Curve_2` concept.
* Represents algebraic curves. Internally, the type stores
* topological-geometric information about the particular curve.
* In order to use internal caching, instances should only be created
* using the `Construct_curve_2` functor of the traits class.
*/
class Curve_2 {
public:
/// \name Modifiers
/// @{
/*! returns the defining polynomial of the curve.
*/
Polynomial_2 polynomial () const;
/// @}
}; /* end Arr_algebraic_segment_traits_2::Curve_2 */
/*! Models the `ArrangementBasicTraits_2::Point_2` concept.
* Represents points in \f$ \mathbb{R}^2\f$. Intersection points of algebraic
* curves are in general non-rational, so we need a data structure that is
* capable of representing arbitrary points with algebraic coordinates.
*
* The traits class represents algebraic coordinates by the type
* `Algebraic_real_1`, which is a model of the `AlgebraicReal_1` concept.
* A point \f$ p\f$ is stored by a triple \f$ (x,cv,arcno)\f$,
* where \f$ x\f$ is the \f$ x\f$-coordinate of a point, \f$ cv\f$ is an instance
* of `Curve_2` that contains the point, (and has no vertical line at \f$ x\f$),
* and \f$ arcno\f$ is an `int`, denoting that \f$ p\f$ is met as the
* \f$arcno\f$-th point when shooting a vertical ray at \f$ x\f$, starting from
* \f$-\infty\f$ (where counting starts with \f$ 0\f$).
*
* In addition to the methods listed below, the copy constructor and assignment
* operator for `Point_2` objects are also supported.
*
* The functor `Construct_point_2` constructs `Point_2` instances.
*/
class Point_2 {
public:
/// \name Modifiers
/// @{
/*! returns the \f$ x\f$-coordinate of `p`.
*/
Algebraic_real_1 x () const;
/*! returns the \f$ y\f$-coordinates of `p`.
*
* <B>Attention:</B> As described above, points are not stored
* by their \f$ y\f$-coordinate in `Algebraic_real_1` representation. In fact,
* this representation must be computed on demand, and might become quite
* costly for points defined by high-degree polynomials. Therefore, it is
* recommended to avoid to call this function as much as possible.
*/
Algebraic_real_1 y () const;
/*! returns a `Curve_2` instance that `p`is part of.
*/
Curve_2 curve () const;
/*! returns the arc number of `p`.
*/
int arcno () const;
/*! returns double-approximations of the \f$ x\f$- and \f$ y\f$-coordinates.
*/
std::pair<double,double> to_double () const;
/// @}
}; /* end Arr_algebraic_segment_traits_2::Point_2 */
/*! Models the `ArrangementBasicTraits_2::X_monotone_curve_2` concept.
* Represents terminal segments of an algebraic curves, that means vertical
* segments or \f$ x\f$-monotone segments with no critical \f$ x\f$-coordinate
* in the interior of their \f$ x\f$-range. Terminal segments might either be
* bounded or unbounded. By definition, each interior point of a non-vertical
* segment has the same arc number (see the documentation of type `Point_2`
* above, which is called the <I>arc number</I> of the segment (note the arc
* number at the endpoints might differ). Such segments are represented
* internally by a 4-tuple \f$ (p,q,cv,arcno)\f$, where \f$ p\f$ and \f$ q\f$
* are the endpoints, \f$ cv\f$ is the <I>supporting curve</I> that the segment
* belongs to, and arcno is the arc number of the segment.
*
* Arbitrary (weakly) \f$ x\f$-monotone segments are presented by a range
* of `X_monotone_curve_2` instances, whose union equals the segment.
* The functor `Construct_x_monotone_segment_2` allows their construction.
* To construct all (maximal) terminal segments of a curve,
* use the `Make_x_monotone_2` functor supplied by the traits class.
*/
class X_monotone_curve_2 {
public:
/// \name Modifiers
/// @{
/*! returns the supporting algebraic curve of `s`.
*/
Curve_2 curve () const;
/*! returns whether `s` is a vertical segment.
*/
bool is_vertical () const;
/*! returns whether `s` has a finite endpoint on the left
*/
bool is_finite (CGAL::Arr_curve_end ce) const;
/*! \pre (The corresponding curve end is finite)
*/
Point_2 curve_end (CGAL::Arr_curve_end ce) const;
/*! returns the arc number of the segment.
* \pre (The segment is non-vertical)
*/
int arcno () const;
/*!
returns the \f$ x\f$-coordinate of a vertical segment.
\pre (The segment is vertical)
*/
Algebraic_real_1 x () const;
/// @}
}; /* end Arr_algebraic_segment_traits_2::X_monotone_curve_2 */
/// \name Types
/// @{
/*! Value to specify whether a point should be in the interior of a segment, or
* its minimal point, or its maximal point in lexicographic order.
*/
enum Site_of_point { POINT_IN_INTERIOR = 0, MIN_ENDPOINT = -1, MAX_ENDPOINT = 1 };
/*! the type for bivariate polynomials, with innermost coefficient type
* `Coefficient`. Constitutes a model of the concept `Polynomial_d` with two
* variables.
*
* \sa `CGAL::Polynomial_d`
*/
typedef unspecified_type Polynomial_2;
/*! model for the concept `AlgebraicKernel_1`
*/
typedef unspecified_type Algebraic_kernel_1;
/*! represents coordinates of points.
* Typedef from `Algebraic_kernel_1::Algebraic_real_1`
*/
typedef unspecified_type Algebraic_real_1;
/*! Typedef from `Algebraic_kernel_1::Bound`
*/
typedef unspecified_type Bound;
/// @}
/// \name Accessing functor objects
/// @{
/*!
*/
Construct_curve_2 construct_curve_2_object() const;
/*!
*/
Construct_point_2 construct_point_2_object() const;
/*!
*/
Construct_x_monotone_segment_2 construct_x_monotone_segment_2_object() const;
/// @}
/*!
*/
class Construct_curve_2 {
public:
/// \name Object Creation Functors
/// @{
/*! returns a `Curve_2` object that represents the curve defined by the
* polynomial `p`
*/
Curve_2 operator() (Polynomial_2 p);
/*! returns a `Curve_2` object specified by `s`. The passed string represents
* the defining polynomial of the curve and must be given in a MAPLE-readable
* format using "x" as first and "y" as second variable, e.g.,
* \f$(x^3*y-2*x)*(-6*x-y^3*x^6)\f$ for integer coefficients, and
* \f$3/2*x*y^4-5/7*x^2+3/1\f$ for rational coefficients.
*/
Curve_2 operator() (std::string s);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_curve_2 */
/*!
*/
class Construct_point_2 {
public:
/// \name Object Creation Functors
/// @{
/*! returns a `Point_2` object that represents the `arcno`-th
* point in the fiber of `cv` at \f$ x\f$-coordinate `x`,
* counted from the bottom, starting with zero.
* \pre (`cv` must not have a vertical line at `x`,
* and \f$ 0\leq arcno < c\f$, where \f$ c\f$ is the number of points
* in the fiber of `cv` at `x`.)
*/
Point_2 operator() (Algebraic_real_1 x, Curve_2 cv, int arcno);
/*! returns a `Point_2` object that represents the
* point on `xcv` at \f$ x\f$-coordinate `x`
* \pre (`x` is in the \f$ x\f$-range of `xcv`.)
*/
Point_2 operator() (Algebraic_real_1 x, X_monotone_curve_2 xcv);
/*! returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (Algebraic_real_1 x, Algebraic_real_1 y);
/*! returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (Coefficient x, Coefficient y);
/*! returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (Bound x, Bound y);
/*! returns a `Point_2` object that represents (x,y)
*/
Point_2 operator() (int x, int y);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_point_2 */
/*!
*/
class Construct_x_monotone_segment_2 {
public:
/// \name Object Creation Functors
/// @{
/*! inserts a sequence of `X_monotone_curve_2` objects (terminal segments) into
* an output container given through an output iterator. These terminal segments
* compose an \f$x\f$-monotone (or vertical) segment of a given curve that
* starts in `end_min`, and ends in `end_max`.
*
* \param cv The input curve.
* \param end_min The starting point.
* \param end_max The ending point.
* \param oi The output iterator that points at the output container.
* \return The past-the-end iterator of the output container.
*
* \pre `end_min` must have a unique \f$x\f$-monotone segment to its right, or
* `end_max` must have a unique \f$x\f$-monotone segment to its left.
* Furthermore, `end_min` and `end_max` must be connected by an
* \f$x\f$-monotone segment of `cv`)
*/
template <typename OutputIterator>
OutputIterator operator() (Curve_2 cv, Point_2 end_min, Point_2 end_max,
OutputIterator oi);
/*! inserts a sequence of `X_monotone_curve_2` objects into an output container
* given through an output iterator. These segments form an \f$x\f$-monotone
* (or vertical) segment of the curve `cv`.
*
* If `site_of_p==POINT_IN_INTERIOR`, the maximal segment is
* returned that contains `p` in its interior.
*
* returned that contains `p` as its left endpoint.
*
* returned that contains `p` as its left endpoint.
*
* \pre (If `site_of_p==POINT_IN_INTERIOR`, `p`
* must be an interior point of an \f$x\f$-monotone or a vertical
* segment.
* must either have a unique \f$x\f$-monotone segment to the right,
* or a vertical segment from `p` upwards.
* must either have a unique \f$x\f$-monotone segment to the left,
* or a vertical segment from `p` downwards.)
*/
template <typename OutputIterator>
OutputIterator operator() (Curve_2 cv, Point_2 p, Site_of_point site_of_p,
OutputIterator out);
/*! inserts a sequence of `X_monotone_curve_2` objects into an output container
* given through an output iterator. These segments form a straight-line
* segment connecting the points `p` and `q`. If `p` and `q` share the same
* \f$x\f$-coordinate, the constructed vertical segment consists of only one
* `X_monotone_curve_2` object and can be computed efficiently. In the
* non-vertical case, the construction is only possible if `p` and `q` have both
* rational x- and y-coordinates.
*
* \pre (`p` must not be equal to `q`.)
*/
template <typename OutputIterator>
OutputIterator operator() (Point_2 p, Point_2 q, OutputIterator out);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_x_monotone_segment_2 */
/*! A model of the the `ArrangementTraits_2::Curve_2` concept.
* Represents algebraic curves. Internally, the type stores
* topological-geometric information about the particular curve.
* In order to use internal caching, instances should only be created
* using the `Construct_curve_2` functor of the traits class.
*/
class Curve_2 {
public:
/// \name Modifiers
/// @{
/*! returns the defining polynomial of the curve.
*/
Polynomial_2 polynomial () const;
/// @}
}; /* end Arr_algebraic_segment_traits_2::Curve_2 */
/*! A model of the `ArrangementBasicTraits_2::Point_2` concept.
* Represents points in \f$ \mathbb{R}^2\f$. Intersection points of algebraic
* curves are in general non-rational, so we need a data structure that is
* capable of representing arbitrary points with algebraic coordinates.
*
* The traits class represents algebraic coordinates by the type
* `Algebraic_real_1`, which is a model of the `AlgebraicReal_1` concept.
* A point \f$ p\f$ is stored by a triple \f$ (x,cv,arcno)\f$,
* where \f$ x\f$ is the \f$ x\f$-coordinate of a point, \f$ cv\f$ is an instance
* of `Curve_2` that contains the point, (and has no vertical line at \f$ x\f$),
* and \f$ arcno\f$ is an `int`, denoting that \f$ p\f$ is met as the
* \f$arcno\f$-th point when shooting a vertical ray at \f$ x\f$, starting from
* \f$-\infty\f$ (where counting starts with \f$ 0\f$).
*
* In addition to the methods listed below, the copy constructor and assignment
* operator for `Point_2` objects are also supported.
*
* The functor `Construct_point_2` constructs `Point_2` instances.
*/
class Point_2 {
public:
/// \name Modifiers
/// @{
/*! returns the \f$ x\f$-coordinate of `p`.
*/
Algebraic_real_1 x () const;
/*! returns the \f$ y\f$-coordinates of `p`.
*
* <B>Attention:</B> As described above, points are not stored
* by their \f$ y\f$-coordinate in `Algebraic_real_1` representation. In fact,
* this representation must be computed on demand, and might become quite
* costly for points defined by high-degree polynomials. Therefore, it is
* recommended to avoid to call this function as much as possible.
*/
Algebraic_real_1 y () const;
/*! returns a `Curve_2` instance that `p`is part of.
*/
Curve_2 curve () const;
/*! returns the arc number of `p`.
*/
int arcno () const;
/*! returns double-approximations of the \f$ x\f$- and \f$ y\f$-coordinates.
*/
std::pair<double,double> to_double () const;
/// @}
}; /* end Arr_algebraic_segment_traits_2::Point_2 */
/*! A model of the `ArrangementBasicTraits_2::X_monotone_curve_2` concept.
* Represents terminal segments of an algebraic curves, that means vertical
* segments or \f$ x\f$-monotone segments with no critical \f$ x\f$-coordinate
* in the interior of their \f$ x\f$-range. Terminal segments might either be
* bounded or unbounded. By definition, each interior point of a non-vertical
* segment has the same arc number (see the documentation of type `Point_2`
* above, which is called the <I>arc number</I> of the segment (note the arc
* number at the endpoints might differ). Such segments are represented
* internally by a 4-tuple \f$ (p,q,cv,arcno)\f$, where \f$ p\f$ and \f$ q\f$
* are the endpoints, \f$ cv\f$ is the <I>supporting curve</I> that the segment
* belongs to, and arcno is the arc number of the segment.
*
* Arbitrary (weakly) \f$ x\f$-monotone segments are presented by a range
* of `X_monotone_curve_2` instances, whose union equals the segment.
* The functor `Construct_x_monotone_segment_2` allows their construction.
* To construct all (maximal) terminal segments of a curve,
* use the `Make_x_monotone_2` functor supplied by the traits class.
*/
class X_monotone_curve_2 {
public:
/// \name Modifiers
/// @{
/*! returns the supporting algebraic curve of `s`.
*/
Curve_2 curve () const;
/*! returns whether `s` is a vertical segment.
*/
bool is_vertical () const;
/*! returns whether `s` has a finite endpoint on the left
*/
bool is_finite (CGAL::Arr_curve_end ce) const;
/*! \pre (The corresponding curve end is finite)
*/
Point_2 curve_end (CGAL::Arr_curve_end ce) const;
/*! returns the arc number of the segment.
* \pre (The segment is non-vertical)
*/
int arcno () const;
/*! returns the \f$ x\f$-coordinate of a vertical segment.
* \pre (The segment is vertical)
*/
Algebraic_real_1 x () const;
/// @}
}; /* end Arr_algebraic_segment_traits_2::X_monotone_curve_2 */
}; /* end Arr_algebraic_segment_traits_2 */

View File

@ -49,10 +49,10 @@ public:
/// \name Creation
/// @{
/*! Default constructor. */
/*! constructs default */
Arr_bounded_planar_topology_traits_2();
/*! Constructor from a geometry-traits object.
/*! constructs from a geometry-traits object.
* \param traits the traits.
*/
Arr_bounded_planar_topology_traits_2(const GeometryTraits_2* traits);
@ -62,16 +62,16 @@ public:
/// \name Accessors
/// @{
/*! Obtain the DCEL (const version). */
/*! obtains the DCEL (const version). */
const Dcel& dcel() const;
/*! Obtain the DCEL (non-const version). */
/*! obtains the DCEL (non-const version). */
Dcel& dcel();
/*! Obtain the unbounded face (const version). */
/*! obtains the unbounded face (const version). */
const Face* unbounded_face() const;
/*! Obtain the unbounded face (non-const version). */
/*! obtains the unbounded face (non-const version). */
Face* unbounded_face();
/// @}

View File

@ -35,7 +35,7 @@ namespace CGAL {
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
*
*/
template< typename Kernel >
template <typename Kernel>
class Arr_circle_segment_traits_2 {
public:
@ -133,7 +133,7 @@ public:
/*! returns the target point.
*
* \pre `cv` is not a full circle.
*/
*/
const Point_2& target() const;
/*! returns the orientation of the curve (`COLLINEAR` in case of line
@ -189,7 +189,7 @@ public:
/// \name Creation
/// @{
/*! default constructor.
/*! constructs default
*/
Point_2();
@ -323,15 +323,15 @@ public:
/// \name Creation
/// @{
/*! Trims the given x-monotone curve to an from src to tgt.
/*! trims the given x-monotone curve to an from src to tgt.
* \ pre `src` and `tgt` lies on the curve
*/
X_monotone_curve_2(const X_monotone_curve_2& xcv,
const Point_2& src,
const Point_2& tgt)const
const Point_2& tgt) const
/// @}
} /* end Arr_circle_segment_traits_2::Trim_2 */
} /* end Arr_circle_segment_traits_2::Trim_2 */
}; /* end Arr_circle_segment_traits_2 */

View File

@ -260,11 +260,11 @@ public:
/// \name Creation
/// @{
/*! construct a default point.
/*! constructs a default point.
*/
Point_2();
/*! construct a point from an algebraic point.
/*! constructs a point from an algebraic point.
*/
Point_2(const typename Alg_kernel::Point_2& p);
@ -401,7 +401,7 @@ public:
*/
X_monotone_curve_2 operator()(const Curve_2& cv) const;
/*! Constructs an \f$x\f$-monotone curve connecting the two given endpoints.
/*! constructs an \f$x\f$-monotone curve connecting the two given endpoints.
* \param source The first point.
* \param target The second point.
* \pre `source` and `target` must not be the same.
@ -409,7 +409,7 @@ public:
*/
X_monotone_curve_2 operator()(const Point_2& source, const Point_2& target) const;
/*! Constructs a special segment of a given line connecting to given
/*! constructs a special segment of a given line connecting to given
* endpoints.
* \param a, b, c The coefficients of the supporting line (\f$ax + by + c = 0\f$).
* \param source The source point.
@ -427,13 +427,13 @@ public:
*/
class Construct_bbox_2 {
public:
/*! Obtain a bounding box for a conic arc.
/*! obtains a bounding box for a conic arc.
* \param cv The conic arc.
* \return The bounding box.
*/
Bbox_2 operator()(const Curve_2& cv) const { return bbox(cv); }
/*! Obtain a bounding box for an \f$x\f$-monotone conic arc.
/*! obtains a bounding box for an \f$x\f$-monotone conic arc.
* \param xcv The \f$x\f$-monotone conic arc.
* \return The bounding box.
*/
@ -453,7 +453,7 @@ public:
*/
class Approximate_2 {
public:
/*! Obtain an approximation of a point coordinate.
/*! obtains an approximation of a point coordinate.
* \param p The exact point.
* \param i The coordinate index (either 0 or 1).
* \pre `i` is either 0 or 1.
@ -462,7 +462,7 @@ public:
*/
Approximate_number_type operator()(const Point_2& p, int i) const;
/*! Obtain an approximation of a point.
/*! obtains an approximation of a point.
* \param p The exact point.
*/
Approximate_point_2 operator()(const Point_2& p) const;
@ -496,7 +496,7 @@ public:
*/
class Trim_2 {
public:
/*! Trims the given \f$x\f$-monotone arc to new endpoints.
/*! trims the given \f$x\f$-monotone arc to new endpoints.
* \param xcv The \f$x\f$-monotone arc
* \param source The new source point.
* \param target The new target point.
@ -505,28 +505,28 @@ public:
X_monotone_curve_2 operator()(const X_monotone_curve_2& xcv,
const Point_2& source,
const Point_2& target) const;
};
/// \name Accessing Functor Objects
/// @{
/*! Obtain a `Construct_curve_2` functor. */
/*! obtains a `Construct_curve_2` functor. */
Construct_curve_2 construct_curve_2_object() const;
/*! Obtain a `Construct_x_monotone_curve_2` functor. */
/*! obtains a `Construct_x_monotone_curve_2` functor. */
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object() const;
/*! Obtain a `Bbox_2` functor. */
/*! obtains a `Bbox_2` functor. */
Construct_bbox_2 construct_bbox_2_object() const;
/*! Obtain a `Trim_2` functor. */
/*! obtains a `Trim_2` functor. */
Trim_2 trim_2_object() const;
/*! Obtain an `Approximate_2` functor. */
/*! obtains an `Approximate_2` functor. */
Approximate_2 approximate_2_object() const;
/// @}
}; /* end Arr_conic_traits_2 */
} /* end namespace CGAL */

View File

@ -1,30 +1,28 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
The class `Arr_consolidated_curve_data_traits_2` is a model of the concept `ArrangementTraits_2`,
and serves as a decorator class that enables the extension of the curve
type defined by the `Traits` parameter. The traits class inherits its
point type from `Traits::Point_2`, and defines the types
`Curve_2` and `X_monotone_curve_2` extended with extraneous data
fields of type `Data`.
Each `Curve_2` object is associated with a single data field of type
`Data`, and each `X_monotone_curve_2` object is associated with
a set of unique data objects. When a curve is subdivided into \f$ x\f$-monotone
subcurves, all resulting subcurves are associated with a list containing
a single data object, copied from the inducing curve. When an \f$ x\f$-monotone
curve is split, its data set is duplicated, and inserted into the sets of
both resulting subcurves. In case two (or more) \f$ x\f$-monotone curves
overlap, their data sets are consolidated, and are inserted into the set
of the \f$ x\f$-monotone curve that represents the overlap.
\cgalModels{ArrangementTraits_2}
*/
template< typename Traits, typename Data >
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The class `Arr_consolidated_curve_data_traits_2` is a model of the concept
* `ArrangementTraits_2`, and serves as a decorator class that enables the
* extension of the curve type defined by the `Traits` parameter. The traits
* class inherits its point type from `Traits::Point_2`, and defines the types
* `Curve_2` and `X_monotone_curve_2` extended with extraneous data fields of
* type `Data`.
*
* Each `Curve_2` object is associated with a single data field of type `Data`,
* and each `X_monotone_curve_2` object is associated with a set of unique data
* objects. When a curve is subdivided into \f$ x\f$-monotone subcurves, all
* resulting subcurves are associated with a list containing a single data
* object, copied from the inducing curve. When an \f$ x\f$-monotone curve is
* split, its data set is duplicated, and inserted into the sets of both
* resulting subcurves. In case two (or more) \f$ x\f$-monotone curves overlap,
* their data sets are consolidated, and are inserted into the set of the \f$
* x\f$-monotone curve that represents the overlap.
*
* \cgalModels{ArrangementTraits_2}
*/
template <typename Traits, typename Data>
class Arr_consolidated_curve_data_traits_2
: public Arr_curve_data_traits_2<Traits, _Unique_list<Data>,
_Consolidate_unique_lists<Data>,
@ -32,139 +30,106 @@ class Arr_consolidated_curve_data_traits_2
{
public:
/// \name Types
/// @{
/// \name Types
/// @{
/*!
the base traits-class.
*/
typedef Traits Base_traits_2;
//! the base traits-class.
typedef Traits Base_traits_2;
/*!
the base curve.
*/
typedef typename Base_traits_2::Curve_2 Base_curve_2;
//! the base curve.
typedef typename Base_traits_2::Curve_2 Base_curve_2;
/*!
the base \f$ x\f$-monotone curve curve.
*/
typedef typename Base_traits_2::X_monotone_curve_2 Base_x_monotone_curve_2;
//! the base \f$ x\f$-monotone curve curve.
typedef typename Base_traits_2::X_monotone_curve_2 Base_x_monotone_curve_2;
/*!
a set of data objects that is associated with an \f$ x\f$-monotone curve.
*/
typedef unspecified_type typedef Data_container;
//! a set of data objects that is associated with an \f$ x\f$-monotone curve.
typedef unspecified_type typedef Data_container;
/*!
a non-mutable iterator for the data objects in the data container.
*/
typedef unspecified_type typedef Data_iterator;
//! a non-mutable iterator for the data objects in the data container.
typedef unspecified_type typedef Data_iterator;
/// @}
/// @}
/*! The `Data_container` class nested within the consolidated
* curve-data traits and associated with the `Traits::X_monotone_curve_2` type
* is maintained as a list with unique data objects. This representation is
* simple and efficient in terms of memory consumption. It also requires that
* the `Data` class supports only the equality operator. Note however that
* most set operations require linear time.
*/
class Data_container {
public:
/*!
/// \name Creation
/// @{
/*! constructs default */
Data_container();
The `Data_container` class nested within the consolidated
curve-data traits and associated with the `Traits::X_monotone_curve_2`
type is maintained as a list with unique data objects. This representation is
simple and efficient in terms of memory consumption. It also requires that
the `Data` class supports only the equality operator. Note however that
most set operations require linear time.
/*! constructs set containing a single `data` object. */
Data_container(const Data& data);
*/
class Data_container {
public:
/// @}
/// \name Creation
/// @{
/// \name Access Functions
/// @{
/*!
default constructor.
*/
Data_container ();
/*! returns the number of data objects in the set. */
std::size_t size() const;
/*!
constructs set containing a single `data` object.
*/
Data_container (const Data& data);
/*! returns an iterator pointing to the first data object. */
Data_iterator begin() const;
/// @}
/*! returns a past-the-end iterator for the data objects. */
Data_iterator end() const;
/// \name Access Functions
/// @{
/*! returns the first data object inserted into the set.
* \pre The number of data objects is not \f$ 0\f$.
*/
const Data& front() const;
/*!
returns the number of data objects in the set.
*/
std::size_t size () const;
/*! returns the last data object inserted into the set.
* \pre The number of data objects is not \f$ 0\f$.
*/
const Data& back() const;
/*!
returns an iterator pointing to the first data object.
*/
Data_iterator begin () const;
/// @}
/*!
returns a past-the-end iterator for the data objects.
*/
Data_iterator end () const;
/// \name Predicates
/// @{
/*!
returns the first data object inserted into the set.
\pre The number of data objects is not \f$ 0\f$.
*/
const Data& front () const;
/*! checks whether the two sets contain the same data objects (regardless of
* order).
*/
bool operator==(const Data_container& other) const;
/*!
returns the last data object inserted into the set.
\pre The number of data objects is not \f$ 0\f$.
*/
const Data& back () const;
/*! finds the given `data` object in the set and returns an iterator
* for this object, or `end()` if it is not found.
*/
Data_iterator find(const Data& data);
/// @}
/// @}
/// \name Predicates
/// @{
/// \name Modifiers
/// @{
/*!
check if the two sets contain the same data objects (regardless of order).
*/
bool operator== (const Data_container& other) const;
/*! inserts the given `data` object into the set. Returns `true` on
* success, or `false` if the set already contains the object.
*/
bool insert(const Data& data);
/*!
find the given `data` object in the set and returns an iterator
for this object, or `end()` if it is not found.
*/
Data_iterator find (const Data& data);
/*! erases the given `data` object from the set. Returns `true` on
* success, or `false` if the set does not contain the object.
*/
bool erase(const Data& data);
/// @}
/// \name Modifiers
/// @{
/*!
inserts the given `data` object into the set. Returns `true` on
success, or `false` if the set already contains the object.
*/
bool insert (const Data& data);
/*!
erases the given `data` object from the set. Returns `true` on
success, or `false` if the set does not contain the object.
*/
bool erase (const Data& data);
/*!
clears the set.
*/
void clear ();
/// @}
}; /* end Arr_consolidated_curve_data_traits_2::Data_container */
/*! clears the set. */
void clear();
/// @}
}; /* end Arr_consolidated_curve_data_traits_2::Data_container */
}; /* end Arr_consolidated_curve_data_traits_2 */
} /* end namespace CGAL */

View File

@ -0,0 +1,145 @@
// Copyright (c) 2005,2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s): Efi Fogel <efif@post.tau.ac.il>
// Eric Berberich <ericb@post.tau.ac.il>
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* A metadata traits-class decorator for the arrangement package. It counts the
* number of invocations of traits-class functors. It is parameterized with
* another traits class and inherits from it. For each traits method it
* maintains a counter that counts the number of invocations into the method.
*
* It models all the concepts that the original traits models.
*/
template <typename BaseTraits>
class Arr_counting_traits_2 : public BaseTraits {
public:
enum Operation_id {
COMPARE_X_2_OP = 0,
COMPARE_XY_2_OP,
CONSTRUCT_MIN_VERTEX_2_OP,
CONSTRUCT_MAX_VERTEX_2_OP,
IS_VERTICAL_2_OP,
COMPARE_Y_AT_X_2_OP,
EQUAL_2_POINTS_OP,
EQUAL_2_CURVES_OP,
COMPARE_Y_AT_X_LEFT_2_OP,
COMPARE_Y_AT_X_RIGHT_2_OP,
MAKE_X_MONOTONE_2_OP,
SPLIT_2_OP,
INTERSECT_2_OP,
ARE_MERGEABLE_2_OP,
MERGE_2_OP,
CONSTRUCT_2_OPPOSITE_2_OP,
COMPARE_ENDPOINTS_XY_2_OP,
APPROXIMATE_2_COORD_OP,
APPROXIMATE_2_POINT_OP,
APPROXIMATE_2_CURVE_OP,
PARAMETER_SPACE_IN_X_2_CURVE_END_OP,
PARAMETER_SPACE_IN_X_2_POINT_OP,
IS_ON_X_IDENTIFICATION_POINT_2_OP,
IS_ON_X_IDENTIFICATION_CURVE_2_OP,
COMPARE_Y_ON_BOUNDARY_2_OP,
COMPARE_Y_NEAR_BOUNDARY_2_OP,
PARAMETER_SPACE_IN_Y_2_CURVE_END_OP,
PARAMETER_SPACE_IN_Y_2_POINT_OP,
IS_ON_Y_IDENTIFICATION_2_POINT_OP,
IS_ON_Y_IDENTIFICATION_2_CURVE_OP,
COMPARE_X_ON_BOUNDARY_2_POINTS_OP,
COMPARE_X_ON_BOUNDARY_2_POINT_CURVE_END_OP,
COMPARE_X_ON_BOUNDARY_2_CURVE_ENDS_OP,
COMPARE_X_NEAR_BOUNDARY_2_OP,
NUMBER_OF_OPERATIONS
};
/// \name Creation
/// @{
/*! constructs default */
template <typename ... Args>
Arr_counting_traits_2(Args ... args) : Base(std::forward<Args>(args)...) {}
/*! disables copy constructor. */
Arr_counting_traits_2(const Arr_counting_traits_2&) = delete;
/// @}
/*! obtains the counter of the given operation */
std::size_t count(Operation_id id) const;
/*! prints the counter associated with an operation. */
template <typename OutStream>
OutStream& print(OutStream& os, Operation_id id) const;
/// \name Types and functors inherited from `BaseTraits`
/// @{
using Has_left_category = typename Base::Has_left_category;
using Has_merge_category = typename Base::Has_merge_category;
using Has_do_intersect_category = typename Base::Has_do_intersect_category;
using Left_side_category =
typename internal::Arr_complete_left_side_category<Base>::Category;
using Bottom_side_category =
typename internal::Arr_complete_bottom_side_category<Base>::Category;
using Top_side_category =
typename internal::Arr_complete_top_side_category<Base>::Category;
using Right_side_category =
typename internal::Arr_complete_right_side_category<Base>::Category;
using Point_2 = typename Base::Point_2;
using X_monotone_curve_2 = typename Base::X_monotone_curve_2;
using Curve_2 = typename Base::Curve_2;
/// @}
/// \name Obtain the appropriate functor
/// @{
Compare_x_2 compare_x_2_object() const;
Compare_xy_2 compare_xy_2_object() const;
Construct_min_vertex_2 construct_min_vertex_2_object() const;
Construct_max_vertex_2 construct_max_vertex_2_object() const;
Is_vertical_2 is_vertical_2_object() const;
Compare_y_at_x_2 compare_y_at_x_2_object() const;
Equal_2 equal_2_object() const;
Compare_y_at_x_left_2 compare_y_at_x_left_2_object() const;
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const;
Make_x_monotone_2 make_x_monotone_2_object() const;
Split_2 split_2_object() const;
Intersect_2 intersect_2_object() const;
Are_mergeable_2 are_mergeable_2_object() const;
Merge_2 merge_2_object() const;
Construct_opposite_2 construct_opposite_2_object() const;
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const;
Approximate_2 approximate_2_object() const;
Parameter_space_in_x_2 parameter_space_in_x_2_object() const;
Is_on_x_identification_2 is_on_x_identification_2_object() const;
Compare_y_on_boundary_2 compare_y_on_boundary_2_object() const;
Compare_y_near_boundary_2 compare_y_near_boundary_2_object() const;
Parameter_space_in_y_2 parameter_space_in_y_2_object() const;
Is_on_y_identification_2 is_on_y_identification_2_object() const;
Compare_x_on_boundary_2 compare_x_on_boundary_2_object() const;
Compare_x_near_boundary_2 compare_x_near_boundary_2_object() const;
/// @}
/*! cleans all operation counters */
void clear_counters();
};
template <typename OutStream, class BaseTraits>
inline OutStream& operator<<(OutStream& os,
const Arr_counting_traits_2<BaseTraits>& traits);
} // namespace CGAL

View File

@ -101,8 +101,7 @@ public:
/// \name Creation
/// @{
/*! default constructor.
*/
/*! constructs default */
Curve_2();
/*! constructs curve from the given `base` curve with uninitialized
@ -131,49 +130,49 @@ public:
/// @}
}; /* end Arr_curve_data_traits_2::Curve_2 */
}; /* end Arr_curve_data_traits_2::Curve_2 */
/*! The `X_monotone_curve_2` class nested within the curve-data traits extends
* the `Base_traits_2::X_monotone_curve_2` type with an extra data field.
*/
class X_monotone_curve_2 : public Base_x_monotone_curve_2 {
public:
/// \name Creation
/// @{
/*! default constructor.
/*! The `X_monotone_curve_2` class nested within the curve-data traits extends
* the `Base_traits_2::X_monotone_curve_2` type with an extra data field.
*/
X_monotone_curve_2();
class X_monotone_curve_2 : public Base_x_monotone_curve_2 {
public:
/*! constructs an \f$ x\f$-monotone curve from the given `base` curve with
* uninitialized data field.
*/
X_monotone_curve_2(const Base_x_monotone_curve_2& base);
/// \name Creation
/// @{
/*! constructs an \f$ x\f$-monotone curve from the given `base` \f$
* x\f$-monotone curve with an attached `data` field.
*/
X_monotone_curve_2(const Base_x_monotone_curve_2& base,
const X_monotone_curve_data& data);
/*! constructs default */
X_monotone_curve_2();
/// @}
/*! constructs an \f$ x\f$-monotone curve from the given `base` curve with
* uninitialized data field.
*/
X_monotone_curve_2(const Base_x_monotone_curve_2& base);
/// \name Access Functions
/// @{
/*! constructs an \f$ x\f$-monotone curve from the given `base` \f$
* x\f$-monotone curve with an attached `data` field.
*/
X_monotone_curve_2(const Base_x_monotone_curve_2& base,
const X_monotone_curve_data& data);
/*! returns the field (a non-const version, which returns a reference
* to the data object, is also available).
*/
const X_monotone_curve_data& data() const;
/// @}
/*! sets the data field.
*/
void set_data(const X_monotone_curve_data& data);
/// \name Access Functions
/// @{
/// @}
/*! returns the field (a non-const version, which returns a reference
* to the data object, is also available).
*/
const X_monotone_curve_data& data() const;
}; /* end Arr_curve_data_traits_2::X_monotone_curve_2 */
/*! sets the data field.
*/
void set_data(const X_monotone_curve_data& data);
/// @}
}; /* end Arr_curve_data_traits_2::X_monotone_curve_2 */
}; /* end Arr_curve_data_traits_2 */
} /* end namespace CGAL */

View File

@ -82,7 +82,7 @@ namespace CGAL {
/// \name Creation
/// @{
/*! Constructs a point from a direction and a location.
/*! constructs a point from a direction and a location.
* \param[in] dir the direction.
* \param[in] location indicates the location of the point pre-image
* in the parameter space.
@ -94,13 +94,13 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Set the location of the point pre-image in the parameter space.
/*! sets the location of the point pre-image in the parameter space.
* \param[in] location the updated location of the point pre-image in
* the parameter space.
*/
void set_location(Location_type location);
/*! Obtain the location of the point.
/*! obtains the location of the point.
* \return the location of the point pre-image in the parameter space.
*/
Location_type location() const;
@ -126,7 +126,7 @@ namespace CGAL {
/// \name Creation
/// @{
/*! Constructs an \f$x\f$-monotone geodesic arc.
/*! constructs an \f$x\f$-monotone geodesic arc.
* \param[in] source the source point of the arc.
* \param[in] target the target point of the arc.
* \param[in] normal the normal of the plane that contains the arc.
@ -146,7 +146,7 @@ namespace CGAL {
bool is_degenerate = false,
bool is_empty = false);
/*! Construct an \f$x\f$-monotone geodesic arc.
/*! construct an \f$x\f$-monotone geodesic arc.
* \param[in] normal the normal of the plane containing the arc.
* \param[in] source the source-point direction.
* \param[in] target the target-point direction.
@ -156,7 +156,7 @@ namespace CGAL {
const Point_2& target,
const Direction_3& normal);
/*! Construct a full great-circle.
/*! construct a full great-circle.
* \param[in] point the endpoint of the full great-circle.
* \param[in] normal the normal of the plane containing the arc.
* \pre the point lies on the given plane.
@ -171,90 +171,90 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Sets the source endpoint.
/*! sets the source endpoint.
* \param[in] source the updated source endpoint.
*/
void set_source(const Point_2& source);
/*! Sets the target endpoint.
/*! sets the target endpoint.
* \param[in] target the updated target endpoint.
*/
void set_target(const Point_2& target);
/*! Sets the normal of the underlying plane.
/*! sets the normal of the underlying plane.
* \param[in] normal the updated normal of the underlying plane.
*/
void set_normal(const Direction_3& normal);
/*! Sets the flag that indicates whether the arc is vertical.
/*! sets the flag that indicates whether the arc is vertical.
* \param[in] flag indicates whether the arc pre-image in the parameter
* space is vertical.
*/
void set_is_vertical(bool flag);
/*! Sets the flag that indicates whether the direction of the arc
/*! sets the flag that indicates whether the direction of the arc
* pre-image in the parameter space is from left to right.
* \param flag indicates whether the arc pre-image in the parameter
* space is from left to right.
*/
void set_is_directed_right(bool flag);
/*! Sets the flag that indicates whether the arc is a full great circle.
/*! sets the flag that indicates whether the arc is a full great circle.
* \param[in] flag indicates whether the arc is a full great circle.
*/
void set_is_full(bool flag);
/*! Sets the flag that indicates whether the arc degenerates to a point.
/*! sets the flag that indicates whether the arc degenerates to a point.
* \param[in] flag indicates whether the arc degenerates to a point.
*/
void set_is_degenerate(bool flag);
/*! Sets the flag that indicates whether the arc is empty.
/*! sets the flag that indicates whether the arc is empty.
* \param[in] flag indicates whether the arc is empty.
*/
void set_is_empty(bool flag);
/*! Obtains the source point.
/*! obtains the source point.
*/
const Point_2& source() const;
/*! Obtains the target point.
/*! obtains the target point.
*/
const Point_2& target() const;
/*! Obtains the normal to the containing plane.
/*! obtains the normal to the containing plane.
*/
const Direction_3& normal() const;
/*! Obtains the (lexicographically) left endpoint direction.
/*! obtains the (lexicographically) left endpoint direction.
*/
const Point_2& left() const;
/*! Obtains the (lexicographically) right endpoint.
/*! obtains the (lexicographically) right endpoint.
*/
const Point_2& right() const;
/*! Determines whether the arc is vertical.
/*! determines whether the arc is vertical.
*/
bool is_vertical() const;
/*! Determines whether the arc is directed lexicographically from left to
/*! determines whether the arc is directed lexicographically from left to
* right.
*/
bool is_directed_right() const;
/*! Determines whether the arc is a great circle.
/*! determines whether the arc is a great circle.
*/
bool is_full() const;
/*! Determines whether the arc is degenerate.
/*! determines whether the arc is degenerate.
*/
bool is_degenerate() const;
/*! Determines whether the arc is empty. */
/*! determines whether the arc is empty. */
bool is_empty() const;
/*! Determines whether the arc is a meridian.
/*! determines whether the arc is a meridian.
*/
bool is_meridian() const;
@ -283,6 +283,7 @@ namespace CGAL {
*
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableTernaryFunction}
*/
/*!
*/
class Construct_point_2 {
@ -297,7 +298,7 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Construct a point on the sphere from three coordinates, which define
/*! constructs a point on the sphere from three coordinates, which define
* a (not necessarily normalized) direction.
* \param[in] x the x coordinate
* \param[in] y the y coordinate
@ -305,7 +306,7 @@ namespace CGAL {
*/
Point_2 operator()(const FT& x, const FT& y, const FT& z);
/*! Construct a point on the sphere from a (not necessarily normalized)
/*! constructs a point on the sphere from a (not necessarily normalized)
* direction.
* \param other the other direction
*/
@ -331,7 +332,7 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Construct the minor geodesic arc from two endpoints. The minor arc
/*! constructs the minor geodesic arc from two endpoints. The minor arc
* is the one with the smaller angle among the two geodesic arcs with
* the given endpoints.
* 1. Find out whether the arc is x-monotone.
@ -351,7 +352,7 @@ namespace CGAL {
*/
X_monotone_curve_2 operator()(const Point_2& p, const Point_2& q);
/*! Construct a full great circle from a normal to a plane.
/*! constructs a full great circle from a normal to a plane.
* Observe that the constructed arc has one endpoint that lies on
* the identification curve. This point is considered both the source and
* target (and also the left and right) point of the arc.
@ -360,7 +361,7 @@ namespace CGAL {
*/
X_monotone_curve_2 operator()(const Direction_3& normal);
/*! Construct a geodesic arc from two endpoints and a normal to the plane
/*! constructs a geodesic arc from two endpoints and a normal to the plane
* containing the arc. The two endpoints determine the plane. The normal
* determines the orientation of the plane and the final arc (whether its
* the minor arc or the major arc). The right-hand rule can be used
@ -395,12 +396,12 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Construct a full great circle from a normal to a plane.
/*! constructs a full great circle from a normal to a plane.
* \param normal the normal to the plane containing the great circle.
*/
X_monotone_curve_2 operator()(const Direction_3& normal);
/*! Construct the minor geodesic arc from two endpoints. The minor arc
/*! constructs the minor geodesic arc from two endpoints. The minor arc
* is the one with the smaller angle among the two geodesic arcs with
* the given endpoints.
* 1. Find out whether the arc is x-monotone.
@ -419,7 +420,7 @@ namespace CGAL {
*/
Curve_2 operator()(const Point_2& p, const Point_2& q);
/*! Construct a geodesic arc from two endpoints and a normal to the plane
/*! constructs a geodesic arc from two endpoints and a normal to the plane
* containing the arc. The two endpoints determine the plane. The normal
* determines the orientation of the plane and the final arc (whether its
* the minor arc or the major arc). The right-hand rule can be used
@ -434,15 +435,15 @@ namespace CGAL {
/// @}
};
/*! Returns an instance of `Construct_point_2`.
/*! returns an instance of `Construct_point_2`.
*/
Construct_point_2 construct_point_2_object() const;
/*! Returns an instance of `Construct_x_monotone_curve_2`.
/*! returns an instance of `Construct_x_monotone_curve_2`.
*/
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object() const;
/*! Returns an instance of `Construct_curve_2`.
/*! returns an instance of `Construct_curve_2`.
*/
Construct_curve_2 construct_curve_2_object() const;
};

View File

@ -23,7 +23,7 @@ namespace CGAL {
*
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementOpenBoundaryTraits_2}
*/
template< typename Kernel >
template <typename Kernel>
class Arr_linear_traits_2 {
public:
@ -147,7 +147,7 @@ public:
/// \name Creation
/// @{
/*! Trims the given x-monotone curve to an from src to tgt.
/*! trims the given x-monotone curve to an from src to tgt.
* \ pre `src` and `tgt` lies on the curve
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2& xcv,

View File

@ -93,6 +93,7 @@ namespace CGAL {
/// \name Types
/// @{
/*!
*/
// TODO: Have to turn these into links, so whenever I mention Point_2 it
@ -119,14 +120,14 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Obtain a polycurve that comprises of one given subcurve.
/*! obtains a polycurve that comprises of one given subcurve.
* \param subcurve input subcurve.
* \pre `subcurve` is not degenerated (not tested).
* \return A polycurve with one subcurve, namely `subcurve`.
*/
Curve_2 operator()(const Subcurve_2& subcurve) const;
/*! Construct a well-oriented polycurve from a range of either
/*! constructs a well-oriented polycurve from a range of either
* `SubcurveTraits_2::Point_2` or `SubcurveTraits_2::Curve_2`.
*
* \param begin iterator pointing to the first element in the
@ -169,17 +170,17 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Append a subcurve `subcurve` to an existing polycurve `cv` at the back.
* If `cv` is empty, `subcurve` will be its first subcurve.
/*! appends a subcurve `subcurve` to an existing polycurve `cv` at the
* back. If `cv` is empty, `subcurve` will be its first subcurve.
* \param cv a polycurve. Note, `cv` is (not necessarily) \f$x\f$-monotone.
* \param subcurve a subcurve (not necessarily \f$x\f$-monotone) to be
* appended to `cv`
*/
void operator()(Curve_2& cv, const Subcurve_2& subcurve) const;
/*! Append a subcurve `subcurve` to an existing \f$x\f$-monotone polycurve
* `xcv` at the back. If `xcv` is empty, `subcurve` will be its first
* subcurve.
/*! appends a subcurve `subcurve` to an existing \f$x\f$-monotone
* polycurve `xcv` at the back. If `xcv` is empty, `subcurve` will be its
* first subcurve.
* \param xcv existing \f$x\f$-monotone polycurve
* \param subcurve the subcurve to be added
* \pre If `xcv` is not empty then `subcurve` extends `xcv` to the right
@ -201,7 +202,7 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Append a subcurve `subcurve` to an existing polycurve `cv` at the
/*! appends a subcurve `subcurve` to an existing polycurve `cv` at the
* front. If `cv` is empty, `subcurve` will be its first subcurve.
* \param cv a polycurve. Note, `cv` is (not necessarily) \f$x\f$-monotone.
* \param subcurve a subcurve (not necessarily \f$x\f$-monotone) to be
@ -209,9 +210,9 @@ namespace CGAL {
*/
void operator()(Curve_2& cv, const Subcurve_2& subcurve) const;
/*! Append a subcurve `subcurve` to an existing \f$x\f$-monotone polycurve
* `xcv` at the front. If `xcv` is empty, `subcurve` will be its first
* subcurve.
/*! appends a subcurve `subcurve` to an existing \f$x\f$-monotone
* polycurve `xcv` at the front. If `xcv` is empty, `subcurve` will be its
* first subcurve.
* \param xcv existing \f$x\f$-monotone polycurve
* \param subcurve the subcurve to be added
* \pre If `xcv` is not empty then `subcurve` extends `xcv` to the left if
@ -228,7 +229,7 @@ namespace CGAL {
class Trim_2 {
public:
/*! Obtain a trimmed version of the polycurve with src and tgt as end
/*! obtains a trimmed version of the polycurve with src and tgt as end
* vertices.
* Src and tgt will be swapped if they do not conform to the direction of
* the polycurve.
@ -238,7 +239,7 @@ namespace CGAL {
const Point_2& tgt) const;
};
/*! Subdivide a given subcurve into \f$x\f$-monotone subcurves and
/*! subdivides a given subcurve into \f$x\f$-monotone subcurves and
* isolated points, and insert them into an output container. An object in
* the output container is represented by a discriminated union container
* that holds either a point or an \f$x\f$-monotone curve.
@ -273,10 +274,10 @@ namespace CGAL {
*
* The copy and default constructor as well as the assignment operator are
* provided for polycurve subcurves. In addition, an \link
* PkgArrangementOnSurface2op_left_shift `operator<<` \endlink for the subcurves is
* defined for standard output streams, and an \link
* PkgArrangementOnSurface2op_right_shift `operator>>` \endlink for the subcurves is
* defined for standard input streams.
* PkgArrangementOnSurface2op_left_shift `operator<<` \endlink for the
* subcurves is defined for standard output streams, and an \link
* PkgArrangementOnSurface2op_right_shift `operator>>` \endlink for the
* subcurves is defined for standard input streams.
*/
template <typename SubcurveType_2, typename PointType_2>
class Curve_2 {
@ -323,15 +324,15 @@ namespace CGAL {
/// \name Creation
/// @{
/*! Default constructor that constructs an empty polycurve.
/*! constructs Default; constructs an empty polycurve.
*/
Curve_2();
/*! Construct a polycurve from one subcurve.
/*! constructs a polycurve from one subcurve.
*/
Curve_2(const Subcurve_2 subcurve);
/*! Construct a polycurve defined by the given range of subcurves
/*! constructs a polycurve defined by the given range of subcurves
* `[first, last)` (the value-type of `InputIterator` must be
* `SubcurveTraits_2::Curve_2`. In general, the subcurves might not
* be \f$x\f$-monotone, furthermore, they might not form a
@ -357,7 +358,7 @@ namespace CGAL {
/// @{
/*! \deprecated
* Obtain the number of subcurve end-points that comprise the polycurve.
* obtains the number of subcurve end-points that comprise the polycurve.
* Note that for a bounded polycurve, if there are \f$ n\f$ points in the
* polycurve, it comprises \f$ (n - 1)\f$ subcurves.
* Currently, only bounded polycurves are supported.
@ -365,20 +366,21 @@ namespace CGAL {
unsigned_int points() const;
/*! \deprecated
* Obtain an iterator pointing at the source point of the polycurve.
* obtains an iterator pointing at the source point of the polycurve.
*/
const_iterator begin() const;
/*! Obtain an iterator pointing at the first subcurve of the polycurve.
/*! obtains an iterator pointing at the first subcurve of the polycurve.
*/
Subcurve_const_iterator begin_subcurves() const;
/*! \deprecated
* Obtain an iterator pointing after the end of the polycurve.
* obtains an iterator pointing after the end of the polycurve.
*/
const_iterator end() const;
/*! Get an iterator pointing at the past-the-end subcurve of the polycurve.
/*! obtains an iterator pointing at the past-the-end subcurve of the
* polycurve.
*/
Subcurve_const_iterator end_subcurves() const;
@ -387,38 +389,38 @@ namespace CGAL {
*/
const_iterator rbegin() const;
/*! Obtain an iterator pointing at the last subcurve of the polycurve.
/*! obtains an iterator pointing at the last subcurve of the polycurve.
*/
Subcurve_const_reverse_iterator rbegin_subcurves() const;
/*! \deprecated
* Obtain an iterator pointing before the beginning of the polycurve.
* obtains an iterator pointing before the beginning of the polycurve.
*/
const_iterator rend() const;
/*! Obtain an iterator pointing at the past-the-end subcurve of
/*! obtains an iterator pointing at the past-the-end subcurve of
* the polycurve in reverse order.
*/
Subcurve_const_reverse_iterator rend_subcurves() const;
/*! \deprecated
* Obtain the number of subcurves composing the polycurve
* obtains the number of subcurves composing the polycurve
* (equivalent to `pi.points() - 1`). Was replaced by number_of_subcurves()
*/
size_type size() const;
/*! Obtain the number of subcurves that comprise the polycurve.
/*! obtains the number of subcurves that comprise the polycurve.
*/
size_type number_of_subcurves() const;
/*! Obtain the \f$ k\f$th subcurve of the polycurve.
/*! obtains the \f$ k\f$th subcurve of the polycurve.
* \pre \f$k\f$ is not greater than or equal to \f$n-1\f$, where
* \f$n\f$ is the number of subcurves.
*/
typename SubcurveTraits_2::X_monotone_curve_2
operator[](size_t k) const;
/*! Obtain the bounding box of the polycurve.
/*! obtains the bounding box of the polycurve.
*/
Bbox_2 bbox() const;
@ -427,7 +429,7 @@ namespace CGAL {
/// \name Operations
/// @{
/*! Append a subcurve to the polycurve at the back.
/*! appends a subcurve to the polycurve at the back.
* \a Warning: This function does not perform the precondition test
* that the `Push_back_2` functor does. Thus, it is
* recommended to use the latter.
@ -438,7 +440,7 @@ namespace CGAL {
*/
inline void push_back(const Subcurve_2& subcurve);
/*! Append a subcurve to the polycurve at the front.
/*! appends a subcurve to the polycurve at the front.
* \a Warning: This is a risky function! Don't use it! Prefer the
* corresponding functor which is provided in the traits
* class.
@ -450,12 +452,12 @@ namespace CGAL {
inline void push_front(const Subcurve_2& subcurve);
/*! \deprecated
* Add a new point to the polycurvs, which becomes the new target point
* adds a new point to the polycurvs, which becomes the new target point
* of `pi`.
*/
void push_back(const Point_2 & p);
/*! Reset the polycurve.
/*! resets the polycurve.
*/
void clear();
@ -463,7 +465,6 @@ namespace CGAL {
}; /* end Arr_polycurve_traits_2::Curve_2 */
/*! The `X_monotone_curve_2` class nested within the polycurve
* traits is used to represent \f$ x\f$-monotone piecewise linear subcurves.
*
@ -518,4 +519,5 @@ namespace CGAL {
/// @} /* End Accessing Functor Objects */
}; /* end Arr_polycurve_traits_2 */
} /* end namespace CGAL */

View File

@ -149,7 +149,7 @@ public:
//! obtains the past-the-end reverse iterator for the polyline points.
Segment_const_reverse_iterator rend_segments() const;
/*! Obtain the number of subcurves that comprise the poyline.
/*! obtains the number of subcurves that comprise the poyline.
* \return The number of subcurves.
*/
Segments_size_type number_of_segments() const;
@ -169,13 +169,13 @@ public:
typedef std::reverse_iterator<Segment_const_iterator>
Segment_const_reverse_iterator;
/*! Construct default. */
/*! constructs default. */
X_monotone_curve_2();
/*! Construct from a subcurve. */
/*! constructs from a subcurve. */
X_monotone_curve_2(X_monotone_segment_2 seg);
/*! Construct from a range. Similar to the constructor of a general
/*! constructs from a range. Similar to the constructor of a general
* polycurve. Like in the case of general polycurve, for the sake of
* backwards compatibility we have to keep an implementation of construction
* from a range of points. DO NOT USE THIS CONSTRUCTION.
@ -183,23 +183,23 @@ public:
template <typename InputIterator>
X_monotone_curve_2(InputIterator begin, InputIterator end);
/*! Obtain the first iterator of the polyline subcurves.
/*! obtains the first iterator of the polyline subcurves.
*/
Segment_const_iterator begin_segments() const;
/*! Obtain the past-the-end iterator of the polyline subcurves.
/*! obtains the past-the-end iterator of the polyline subcurves.
*/
Segment_const_iterator end_segments() const;
/*! Obtain the first reverse iterator of the polyline subcurves.
/*! obtains the first reverse iterator of the polyline subcurves.
*/
Segment_const_reverse_iterator rbegin_segments() const;
/*! Obtain the past-the-end reverse iterator for the polyline points.
/*! obtains the past-the-end reverse iterator for the polyline points.
*/
Segment_const_reverse_iterator rend_segments() const;
/*! Obtain the number of subcurves that comprise the poyline.
/*! obtains the number of subcurves that comprise the poyline.
* \return The number of subcurves.
*/
Segments_size_type number_of_segments() const;
@ -219,7 +219,7 @@ public:
/// \name Operations
/// @{
/*! Obtain a polyline connecting the two given endpoints.
/*! obtains a polyline connecting the two given endpoints.
* \param p The first point.
* \param q The second point.
* \pre `p` and `q` are distinct.
@ -227,14 +227,14 @@ public:
*/
Curve_2 operator()(const Point_2& p, const Point_2& q) const;
/*! Obtain a polyline that comprises of one given segment.
/*! obtains a polyline that comprises of one given segment.
* \param seg input segment
* \pre `seg` is not degenerated (not tested)
* \return A polyline with one segment, namely `seg`.
*/
Curve_2 operator()(const Segment_2& seg) const;
/*! Construct a well-oriented polyline from a range of either
/*! constructs a well-oriented polyline from a range of either
* `SegmentTraits_2::Point_2` or `SegmentTraits_2::Segment_2`.
*
* \param begin iterator pointing to the first element in the range.
@ -270,7 +270,7 @@ public:
/// \name Operations
/// @{
/*! Append a point `p` to an existing polyline `cv` at the back.
/*! appends a point `p` to an existing polyline `cv` at the back.
* \param cv a polyline. Note, `cv` is not (necessarily)
* \f$ x\f$-monotone.
* \param p a point to be appended to `cv` at the back.
@ -278,7 +278,7 @@ public:
*/
void operator()(Curve_2& cv, const Point_2& p) const;
/*! Append a segment `seg` to an existing polyline `cv` at the back.
/*! appends a segment `seg` to an existing polyline `cv` at the back.
* If `cv` is empty, `seg` will be its first segment.
* \param cv a polyline. Note, `cv` is (not necessarily) \f$x\f$-monotone.
* \param seg a segment (not necessarily \f$x\f$-monotone) to be appended
@ -286,7 +286,7 @@ public:
*/
void operator()(Curve_2& cv, const Segment_2& seg) const;
/*! Append a point `p` to an existing \f$x\f$-monotone polyline `xcv` at
/*! appends a point `p` to an existing \f$x\f$-monotone polyline `xcv` at
* the back.
* \param xcv the existing \f$x\f$-monotone polyline
* \param p the point to be pushed back.
@ -297,7 +297,7 @@ public:
*/
void operator()(const X_monotone_curve_2& xcv, Point_2& p) const;
/*! Append a segment `seg` to an existing \f$x\f$-monotone polyline `xcv`
/*! appends a segment `seg` to an existing \f$x\f$-monotone polyline `xcv`
* at the back. If `xcv` is empty, `seg` will be its first segment.
* \param xcv existing \f$x\f$-monotone polyline
* \param seg the segment to be added
@ -320,7 +320,7 @@ public:
/// \name Operations
/// @{
/*! Append a point `p` to an existing polyline `cv` at the front.
/*! appends a point `p` to an existing polyline `cv` at the front.
* \param cv a polyline. Note, `cv` is not (necessarily)
* \f$ x\f$-monotone.
* \param p a point to be appended to `cv` at the back.
@ -328,7 +328,7 @@ public:
*/
void operator()(Curve_2& cv, const Point_2& p) const;
/*! Append a segment `seg` to an existing polyline `cv` at the front.
/*! appends a segment `seg` to an existing polyline `cv` at the front.
* If `cv` is empty, `seg` will be its first segment.
* \param cv a polyline. Note, `cv` is (not necessarily) \f$x\f$-monotone.
* \param seg a segment (not necessarily \f$x\f$-monotone) to be appended
@ -336,7 +336,7 @@ public:
*/
void operator()(Curve_2& cv, const Segment_2& seg) const;
/*! Append a point `p` to an existing \f$x\f$-monotone polyline `xcv` at
/*! appends a point `p` to an existing \f$x\f$-monotone polyline `xcv` at
* the front.
* \param xcv the existing \f$x\f$-monotone polyline
* \param p the point to be pushed back.
@ -347,7 +347,7 @@ public:
*/
void operator()(const X_monotone_curve_2& xcv, Point_2& p) const;
/*! Append a segment `seg` to an existing \f$x\f$-monotone polyline `xcv`
/*! appends a segment `seg` to an existing \f$x\f$-monotone polyline `xcv`
* at the front. If `xcv` is empty, `seg` will be its first segment.
* \param xcv existing \f$x\f$-monotone polyline
* \param seg the segment to be added

View File

@ -49,10 +49,10 @@ public:
/// \name Creation
/// @{
/*! Default constructor. */
/*! constructs default */
Arr_spherical_topology_traits_2();
/*! Constructor from a geometry-traits object.
/*! constructs from a geometry-traits object.
* \param traits the traits.
*/
Arr_spherical_topology_traits_2(const GeometryTraits_2* traits);
@ -62,36 +62,36 @@ public:
/// \name Accessors
/// @{
/*! Obtain the DCEL (const version). */
/*! obtains the DCEL (const version). */
const Dcel& dcel() const;
/*! Obtain the DCEL (non-const version). */
/*! obtains the DCEL (non-const version). */
Dcel& dcel();
/*! Obtain the spherical face (const version). */
/*! obtains the spherical face (const version). */
const Face* spherical_face() const;
/*! Obtain the spherical face (non-const version). */
/*! obtains the spherical face (non-const version). */
Face* spherical_face();
/*! Obtain the south pole (const version). */
/*! obtains the south pole (const version). */
const Vertex* south_pole() const;
/*! Obtain the south pole (non-const version). */
/*! obtains the south pole (non-const version). */
Vertex* south_pole();
/*! Obtain the north pole (const version). */
/*! obtains the north pole (const version). */
const Vertex* north_pole() const;
/*! Obtain the north pole (non-const version). */
/*! obtains the north pole (non-const version). */
Vertex* north_pole();
/*! Obtain a vertex on the line of discontinuity that corresponds to
/*! obtains a vertex on the line of discontinuity that corresponds to
* the given point (or return NULL if no such vertex exists).
*/
const Vertex* discontinuity_vertex(const Point_2& pt) const;
/*! Obtain a vertex on the line of discontinuity that corresponds to
/*! obtains a vertex on the line of discontinuity that corresponds to
* the given point (or return NULL if no such vertex exists).
*/
Vertex* discontinuity_vertex(const Point_2& pt);

View File

@ -0,0 +1,145 @@
/// Copyright (c) 2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s): Efi Fogel <efif@post.tau.ac.il>
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* A metadata traits-class decorator for the arrangement package. It traces the
* invocations of traits-class functors. It is parameterized with another traits
* class and inherits from it. For each traits method it prints out its input
* parameters and its output result
*
* It models all the concepts that the original traits models.
*/
template <typename BaseTraits>
class Arr_tracing_traits_2 : public BaseTraits {
public:
enum Operation_id {
COMPARE_X_2_OP = 0,
COMPARE_XY_2_OP,
CONSTRUCT_MIN_VERTEX_2_OP,
CONSTRUCT_MAX_VERTEX_2_OP,
IS_VERTICAL_2_OP,
COMPARE_Y_AT_X_2_OP,
EQUAL_POINTS_2_OP,
EQUAL_CURVES_2_OP,
COMPARE_Y_AT_X_LEFT_2_OP,
COMPARE_Y_AT_X_RIGHT_2_OP,
MAKE_X_MONOTONE_2_OP,
SPLIT_2_OP,
INTERSECT_2_OP,
ARE_MERGEABLE_2_OP,
MERGE_2_OP,
CONSTRUCT_2_OPPOSITE_2_OP,
COMPARE_ENDPOINTS_XY_2_OP,
APPROXIMATE_2_OP,
PARAMETER_SPACE_IN_X_2_OP,
IS_ON_X_IDENTIFICATION_2_OP,
COMPARE_Y_ON_BOUNDARY_2_OP,
COMPARE_Y_NEAR_BOUNDARY_2_OP,
PARAMETER_SPACE_IN_Y_2_OP,
IS_ON_Y_IDENTIFICATION_2_OP,
COMPARE_X_ON_BOUNDARY_2_OP,
COMPARE_X_NEAR_BOUNDARY_2_OP,
NUMBER_OF_OPERATIONS
};
public:
/// \name Creation
/// @{
/*! constructs default */
template<typename ... Args>
Arr_tracing_traits_2(Args ... args) : Base(std::forward<Args>(args)...) {}
/*! disables copy constructor. */
Arr_tracing_traits_2(const Arr_tracing_traits_2&) = delete;
/// @}
/*! enables the trace of a traits operation
* \param id the operation identifier
*/
void enable_trace(Operation_id id);
/*! enables the trace of all traits operations
*/
void enable_all_traces();
/*! disables the trace of a traits operation
* \param id the operation identifier
*/
void disable_trace(Operation_id id);
/*! disables the trace of all traits operations
*/
void disable_all_traces();
/// \name Types and functors inherited from `BaseTraits`
/// @{
using Has_left_category = typename Base::Has_left_category;
using Has_merge_category = typename Base::Has_merge_category;
using Has_do_intersect_category = typename Base::Has_do_intersect_category;
using Left_side_category =
typename internal::Arr_complete_left_side_category< Base >::Category;
using Bottom_side_category =
typename internal::Arr_complete_bottom_side_category< Base >::Category;
using Top_side_category =
typename internal::Arr_complete_top_side_category< Base >::Category;
using Right_side_category =
typename internal::Arr_complete_right_side_category< Base >::Category;
using Point_2 = typename Base::Point_2;
using X_monotone_curve_2 = typename Base::X_monotone_curve_2;
using Curve_2 = typename Base::Curve_2;
using Multiplicity = typename Base::Multiplicity;
/// @}
/// \name Obtain the appropriate functor
/// @{
Compare_x_2 compare_x_2_object() const;
Compare_xy_2 compare_xy_2_object() const;
Construct_min_vertex_2 construct_min_vertex_2_object() const;
Construct_max_vertex_2 construct_max_vertex_2_object() const;
Is_vertical_2 is_vertical_2_object() const;
Compare_y_at_x_2 compare_y_at_x_2_object() const;
Equal_2 equal_2_object() const;
Compare_y_at_x_left_2 compare_y_at_x_left_2_object() const;
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const;
Make_x_monotone_2 make_x_monotone_2_object() const;
Split_2 split_2_object() const;
Intersect_2 intersect_2_object() const;
Are_mergeable_2 are_mergeable_2_object() const;
Merge_2 merge_2_object() const;
Construct_opposite_2 construct_opposite_2_object() const;
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const;
Approximate_2 approximate_2_object() const;
Parameter_space_in_x_2 parameter_space_in_x_2_object() const;
Is_on_x_identification_2 is_on_x_identification_2_object() const;
Compare_y_on_boundary_2 compare_y_on_boundary_2_object() const;
Compare_y_near_boundary_2 compare_y_near_boundary_2_object() const;
Parameter_space_in_y_2 parameter_space_in_y_2_object() const;
Is_on_y_identification_2 is_on_y_identification_2_object() const;
Compare_x_on_boundary_2 compare_x_on_boundary_2_object() const;
Compare_x_near_boundary_2 compare_x_near_boundary_2_object() const;
/// @}
};
template <typename OutputStream>
OutputStream& operator<<(OutputStream& os, Comparison_result cr);
} // namespace CGAL

View File

@ -49,10 +49,10 @@ public:
/// \name Creation
/// @{
/*! Default constructor. */
/*! constructs default. */
Arr_unb_planar_topology_traits_2();
/*! Constructor from a geometry-traits object.
/*! constructs from a geometry-traits object.
* \param traits the traits.
*/
Arr_unb_planar_topology_traits_2(const GeometryTraits_2* traits);
@ -62,16 +62,16 @@ public:
/// \name Accessors
/// @{
/*! Obtain the DCEL (const version). */
/*! obtains the DCEL (const version). */
const Dcel& dcel() const;
/*! Obtain the DCEL (non-const version). */
/*! obtains the DCEL (non-const version). */
Dcel& dcel();
/*! Obtain the unbounded face (const version). */
/*! obtains the unbounded face (const version). */
const Face* unbounded_face() const;
/*! Obtain the unbounded face (non-const version). */
/*! obtains the unbounded face (non-const version). */
Face* unbounded_face();
/// @}

View File

@ -16,8 +16,8 @@ public:
/// A model of this concept must provide:
/// @{
/*! obtains an approximation of `p`'s \f$x\f$-coordinate (if `i == 0`), or of
* `p`'s \f$y\f$-coordinate (if `i == 1`).
/*! obtains an approximation of `p`'s \f$x\f$-coordinate (if `i` == 0), or of
* `p`'s \f$y\f$-coordinate (if `i` == 1).
*/
CGAL::Approximate_number_type operator()(ArrTraits::Point_2 p, int i);

View File

@ -38,10 +38,10 @@ public:
/// \name Access Functions
/// @{
/*! Obtain the DCEL (const version). */
/*! obtains the DCEL (const version). */
const Dcel& dcel() const;
/*! Obtain the DCEL (non-const version). */
/*! obtains the DCEL (non-const version). */
Dcel& dcel();
/// @}

View File

@ -198,46 +198,48 @@ implemented as peripheral classes or as free (global) functions.
- `CGAL::Arrangement_on_surface_with_history_2<GeometryTraits_2,TopologyTraits>`
- `CGAL::Arrangement_2<Traits,Dcel>`
- `CGAL::Arrangement_with_history_2<Traits,Dcel>`
- `CGAL::Arr_accessor<Arrangement>`
- `CGAL::Aos_observer<ArrangementOnSurface_2>`
- `CGAL::Arr_observer<Arrangement_2>`
- `CGAL::Arrangement_2::Vertex`
- `CGAL::Arrangement_2::Halfedge`
- `CGAL::Arrangement_2::Face`
- `CGAL::Arr_accessor<Arrangement>`
- `CGAL::Arr_algebraic_segment_traits_2<Coefficient>`
- `CGAL::Arr_Bezier_curve_traits_2<RatKernel,AlgKernel,NtTraits>`
- `CGAL::Arr_bounded_planar_topology_traits_2<GeometryTraits_2,Dcel>`
- `CGAL::Arr_circle_segment_traits_2<Kernel>`
- `CGAL::Arr_circular_arc_traits_2<CircularKernel>`
- `CGAL::Arr_circular_line_arc_traits_2<CircularKernel>`
- `CGAL::Arr_conic_traits_2<RatKernel,AlgKernel,NtTraits>`
- `CGAL::Arr_consolidated_curve_data_traits_2<Traits,Data>`
- `CGAL::Arr_counting_traits_2<BaseTraits>`
- `CGAL::Arr_curve_data_traits_2<Tr,XData,Mrg,CData,Cnv>`
- `CGAL::Arr_dcel_base<V,H,F>`
- `CGAL::Arr_dcel<Traits,V,H,F>`
- `CGAL::Arr_default_dcel<Traits>`
- `CGAL::Arr_face_extended_dcel<Traits,FData,V,H,F>`
- `CGAL::Arr_extended_dcel<Traits,VData,HData,FData,V,H,F>`
- `CGAL::Arr_segment_traits_2<Kernel>`
- `CGAL::Arr_non_caching_segment_traits_2<Kernel>`
- `CGAL::Arr_linear_traits_2<Kernel>`
- `CGAL::Arr_polyline_traits_2<SegmentTraits>`
- `CGAL::Arr_circle_segment_traits_2<Kernel>`
- `CGAL::Arr_line_arc_traits_2<CircularKernel>`
- `CGAL::Arr_circular_arc_traits_2<CircularKernel>`
- `CGAL::Arr_circular_line_arc_traits_2<CircularKernel>`
- `CGAL::Arr_conic_traits_2<RatKernel,AlgKernel,NtTraits>`
- `CGAL::Arr_rational_function_traits_2<AlgebraicKernel_d_1>`
- `CGAL::Arr_Bezier_curve_traits_2<RatKernel,AlgKernel,NtTraits>`
- `CGAL::Arr_algebraic_segment_traits_2<Coefficient>`
- `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
- `CGAL::Arr_curve_data_traits_2<Tr,XData,Mrg,CData,Cnv>`
- `CGAL::Arr_consolidated_curve_data_traits_2<Traits,Data>`
- `CGAL::Arr_text_formatter<Arrangement>`
- `CGAL::Arr_face_extended_text_formatter<Arrangement>`
- `CGAL::Arr_extended_dcel_text_formatter<Arrangement>`
- `CGAL::Arr_with_history_text_formatter<ArrFormatter>`
- `CGAL::Arr_naive_point_location<Arrangement>`
- `CGAL::Arr_walk_along_line_point_location<Arrangement>`
- `CGAL::Arr_trapezoid_ric_point_location<Arrangement>`
- `CGAL::Arr_landmarks_point_location<Arrangement,Generator>`
- `CGAL::Arr_vertex_index_map<Arrangement>`
- `CGAL::Arr_face_index_map<Arrangement>`
- `CGAL::Arr_extended_dcel<Traits,VData,HData,FData,V,H,F>`
- `CGAL::Arr_extended_dcel_text_formatter<Arrangement>`
- `CGAL::Arr_face_extended_text_formatter<Arrangement>`
- `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
- `CGAL::Arr_landmarks_point_location<Arrangement,Generator>`
- `CGAL::Arr_line_arc_traits_2<CircularKernel>`
- `CGAL::Arr_linear_traits_2<Kernel>`
- `CGAL::Arr_naive_point_location<Arrangement>`
- `CGAL::Arr_non_caching_segment_traits_2<Kernel>`
- `CGAL::Arr_observer<Arrangement_2>`
- `CGAL::Arr_polyline_traits_2<SegmentTraits>`
- `CGAL::Arr_point_location_result<Arrangement>`
- `CGAL::Arr_bounded_planar_topology_traits_2<GeometryTraits_2,Dcel>`
- `CGAL::Arr_unb_planar_topology_traits_2<GeometryTraits_2,Dcel>`
- `CGAL::Arr_rational_function_traits_2<AlgebraicKernel_d_1>`
- `CGAL::Arr_segment_traits_2<Kernel>`
- `CGAL::Arr_spherical_topology_traits_2<GeometryTraits_2,Dcel>`
- `CGAL::Arr_text_formatter<Arrangement>`
- `CGAL::Arr_tracing_traits_2<BaseTraits>`
- `CGAL::Arr_trapezoid_ric_point_location<Arrangement>`
- `CGAL::Arr_unb_planar_topology_traits_2<GeometryTraits_2,Dcel>`
- `CGAL::Arr_vertex_index_map<Arrangement>`
- `CGAL::Arr_walk_along_line_point_location<Arrangement>`
- `CGAL::Arr_with_history_text_formatter<ArrFormatter>`
- `CGAL::Aos_observer<ArrangementOnSurface_2>`
- `CGAL::CORE_algebraic_number_traits`
\cgalCRPSection{Functions}

View File

@ -12,6 +12,7 @@
\example Arrangement_on_surface_2/conics.cpp
\example Arrangement_on_surface_2/conic_multiplicities.cpp
\example Arrangement_on_surface_2/consolidated_curve_data.cpp
\example Arrangement_on_surface_2/count_and_trace.cpp
\example Arrangement_on_surface_2/curve_history.cpp
\example Arrangement_on_surface_2/dcel_extension.cpp
\example Arrangement_on_surface_2/dcel_extension_io.cpp

View File

@ -0,0 +1,80 @@
#include <iostream>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_counting_traits_2.h>
#include <CGAL/Arr_tracing_traits_2.h>
#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>
#include <CGAL/Arr_spherical_topology_traits_2.h>
#include <CGAL/Arrangement_on_surface_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_Bezier_curve_traits_2.h>
#include "arr_print.h"
using Kernel = CGAL::Exact_predicates_exact_constructions_kernel;
using Segment_base_traits = CGAL::Arr_segment_traits_2<Kernel>;
using Segment_cnt_traits = CGAL::Arr_counting_traits_2<Segment_base_traits>;
using Segment_traits = CGAL::Arr_tracing_traits_2<Segment_cnt_traits>;
using Segment_arrangement = CGAL::Arrangement_2<Segment_traits>;
using Point = Segment_traits::Point_2;
using Segment = Segment_traits::Curve_2;
using Geodesic_base_traits = CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel>;
using Geodesic_cnt_traits = CGAL::Arr_counting_traits_2<Geodesic_base_traits>;
using Geodesic_traits = CGAL::Arr_tracing_traits_2<Geodesic_cnt_traits>;
using Topol_traits = CGAL::Arr_spherical_topology_traits_2<Geodesic_traits>;
using Geodesic_arrangement =
CGAL::Arrangement_on_surface_2<Geodesic_traits, Topol_traits>;
using Geodesic_point = Geodesic_traits::Point_2;
using Geodesic_curve = Geodesic_traits::Curve_2;
using Nt_traits = CGAL::CORE_algebraic_number_traits;
using NT = Nt_traits::Rational;
using Rational = Nt_traits::Rational;
using Algebraic = Nt_traits::Algebraic;
using Rat_kernel = CGAL::Cartesian<Rational>;
using Alg_kernel = CGAL::Cartesian<Algebraic>;
using Rat_point = Rat_kernel::Point_2;
using Bezier_base_traits =
CGAL::Arr_Bezier_curve_traits_2<Rat_kernel, Alg_kernel, Nt_traits>;
using Bezier_cnt_traits = CGAL::Arr_counting_traits_2<Bezier_base_traits>;
using Bezier_traits = CGAL::Arr_tracing_traits_2<Bezier_cnt_traits>;
using Bezier_arrangement = CGAL::Arrangement_2<Bezier_traits>;
int main() {
Segment_traits seg_traits;
seg_traits.disable_all_traces();
seg_traits.enable_trace(Segment_traits::COMPARE_Y_AT_X_2_OP);
Segment_arrangement seg_arr(&seg_traits);
std::vector<Point> ps = { Point(0,0), Point(1,0), Point(0,1) };
std::vector<Segment> segs =
{ Segment(ps[0], ps[1]), Segment(ps[1], ps[2]), Segment(ps[2], ps[0]) };
CGAL::insert(seg_arr, segs.begin(), segs.end());
std::cout << seg_traits;
print_arrangement_size(seg_arr);
std::cout << std::endl;
Geodesic_traits geodesic_traits;
geodesic_traits.disable_all_traces();
geodesic_traits.enable_trace(Geodesic_traits::COMPARE_XY_2_OP);
auto ctr_p = geodesic_traits.construct_point_2_object();
auto ctr_cv = geodesic_traits.construct_curve_2_object();
std::vector<Geodesic_point> gps =
{ ctr_p(-1,0,0), ctr_p(0,-1,0), ctr_p(0,0,-1) };
std::vector<Geodesic_curve> gas =
{ ctr_cv(gps[0], gps[1]), ctr_cv(gps[1], gps[2]), ctr_cv(gps[2], gps[0]) };
Geodesic_arrangement geodesic_arr(&geodesic_traits);
CGAL::insert(geodesic_arr, gas.begin(), gas.end());
std::cout << geodesic_traits;
print_arrangement_size(geodesic_arr);
Bezier_traits bezier_traits;
bezier_traits.disable_all_traces();
std::cout << bezier_traits;
return 0;
}

View File

@ -22,7 +22,7 @@ int main() {
Geom_traits traits;
traits.disable_all_traces();
traits.enable_trace(Tracing_traits::INTERSECT_OP);
traits.enable_trace(Tracing_traits::INTERSECT_2_OP);
// Construct an arrangement using aggregated insertion:
My_arrangement arr1(&traits);

View File

@ -48,27 +48,27 @@ public:
private:
Arrangement_2* p_arr; // The associated arrangement.
/*! Copy constructor - not supported. */
/*! Copy constructor not supported. */
Aos_observer(const Self&);
/*! Assignment operator - not supported. */
/*! Assignment operator not supported. */
Self& operator=(const Self&);
public:
/// \name Construction and destruction functions.
//@{
/*! Default constructor. */
/*! constructs defaults. */
Aos_observer() : p_arr(nullptr) {}
/*! Constructor with an associated arrangement. */
/*! constructs with an associated arrangement. */
Aos_observer(Arrangement_2& arr) : p_arr(&arr)
{
// Register the observer object in the arrangement.
p_arr->_register_observer(this);
}
/*! Destructor. */
/*! destructs. */
virtual ~Aos_observer()
{
// Unregister the observer object from the arrangement.
@ -80,13 +80,13 @@ public:
/// \name Modifying the associated arrangement.
//@{
/*! Get the associated arrangement (const version). */
/*! obtains the associated arrangement (const version). */
const Arrangement_2* arrangement() const { return (p_arr); }
/*! Get the associated arrangement (non-const version). */
/*! obtains the associated arrangement (non-const version). */
Arrangement_2* arrangement() { return (p_arr); }
/*! Attach the observer to an arrangement.
/*! attaches the observer to an arrangement.
* \pre The observer is not already attached to an arrangement.
*/
void attach(Arrangement_2& arr)
@ -110,7 +110,7 @@ public:
after_attach();
}
/*! Detach the observer from the arrangement. */
/*! detaches the observer from the arrangement. */
void detach()
{
if (p_arr == nullptr) return;
@ -564,7 +564,7 @@ public:
//@}
};
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>

View File

@ -123,7 +123,7 @@ public:
/// \name Construction.
//@{
/*! Default constructor. */
/*! constructs default. */
Arr_Bezier_curve_traits_2 ()
{
p_cache = new Bezier_cache;
@ -131,14 +131,14 @@ public:
m_owner = true;
}
/*! Copy constructor. */
/*! constructs copy. */
Arr_Bezier_curve_traits_2 (const Self& tr) :
p_cache (tr.p_cache),
p_inter_map (tr.p_inter_map),
m_owner (false)
{}
/*! Assignment operator. */
/*! assigns. */
Self& operator= (const Self& tr)
{
if (this == &tr)
@ -150,7 +150,7 @@ public:
return (*this);
}
/*! Destructor. */
/*! destructs. */
~Arr_Bezier_curve_traits_2 ()
{
if (m_owner)
@ -176,13 +176,12 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Compare_x_2 (const Bezier_cache *cache) :
p_cache (cache)
{}
/*!
* Compare the x-coordinates of two points.
/*! compares the x-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
@ -196,7 +195,7 @@ public:
}
};
/*! Get a Compare_x_2 functor object. */
/*! obtains a `Compare_x_2` functor object. */
Compare_x_2 compare_x_2_object () const
{
return (Compare_x_2 (p_cache));
@ -212,13 +211,12 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Compare_xy_2 (const Bezier_cache *cache) :
p_cache (cache)
{}
/*!
* Compares two points lexigoraphically: by x, then by y.
/*! compares two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
@ -232,7 +230,7 @@ public:
}
};
/*! Get a Compare_xy_2 functor object. */
/*! obtains a `Compare_xy_2` functor object. */
Compare_xy_2 compare_xy_2_object () const
{
return (Compare_xy_2 (p_cache));
@ -244,8 +242,7 @@ public:
class Construct_min_vertex_2
{
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
/*! obtains the left endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The left endpoint.
*/
@ -255,7 +252,7 @@ public:
}
};
/*! Get a Construct_min_vertex_2 functor object. */
/*! obtains a `Construct_min_vertex_2` functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object () const
{
return Construct_min_vertex_2();
@ -267,8 +264,7 @@ public:
class Construct_max_vertex_2
{
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
/*! obtains the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
@ -278,7 +274,7 @@ public:
}
};
/*! Get a Construct_max_vertex_2 functor object. */
/*! obtains a `Construct_max_vertex_2` functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object () const
{
return Construct_max_vertex_2();
@ -290,8 +286,7 @@ public:
class Is_vertical_2
{
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
/*! checks whether the given x-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
@ -301,7 +296,7 @@ public:
}
};
/*! Get an Is_vertical_2 functor object. */
/*! obtains an `Is_vertical_2` functor object. */
Is_vertical_2 is_vertical_2_object () const
{
return Is_vertical_2();
@ -317,13 +312,12 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Compare_y_at_x_2 (const Bezier_cache *cache) :
p_cache (cache)
{}
/*!
* Return the location of the given point with respect to the input curve.
/*! returns the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
@ -339,7 +333,7 @@ public:
}
};
/*! Get a Compare_y_at_x_2 functor object. */
/*! obtains a `Compare_y_at_x_2` functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object () const
{
return (Compare_y_at_x_2 (p_cache));
@ -355,13 +349,12 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Compare_y_at_x_left_2 (const Bezier_cache *cache) :
p_cache (cache)
{}
/*!
* Compares the y value of two x-monotone curves immediately to the left
/*! compares the y value of two x-monotone curves immediately to the left
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
@ -380,7 +373,7 @@ public:
}
};
/*! Get a Compare_y_at_x_left_2 functor object. */
/*! obtains a `Compare_y_at_x_left_2` functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
{
return (Compare_y_at_x_left_2 (p_cache));
@ -396,13 +389,12 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Compare_y_at_x_right_2 (const Bezier_cache *cache) :
p_cache (cache)
{}
/*!
* Compares the y value of two x-monotone curves immediately to the right
/*! compares the y value of two x-monotone curves immediately to the right
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
@ -421,7 +413,7 @@ public:
}
};
/*! Get a Compare_y_at_x_right_2 functor object. */
/*! obtains a `Compare_y_at_x_right_2` functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
{
return (Compare_y_at_x_right_2 (p_cache));
@ -437,13 +429,12 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Equal_2 (const Bezier_cache *cache) :
p_cache (cache)
{}
/*!
* Check if the two x-monotone curves are the same (have the same graph).
/*! checks if the two x-monotone curves are the same (have the same graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
@ -455,8 +446,7 @@ public:
const_cast<Bezier_cache&> (*p_cache)));
}
/*!
* Check if the two points are the same.
/*! checks if the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
@ -468,7 +458,7 @@ public:
}
};
/*! Get an Equal_2 functor object. */
/*! obtains an `Equal_2` functor object. */
Equal_2 equal_2_object () const
{
return (Equal_2 (p_cache));
@ -486,10 +476,10 @@ public:
Bezier_cache* p_cache;
public:
/*! Constructor. */
/*! constructs. */
Make_x_monotone_2(Bezier_cache* cache) : p_cache(cache) {}
/*! Subdivide a given Bezier curve into x-monotone subcurves and insert them
/*! subdivides a given Bezier curve into x-monotone subcurves and insert them
* into a given output iterator.
* \param cv the curve.
* \param oi an output iterator for the result. Its value type is a variant
@ -600,7 +590,7 @@ public:
}
};
/*! Get a Make_x_monotone_2 functor object. */
/*! obtains a `Make_x_monotone_2` functor object. */
Make_x_monotone_2 make_x_monotone_2_object() const
{ return (Make_x_monotone_2 (p_cache)); }
@ -610,8 +600,7 @@ public:
class Split_2
{
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
/*! splits a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
@ -626,7 +615,7 @@ public:
}
};
/*! Get a Split_2 functor object. */
/*! obtains a `Split_2` functor object. */
Split_2 split_2_object () const
{
return Split_2();
@ -643,14 +632,13 @@ public:
public:
/*! Constructor. */
/*! constructs. */
Intersect_2 (Bezier_cache *cache, Intersection_map *imap) :
p_cache (cache),
p_imap (imap)
{}
/*!
* Find the intersections of the two given curves and insert them to the
/*! finds the intersections of the two given curves and insert them to the
* given output iterator.
* \param cv1 The first curve.
* \param cv2 The second curve.
@ -666,7 +654,7 @@ public:
}
};
/*! Get an Intersect_2 functor object. */
/*! obtains an `Intersect_2` functor object. */
Intersect_2 intersect_2_object () const
{
return (Intersect_2 (p_cache, p_inter_map));
@ -678,8 +666,7 @@ public:
class Are_mergeable_2
{
public:
/*!
* Check whether it is possible to merge two given x-monotone curves.
/*! checks whether it is possible to merge two given x-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are mergeable - if they are supported
@ -692,7 +679,7 @@ public:
}
};
/*! Get an Are_mergeable_2 functor object. */
/*! obtains an `Are_mergeable_2` functor object. */
Are_mergeable_2 are_mergeable_2_object () const
{
return Are_mergeable_2();
@ -709,7 +696,7 @@ public:
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Merge_2(const Traits* traits) : m_traits(traits) {}
@ -718,8 +705,7 @@ public:
Nt_traits, Bounding_traits>;
public:
/*!
* Merge two given x-monotone curves into a single curve (segment).
/*! merges two given x-monotone curves into a single curve (segment).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
@ -736,7 +722,7 @@ public:
}
};
/*! Get a Merge_2 functor object. */
/*! obtains a `Merge_2` functor object. */
Merge_2 merge_2_object () const
{
return Merge_2(this);
@ -752,8 +738,7 @@ public:
class Compare_endpoints_xy_2
{
public:
/*!
* Compare the endpoints of an $x$-monotone curve lexicographically.
/*! compares the endpoints of an $x$-monotone curve lexicographically.
* (assuming the curve has a designated source and target points).
* \param cv The curve.
* \return SMALLER if the curve is directed right;
@ -768,7 +753,7 @@ public:
}
};
/*! Get a Compare_endpoints_xy_2 functor object. */
/*! obtains a `Compare_endpoints_xy_2` functor object. */
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{
return Compare_endpoints_xy_2();
@ -781,16 +766,14 @@ public:
/*! The traits (in case it has state) */
const Traits& m_traits;
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Trim_2(const Traits& traits) : m_traits(traits) {}
friend class Arr_Bezier_curve_traits_2<Rat_kernel, Alg_kernel,
Nt_traits, Bounding_traits>;
/*!\brief
* Returns a trimmed version of an arc
*
/*! returns a trimmed version of an arc
* \param xcv The arc
* \param src the new first endpoint
* \param tgt the new second endpoint
@ -824,7 +807,7 @@ public:
}
};
/*! Obtain a Trim_2 functor object. */
/*! obtains a `Trim_2` functor object. */
Trim_2 trim_2_object() const { return Trim_2(*this); }
/*! \class Construct_opposite_2
@ -833,9 +816,7 @@ public:
class Construct_opposite_2
{
public:
/*!
* Construct an opposite x-monotone curve (with swapped source and target).
/*! constructs an opposite x-monotone curve (with swapped source and target).
* \param cv The curve.
* \return The opposite curve.
*/
@ -845,7 +826,7 @@ public:
}
};
/*! Get a Construct_opposite_2 functor object. */
/*! obtains a `Construct_opposite_2` functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{
return Construct_opposite_2();
@ -854,7 +835,8 @@ public:
//@}
};
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>
#endif

View File

@ -69,30 +69,29 @@ private:
public:
/*! Constructor with an associated arrangement. */
/*! constructs from an associated arrangement. */
Arr_accessor(Arrangement_2& arr) : p_arr(&arr) {}
/* Get the arrangement. */
/*! obtains the arrangement. */
Arrangement_2& arrangement() { return (*p_arr); }
/* Get the arrangement (const version). */
/*! obtains the arrangement (const version). */
const Arrangement_2& arrangement() const { return (*p_arr); }
/// \name Accessing the notification functions (for the global functions).
//@{
/*! Notify that a global operation is about to take place. */
/*! notifies that a global operation is about to take place. */
void notify_before_global_change() { p_arr->_notify_before_global_change(); }
/*! Notify that a global operation was completed. */
/*! notifies that a global operation was completed. */
void notify_after_global_change() { p_arr->_notify_after_global_change(); }
//@}
/// \name Local operations and predicates for the arrangement.
//@{
/*!
* Locate the arrangement feature that contains the given curve-end.
/*! locates the arrangement feature that contains the given curve-end.
* \param cv The curve.
* \param ind ARR_MIN_END if we refer to cv's minimal end;
* ARR_MAX_END if we refer to its maximal end.
@ -128,8 +127,7 @@ public:
return Pl_result::make_result(Vertex_const_handle());
}
/*!
* Locate the place for the given curve around the given vertex.
/*! locates the place for the given curve around the given vertex.
* \param vh A handle for the arrangement vertex.
* \param cv The given x-monotone curve.
* \pre v is one of cv's endpoints.
@ -162,8 +160,7 @@ public:
return (p_arr->_handle_for (he));
}
/*!
* Locate the place for the given curve-end around the given vertex,
/*! locates the place for the given curve-end around the given vertex,
* which lies on the boundary.
* \param vh A handle for the arrangement vertex.
* \param cv The curve.
@ -177,11 +174,11 @@ public:
* vertex (in a clockwise order).
*/
Halfedge_handle
locate_around_boundary_vertex(Vertex_handle vh,
const X_monotone_curve_2& cv,
Arr_curve_end ind,
Arr_parameter_space ps_x,
Arr_parameter_space ps_y) const
locate_around_boundary_vertex(Vertex_handle vh,
const X_monotone_curve_2& cv,
Arr_curve_end ind,
Arr_parameter_space ps_x,
Arr_parameter_space ps_y) const
{
CGAL_precondition((ps_x != ARR_INTERIOR) || (ps_y != ARR_INTERIOR));
@ -193,8 +190,7 @@ public:
return (p_arr->_handle_for (he));
}
/*!
* Compute the distance (in halfedges) between two halfedges.
/*! computes the distance (in halfedges) between two halfedges.
* \param e1 A handle for the source halfedge.
* \param e2 A handle for the destination halfedge.
* \return In case e1 and e2 belong to the same connected component, the
@ -222,8 +218,7 @@ public:
return (static_cast<int>(dist));
}
/*!
* Determine whether a given query halfedge lies in the interior of a new
/*! determines whether a given query halfedge lies in the interior of a new
* face we are about to create, by connecting it with another halfedge
* using a given x-monotone curve.
* \param prev1 A handle for the query halfedge.
@ -244,8 +239,7 @@ public:
cv));
}
/*!
* Check if the given vertex represents one of the ends of a given curve.
/*! checks if the given vertex represents one of the ends of a given curve.
* \param v The vertex.
* \param cv The curve.
* \param ind ARR_MIN_END if we refer to cv's minimal end;
@ -262,8 +256,7 @@ public:
cv, ind, ps_x, ps_y));
}
/*!
* Check whether the given halfedge lies on the outer boundary of its
/*! checks whether the given halfedge lies on the outer boundary of its
* incident face.
* \param he The given halfedge.
* \return (true) in case he lies on the outer boundary of its incident face;
@ -275,8 +268,7 @@ public:
return (! p_he->is_on_inner_ccb());
}
/*!
* Check whether the given halfedge lies on the inner boundary of its
/*! checks whether the given halfedge lies on the inner boundary of its
* incident face.
* \param he The given halfedge.
* \return (true) in case he lies on a hole inside its incident face;
@ -288,8 +280,7 @@ public:
return (p_he->is_on_inner_ccb());
}
/*!
* Create a new vertex and associate it with the given point.
/*! creates a new vertex and associate it with the given point.
* \param p The point.
* \return A handle for the newly created vertex.
*/
@ -300,8 +291,7 @@ public:
return (p_arr->_handle_for (v));
}
/*!
* Create a new boundary vertex.
/*! creates a new boundary vertex.
* \param pt the point
* \param ps_x The parameter space in x.
* \param ps_y The parameter space in y.
@ -328,8 +318,7 @@ public:
return (p_arr->_handle_for(v));
}
/*!
* Create a new boundary vertex.
/*! creates a new boundary vertex.
* \param cv The curve incident to the boundary.
* \param ind The relevant curve-end.
* \param ps_x The parameter space in x.
@ -358,8 +347,7 @@ public:
return (p_arr->_handle_for(v));
}
/*!
* Locate the arrangement features that will be used for inserting the
/*! locates the arrangement features that will be used for inserting the
* given curve end, which has a boundary condition, and set a proper vertex
* there.
* \param f The face that contains the curve end.
@ -388,8 +376,7 @@ public:
return (std::make_pair(p_arr->_handle_for(v), p_arr->_handle_for(pred)));
}
/*!
* Insert an x-monotone curve into the arrangement, where the end vertices
/*! inserts an x-monotone curve into the arrangement, where the end vertices
* are given by the target points of two given halfedges.
* The two halfedges should be given such that in case a new face is formed,
* it will be the incident face of the halfedge directed from the first
@ -426,8 +413,7 @@ public:
return (p_arr->_handle_for(he));
}
/*!
* Insert an x-monotone curve into the arrangement, such that one of its
/*! inserts an x-monotone curve into the arrangement, such that one of its
* endpoints corresponds to a given arrangement vertex, given the exact
* place for the curve in the circular list around this vertex. The other
* endpoint corresponds to a free vertex (a newly created vertex or an
@ -463,8 +449,7 @@ public:
return (p_arr->_handle_for (he));
}
/*!
* Insert an x-monotone curve into the arrangement, such that both its
/*! inserts an x-monotone curve into the arrangement, such that both its
* endpoints correspond to free arrangement vertices (newly created vertices
* or existing isolated vertices), so a new hole is formed in the face
* that contains the two vertices.
@ -511,16 +496,14 @@ public:
}
/*!
* Insert the given vertex as an isolated vertex inside the given face.
/*! inserts the given vertex as an isolated vertex inside the given face.
* \param f The face that should contain the isolated vertex.
* \param v The isolated vertex.
*/
void insert_isolated_vertex(Face_handle f, Vertex_handle v)
{ p_arr->_insert_isolated_vertex(p_arr->_face (f), p_arr->_vertex(v)); }
/*!
* Relocate all holes and isolated vertices to their proper position,
/*! relocates all holes and isolated vertices to their proper position,
* immediately after a face has split due to the insertion of a new halfedge.
* In case insert_at_vertices_ex() was invoked and indicated that a new face
* has been created, this function should be called with the halfedge
@ -539,8 +522,7 @@ public:
void relocate_holes_in_new_face(Halfedge_handle new_he)
{ p_arr->_relocate_holes_in_new_face(p_arr->_halfedge(new_he)); }
/*!
* Move an outer CCB from one face to another.
/*! moves an outer CCB from one face to another.
* \param from_face The source face.
* \param to_face The destination face.
* \param ccb A CCB circulator that corresponds to component to move.
@ -552,8 +534,7 @@ public:
p_arr->_halfedge (ccb));
}
/*!
* Move an inner CCB from one face to another.
/*! moves an inner CCB from one face to another.
* \param from_face The source face.
* \param to_face The destination face.
* \param ccb A CCB circulator that corresponds to component to move.
@ -565,8 +546,7 @@ public:
p_arr->_halfedge(ccb));
}
/*!
* Move an isolated vertex from one face to another.
/*! moves an isolated vertex from one face to another.
* \param from_face The source face.
* \param to_face The destination face.
* \param v The isolated vertex to move.
@ -578,8 +558,7 @@ public:
p_arr->_face(to_face), p_arr->_vertex(v));
}
/*!
* Remove an isolated vertex from its face.
/*! removes an isolated vertex from its face.
* \param v The isolated vertex to remove.
*/
void remove_isolated_vertex_ex (Vertex_handle v)
@ -589,8 +568,7 @@ public:
p_arr->_remove_isolated_vertex(iso_v);
}
/*!
* Modify the point associated with a given vertex. The point may be
/*! modifies the point associated with a given vertex. The point may be
* geometrically different than the one currently associated with the vertex.
* \param v The vertex to modify.
* \param p The new point to associate with v.
@ -602,9 +580,8 @@ public:
return v;
}
/*!
* Modify the x-monotone curve associated with a given edge. The curve may be
* geometrically different than the one currently associated with the edge.
/*! modifies the x-monotone curve associated with a given edge. The curve may
* be geometrically different than the one currently associated with the edge.
* \param e The edge to modify.
* \param cv The new x-monotone curve to associate with e.
* \return A handle for the modified edge (same as e).
@ -616,8 +593,7 @@ public:
return e;
}
/*!
* Split a given edge into two at a given point, and associate the given
/*! splits a given edge into two at a given point, and associate the given
* x-monotone curves with the split edges.
* \param e The edge to split (one of the pair of twin halfedges).
* \param p The split point.
@ -638,8 +614,7 @@ public:
return (p_arr->_handle_for(he));
}
/*!
* Split a given edge into two at the given vertex, and associate the given
/*! splits a given edge into two at the given vertex, and associate the given
* x-monotone curves with the split edges.
* \param e The edge to split (one of the pair of twin halfedges).
* \param v The split vertex.
@ -661,8 +636,7 @@ public:
return (p_arr->_handle_for(he));
}
/*!
* Split a fictitious edge at the given vertex.
/*! splits a fictitious edge at the given vertex.
* \param e The edge to split (one of the pair of twin halfedges).
* \param v The split vertex.
* \return A handle for the first split halfedge, whose source equals the
@ -677,8 +651,7 @@ public:
return (p_arr->_handle_for(he));
}
/*!
* Remove a pair of twin halfedges from the arrangement.
/*! removes a pair of twin halfedges from the arrangement.
* \param e A handle for one of the halfedges to be removed.
* \param remove_source Should the source vertex of e be removed if it
* becomes isolated (true by default).
@ -698,8 +671,7 @@ public:
return (p_arr->_handle_for(f));
}
/*!
* Check if the two given halfedges lie on the same inner component.
/*! checks if the two given halfedges lie on the same inner component.
* \param e1 A handle for the first halfedge.
* \param e2 A handle for the second halfedge.
* \return Whether e1 and e2 lie on the same inner component.
@ -714,8 +686,7 @@ public:
return (ic1 == ic2);
}
/*!
* Check if the two given halfedges lie on the same outer component.
/*! checks if the two given halfedges lie on the same outer component.
* \param e1 A handle for the first halfedge.
* \param e2 A handle for the second halfedge.
* \return Whether e1 and e2 lie on the same outer component.
@ -741,7 +712,7 @@ public:
typedef typename Arrangement_2::_Is_valid_vertex Is_valid_vertex;
typedef typename Arrangement_2::_Valid_vertex_iterator Valid_vertex_iterator;
/*! Get an iterator for the first valid arrangement vertex. */
/*! obtains an iterator for the first valid arrangement vertex. */
Valid_vertex_iterator valid_vertices_begin()
{
return (Valid_vertex_iterator
@ -750,7 +721,7 @@ public:
Is_valid_vertex (p_arr->topology_traits())));
}
/*! Get a past-the-end iterator for the valid arrangement vertices. */
/*! obtains a past-the-end iterator for the valid arrangement vertices. */
Valid_vertex_iterator valid_vertices_end()
{
return (Valid_vertex_iterator
@ -759,7 +730,7 @@ public:
Is_valid_vertex (p_arr->topology_traits())));
}
/*! Get the number of valid arrangement vertices. */
/*! obtains the number of valid arrangement vertices. */
Size number_of_valid_vertices() const
{
return (p_arr->topology_traits()->number_of_valid_vertices());
@ -786,13 +757,11 @@ public:
typedef DInner_ccb Dcel_inner_ccb;
typedef DIso_vertex Dcel_isolated_vertex;
/*!
* Get the arrangement DCEL.
/*! obtains the arrangement DCEL.
*/
const Dcel& dcel() const { return (p_arr->_dcel()); }
/*!
* Clear the entire arrangement.
/*! clears the entire arrangement.
*/
void clear_all()
{
@ -800,8 +769,7 @@ public:
p_arr->_dcel().delete_all();
}
/*!
* Set the boundary of a vertex
/*! sets the boundary of a vertex
* \param p A vertex
* \param ps_x The boundary condition at x.
* \param ps_y The boundary condition at y.
@ -816,8 +784,7 @@ public:
return (v_to_set);
}
/*!
* Create a new vertex.
/*! creates a new vertex.
* \param p A pointer to the point (may be nullptr in case of a vertex at
* infinity).
* \param ps_x The boundary condition at x.
@ -842,8 +809,7 @@ public:
return (new_v);
}
/*!
* Create a new edge (halfedge pair), associated with the given curve.
/*! creates a new edge (halfedge pair), associated with the given curve.
* \param cv A pointer to the x-monotone curve (may be nullptr in case of
* a fictitious edge).
* \return A pointer to one of the created DCEL halfedge.
@ -860,34 +826,29 @@ public:
return new_he;
}
/*!
* Create a new face.
/*! creates a new face.
* \return A pointer to the created DCEL face.
*/
Dcel_face* new_face() { return (p_arr->_dcel().new_face()); }
/*!
* Create a new outer CCB.
/*! creates a new outer CCB.
* \return A pointer to the created DCEL outer CCB.
*/
Dcel_outer_ccb* new_outer_ccb() { return (p_arr->_dcel().new_outer_ccb()); }
/*!
* Create a new inner CCB.
/*! creates a new inner CCB.
* \return A pointer to the created DCEL inner CCB.
*/
Dcel_inner_ccb* new_inner_ccb()
{ return (p_arr->_dcel().new_inner_ccb()); }
/*!
* Create a new isolated vertex.
/*! creates a new isolated vertex.
* \return A pointer to the created DCEL isolated vertex.
*/
Dcel_isolated_vertex* new_isolated_vertex()
{ return (p_arr->_dcel().new_isolated_vertex()); }
/*!
* Remove a range of vertices
/*! removes a range of vertices
*/
template <typename VertexRange>
void delete_vertices(const VertexRange& range)
@ -902,8 +863,7 @@ public:
}
}
/*!
* Remove a range of edges
/*! removes a range of edges
*/
template <typename EdgeRange>
void delete_edges(const EdgeRange& range)
@ -918,8 +878,7 @@ public:
}
}
/*!
* Remove a range of faces
/*! removes a range of faces
*/
template <typename FaceRange>
void delete_faces(const FaceRange& range)
@ -932,8 +891,7 @@ public:
}
}
/*!
* Remove a range of outer ccbs
/*! removes a range of outer ccbs
*/
template <typename CcbRange>
void delete_outer_ccbs(const CcbRange& range)
@ -946,8 +904,7 @@ public:
}
}
/*!
* Remove a range of inner ccbs
/*! removes a range of inner ccbs
*/
template <typename CcbRange>
void delete_inner_ccbs(const CcbRange& range)
@ -960,14 +917,13 @@ public:
}
}
/*!
* Update the topology traits after the DCEL has been updated.
/*! updates the topology traits after the DCEL has been updated.
*/
void dcel_updated() { p_arr->topology_traits()->dcel_updated(); }
//@}
};
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -33,11 +33,10 @@
namespace CGAL {
template< class Coefficient_ >
template <class Coefficient_>
class Arr_algebraic_segment_traits_2 {
public:
enum Site_of_point {
POINT_IN_INTERIOR = 0,
MIN_ENDPOINT = -1,
@ -57,16 +56,15 @@ public:
typedef CGAL::Arr_algebraic_segment_traits_2<Coefficient> Self;
// Default constructor
// constructs default
Arr_algebraic_segment_traits_2 () {}
// Copy constructor
// constructs copy
Arr_algebraic_segment_traits_2 (const Self& /* s */) { /* No state...*/}
// Assignment operator
const Self& operator= (const Self& s)
{return s;}
// assigns
const Self& operator= (const Self& s) { return s; }
// public types
@ -613,11 +611,7 @@ public:
return Construct_curve_2(&CKvA_2::instance());
}
/*
/*
// additional functionality (for not introducing a "general" arc)
@ -650,12 +644,12 @@ public:
};
*/
*/
};
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_ARR_ALGEBRAIC_SEGMENT_TRAITS_H
#endif

View File

@ -118,26 +118,26 @@ public:
///! \name Construction methods.
//@{
/*! Default constructor. */
/*! constructs default. */
Arr_bounded_planar_topology_traits_2() :
Base(),
unb_face(nullptr)
{}
/*! Constructor from a geometry-traits object. */
/*! constructs from a geometry-traits object. */
Arr_bounded_planar_topology_traits_2(const Gt2* traits) :
Base(traits),
unb_face(nullptr)
{}
/*! Assign the contents of another topology-traits class. */
/*! assigns the contents of another topology-traits class. */
void assign(const Self& other);
//@}
///! \name Accessing the DCEL and constructing iterators.
//@{
/*! Determine whether the DCEL reprsenets an empty structure. */
/*! determines whether the DCEL reprsenets an empty structure. */
bool is_empty_dcel() const
{
// An empty bounded arrangement has no edges or vertices.
@ -145,40 +145,40 @@ public:
this->m_dcel.size_of_halfedges() == 0);
}
/*! Check if the given vertex is concrete (associated with a point). */
/*! checks if the given vertex is concrete (associated with a point). */
inline bool is_concrete_vertex(const Vertex*) const { return true; }
/*! Get the number of concrete vertices. */
/*! obtains the number of concrete vertices. */
Size number_of_concrete_vertices() const
{
// All vertices are concrete.
return (this->m_dcel.size_of_vertices());
}
/*! Check if the given vertex is valid (not a fictitious one). */
/*! checks if the given vertex is valid (not a fictitious one). */
inline bool is_valid_vertex(const Vertex*) const { return true; }
/*! Get the number of valid vertices. */
/*! obtains the number of valid vertices. */
Size number_of_valid_vertices() const
{
// All vertices are valid.
return (this->m_dcel.size_of_vertices());
}
/*! Check if the given halfedge is valid (not a fictitious one). */
/*! checks if the given halfedge is valid (not a fictitious one). */
inline bool is_valid_halfedge(const Halfedge*) const { return true; }
/*! Get the number of valid halfedges. */
/*! obtains the number of valid halfedges. */
Size number_of_valid_halfedges() const
{
// All halfedges are valid.
return (this->m_dcel.size_of_halfedges());
}
/*! Check if the given face is valid (not a fictitious one). */
/*! checks if the given face is valid (not a fictitious one). */
inline bool is_valid_face (const Face*) const { return true; }
/*! Get the number of valid faces. */
/*! obtains the number of valid faces. */
Size number_of_valid_faces() const
{
// All faces are valid.
@ -255,15 +255,15 @@ public:
///! \name Topology-traits methods.
//@{
/*! Initialize an empty DCEL structure.
/*! initializes an empty DCEL structure.
*/
void init_dcel();
/*! Make the necessary updates after the DCEL structure have been updated.
/*! makes the necessary updates after the DCEL structure have been updated.
*/
void dcel_updated();
/*! Check if the given vertex is associated with the given curve end.
/*! checks if the given vertex is associated with the given curve end.
* \param v The vertex.
* \param cv The x-monotone curve.
* \param ind The curve end.
@ -295,8 +295,8 @@ public:
}
}
/*! Given a curve end with boundary conditions and a face that contains the
* interior of the curve, find a place for a boundary vertex that will
/*! given a curve end with boundary conditions and a face that contains the
* interior of the curve, finds a place for a boundary vertex that will
* represent the curve end along the face boundary.
* \param f The face.
* \param cv The x-monotone curve.
@ -318,7 +318,7 @@ public:
return std::nullopt;
}
/*! Locate the predecessor halfedge for the given curve around a given
/*! locates the predecessor halfedge for the given curve around a given
* vertex with boundary conditions.
* \param v The vertex.
* \param cv The x-monotone curve.
@ -340,7 +340,7 @@ public:
return nullptr;
}
/*! Locate a DCEL feature that contains the given curve end.
/*! locates a DCEL feature that contains the given curve end.
* \param cv The x-monotone curve.
* \param ind The curve end.
* \param ps_x The boundary condition of the curve end in x.
@ -361,7 +361,7 @@ public:
return Result(v);
}
/*! Split a fictitious edge using the given vertex.
/*! splits a fictitious edge using the given vertex.
* \param e The edge to split (one of the pair of halfedges).
* \param v The split vertex.
* \pre e is a fictitious halfedge.
@ -375,21 +375,21 @@ public:
return nullptr;
}
/*! Determine whether the given face is unbounded.
/*! determines whether the given face is unbounded.
* \param f The face.
* \return Whether f is unbounded.
* There is only one unbounded face in the arrangement:
*/
bool is_unbounded(const Face* f) const { return (f == unb_face); }
/*! Determine whether the given boundary vertex is redundant.
/*! determines whether the given boundary vertex is redundant.
* \param v The vertex.
* \return Whether v is redundant, and should be erased.
* There are no redundant vertices.
*/
bool is_redundant(const Vertex*) const { return false; }
/*! Erase the given redundant vertex by merging a fictitious edge.
/*! erases the given redundant vertex by merging a fictitious edge.
* The function does not free the vertex v itself.
* \param v The vertex.
* \pre v is a redundant vertex.
@ -402,20 +402,20 @@ public:
return nullptr;
}
//! reference_face (const version).
/*! The function returns a reference face of the arrangement.
All reference faces of arrangements of the same type have a common
point.
\return A pointer to the reference face.
*/
//! reference_face (const version).
/*! returns a reference face of the arrangement. All reference faces of
* arrangements of the same type have a common point.
*
* \return A pointer to the reference face.
*/
const Face* reference_face() const { return unbounded_face(); }
//! reference_face (non-const version).
/*! The function returns a reference face of the arrangement.
All reference faces of arrangements of the same type have a common
point.
\return A pointer to the reference face.
*/
/*! returns a reference face of the arrangement. All reference faces of
* arrangements of the same type have a common point.
*
* \return A pointer to the reference face.
*/
Face* reference_face() { return unbounded_face(); }
//@}
@ -426,17 +426,17 @@ public:
/*! This function is used by the "walk" point-location strategy. */
const Face* initial_face() const { return (unb_face); }
/*! Get the unbounded face (const version). */
/*! obtains the unbounded face (const version). */
const Face* unbounded_face() const { return (unb_face); }
/*! Get the unbounded face (non-const version). */
/*! obtains the unbounded face (non-const version). */
Face* unbounded_face() { return (unb_face); }
//@}
/// \name Additional predicates, specialized for this topology-traits class.
//@{
/*! Compare the given vertex and the given point.
/*! compares the given vertex and the given point.
* \param p The point.
* \param v The vertex.
* \return The result of the comparison of the x-coordinates of p and v.
@ -444,7 +444,7 @@ public:
virtual Comparison_result compare_x(const Point_2& p, const Vertex* v) const
{ return (this->m_geom_traits->compare_x_2_object()(p, v->point())); }
/*! Compare the given vertex and the given point.
/*! compares the given vertex and the given point.
* \param p The point.
* \param v The vertex.
* \return The result of the xy-lexicographic comparison of p and v.
@ -452,7 +452,7 @@ public:
virtual Comparison_result compare_xy(const Point_2& p, const Vertex* v) const
{ return (this->m_geom_traits->compare_xy_2_object()(p, v->point())); }
/*! Compare the relative y-position of the given point and the given edge
/*! compares the relative y-position of the given point and the given edge
* (which may be fictitious).
* \param p The point.
* \param he The edge (one of the pair of halfedges).

View File

@ -72,12 +72,12 @@ protected:
bool m_use_cache;
public:
/*! Default constructor. */
/*! constructs default. */
Arr_circle_segment_traits_2 (bool use_intersection_caching = false) :
m_use_cache(use_intersection_caching)
{}
/*! Get the next curve index. */
/*! obtains the next curve index. */
static unsigned int get_index ()
{
#ifdef CGAL_NO_ATOMIC
@ -94,8 +94,7 @@ public:
class Compare_x_2
{
public:
/*!
* Compare the x-coordinates of two points.
/*! compares the \f$x\f$-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
@ -111,7 +110,7 @@ public:
}
};
/*! Get a Compare_x_2 functor object. */
/*! obtains a `Compare_x_2` functor object. */
Compare_x_2 compare_x_2_object () const
{
return Compare_x_2();
@ -120,8 +119,7 @@ public:
class Compare_xy_2
{
public:
/*!
* Compares two points lexigoraphically: by x, then by y.
/*! compares two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
@ -142,7 +140,7 @@ public:
}
};
/*! Get a Compare_xy_2 functor object. */
/*! obtains a Compare_xy_2 functor object. */
Compare_xy_2 compare_xy_2_object () const
{
return Compare_xy_2();
@ -151,8 +149,7 @@ public:
class Construct_min_vertex_2
{
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
/*! obtains the left endpoint of the \f$x\f$-monotone curve (segment).
* \param cv The curve.
* \return The left endpoint.
*/
@ -162,7 +159,7 @@ public:
}
};
/*! Get a Construct_min_vertex_2 functor object. */
/*! obtains a `Construct_min_vertex_2` functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object () const
{
return Construct_min_vertex_2();
@ -171,8 +168,7 @@ public:
class Construct_max_vertex_2
{
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
/*! obtains the right endpoint of the \f$x\f$-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
@ -182,7 +178,7 @@ public:
}
};
/*! Get a Construct_max_vertex_2 functor object. */
/*! obtains a Construct_max_vertex_2 functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object () const
{
return Construct_max_vertex_2();
@ -191,8 +187,7 @@ public:
class Is_vertical_2
{
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
/*! checks whether the given \f$x\f$-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
@ -202,7 +197,7 @@ public:
}
};
/*! Get an Is_vertical_2 functor object. */
/*! obtains an `Is_vertical_2` functor object. */
Is_vertical_2 is_vertical_2_object () const
{
return Is_vertical_2();
@ -211,11 +206,10 @@ public:
class Compare_y_at_x_2
{
public:
/*!
* Return the location of the given point with respect to the input curve.
/*! returns the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
* \pre p is in the \f$x\f$-range of `cv`.
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
* EQUAL if p lies on the curve.
@ -229,7 +223,7 @@ public:
}
};
/*! Get a Compare_y_at_x_2 functor object. */
/*! obtains a `Compare_y_at_x_2` functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object () const
{
return Compare_y_at_x_2();
@ -238,9 +232,8 @@ public:
class Compare_y_at_x_right_2
{
public:
/*!
* Compares the y value of two x-monotone curves immediately to the right
* of their intersection point.
/*! compares the y value of two \f$x\f$-monotone curves immediately to the
* right of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
@ -283,7 +276,7 @@ public:
}
};
/*! Get a Compare_y_at_x_right_2 functor object. */
/*! obtains a `Compare_y_at_x_right_2` functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
{
return Compare_y_at_x_right_2();
@ -292,16 +285,15 @@ public:
class Compare_y_at_x_left_2
{
public:
/*!
* Compares the y value of two x-monotone curves immediately to the left
* of their intersection point.
/*! compares the \f$y\f$-value of two \f$x\f$-monotone curves immediately to
* the left of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* \pre The point `p` lies on both curves, and both of them must be also be
* defined (lexicographically) to its left.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the left of p: SMALLER, LARGER or EQUAL.
* \return The relative position of `cv1` with respect to `cv2` immdiately
* to the left of `p`: `SMALLER`, `LARGER`, or `EQUAL`.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
@ -338,7 +330,7 @@ public:
}
};
/*! Get a Compare_y_at_x_left_2 functor object. */
/*! obtains a `Compare_y_at_x_left_2` functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
{
return Compare_y_at_x_left_2();
@ -347,8 +339,8 @@ public:
class Equal_2
{
public:
/*!
* Check if the two x-monotone curves are the same (have the same graph).
/*! checks if the two \f$x\f$-monotone curves are the same (have the same
* graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
@ -362,8 +354,7 @@ public:
return (cv1.equals (cv2));
}
/*!
* Check if the two points are the same.
/*! checks if the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
@ -374,7 +365,7 @@ public:
}
};
/*! Get an Equal_2 functor object. */
/*! obtains an `Equal_2` functor object. */
Equal_2 equal_2_object () const
{
return Equal_2();
@ -395,7 +386,7 @@ public:
/*! The traits (in case it has state) */
const Traits& m_traits;
/*! Constructor
/*! constructs
* \param traits the traits.
*/
Approximate_2(const Traits& traits) : m_traits(traits) {}
@ -403,24 +394,24 @@ public:
friend class Arr_circle_segment_traits_2<Kernel, Filter>;
public:
/*! Obtain an approximation of a point coordinate.
/*! obtains an approximation of a point coordinate.
* \param p the exact point.
* \param i the coordinate index (either 0 or 1).
* \pre i is either 0 or 1.
* \return An approximation of p's x-coordinate (if i == 0), or an
* approximation of p's y-coordinate (if i == 1).
* \pre `i` is either 0 or 1.
* \return An approximation of `p`'s \f$x\f$-coordinate (if `i` == 0), or an
* approximation of `p`'s \f$y\f$-coordinate (if `i` == 1).
*/
Approximate_number_type operator()(const Point_2& p, int i) const {
CGAL_precondition((i == 0) || (i == 1));
return (i == 0) ? (CGAL::to_double(p.x())) : (CGAL::to_double(p.y()));
}
/*! Obtain an approximation of a point.
/*! obtains an approximation of a point.
*/
Approximate_point_2 operator()(const Point_2& p) const
{ return Approximate_point_2(operator()(p, 0), operator()(p, 1)); }
/*! Obtain an approximation of an \f$x\f$-monotone curve.
/*! obtains an approximation of an \f$x\f$-monotone curve.
*/
template <typename OutputIterator>
OutputIterator operator()(const X_monotone_curve_2& xcv, double error,
@ -430,7 +421,7 @@ public:
}
private:
/*! Handle segments.
/*! handles segments.
*/
template <typename OutputIterator>
OutputIterator approximate_segment(const X_monotone_curve_2& xcv,
@ -477,7 +468,7 @@ public:
return oi;
}
/*! Compute the circular point given the parameter t and the transform
/*! computes the circular point given the parameter t and the transform
* data, that is, the center (translation) and the sin and cos of the
* rotation angle.
*/
@ -486,7 +477,7 @@ public:
y = r * std::sin(t);
}
/*! Transform a point. In particular, rotate the canonical point
/*! transforms a point. In particular, rotate the canonical point
* (`xc`,`yc`) by an angle, the sine and cosine of which are `sint` and
* `cost`, respectively, and translate by (`cx`,`cy`).
*/
@ -496,7 +487,7 @@ public:
y = yc + cy;
}
/*! Handle circular arcs.
/*! handles circular arcs.
*/
template <typename OutputIterator>
OutputIterator approximate_arc(const X_monotone_curve_2& xcv,
@ -554,7 +545,7 @@ public:
}
};
/*! Obtain an Approximate_2 functor object. */
/*! obtains an `Approximate_2` functor object. */
Approximate_2 approximate_2_object() const { return Approximate_2(*this); }
//@}
@ -562,7 +553,7 @@ public:
//@{
/*! \class
* A functor for subdividing a curve into x-monotone curves.
* A functor for subdividing a curve into \f$x\f$-monotone curves.
*/
class Make_x_monotone_2 {
private:
@ -573,8 +564,8 @@ public:
public:
Make_x_monotone_2(bool use_cache = false) : m_use_cache(use_cache) {}
/*! Subdivide a given circular arc or line segment into x-monotone subcurves
* and insert them to a given output iterator.
/*! subdivides a given circular arc or line segment into \f$x\f$-monotone
* subcurves and insert them to a given output iterator.
* \param cv the curve.
* \param oi the output iterator for the result. Its dereference type is a
* variant that wraps a \c Point_2 or an \c X_monotone_curve_2
@ -632,7 +623,7 @@ public:
else {
// Act according to the number of vertical tangency points.
if (n_vpts == 2) {
// Subdivide the circular arc into three x-monotone arcs.
// Subdivide the circular arc into three \f$x\f$-monotone arcs.
*oi++ = X_monotone_curve_2(circ,
cv.source(), vpts[0],
cv.orientation(),
@ -650,7 +641,7 @@ public:
index);
}
else if (n_vpts == 1) {
// Subdivide the circular arc into two x-monotone arcs.
// Subdivide the circular arc into two \f$x\f$-monotone arcs.
*oi++ = X_monotone_curve_2(circ,
cv.source(),
vpts[0],
@ -666,7 +657,7 @@ public:
else {
CGAL_assertion(n_vpts == 0);
// The arc is already x-monotone:
// The arc is already \f$x\f$-monotone:
*oi++ = X_monotone_curve_2(circ,
cv.source(),
cv.target(),
@ -679,7 +670,7 @@ public:
}
};
/*! Get a Make_x_monotone_2 functor object. */
/*! obtains a `Make_x_monotone_2` functor object. */
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(m_use_cache); }
@ -687,13 +678,13 @@ public:
{
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
/*! splits a given \f$x\f$-monotone curve at a given point into two
* sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
* \pre p lies on cv but is not one of its end-points.
* \param c1 Output: The left resulting subcurve (`p` is its right endpoint).
* \param c2 Output: The right resulting subcurve (`p` is its left endpoint).
* \pre `p` lies on cv but is not one of its end-points.
*/
void operator() (const X_monotone_curve_2& cv, const Point_2& p,
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
@ -707,7 +698,7 @@ public:
}
};
/*! Get a Split_2 functor object. */
/*! obtains a `Split_2` functor object. */
Split_2 split_2_object () const
{
return Split_2();
@ -718,10 +709,10 @@ public:
Intersection_map& _inter_map; // The map of intersection points.
public:
/*! Constructor. */
/*! constructs. */
Intersect_2(Intersection_map& map) : _inter_map(map) {}
/*! Find the intersections of the two given curves and insert them to the
/*! finds the intersections of the two given curves and insert them to the
* given output iterator. As two segments may itersect only once, only a
* single will be contained in the iterator.
* \param cv1 The first curve.
@ -736,18 +727,18 @@ public:
{ return (cv1.intersect(cv2, oi, &_inter_map)); }
};
/*! Get an Intersect_2 functor object. */
/*! obtains an `Intersect_2` functor object. */
Intersect_2 intersect_2_object() const { return (Intersect_2(inter_map)); }
class Are_mergeable_2
{
public:
/*!
* Check whether it is possible to merge two given x-monotone curves.
/*! checks whether it is possible to merge two given \f$x\f$-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are mergeable - if they are supported
* by the same line and share a common endpoint; (false) otherwise.
* \return (true) if `cv1` and `cv2` are mergeable, that is, if they are
* supported by the same line and share a common endpoint; (false)
* otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
@ -756,14 +747,14 @@ public:
}
};
/*! Get an Are_mergeable_2 functor object. */
/*! obtains an `Are_mergeable_2` functor object. */
Are_mergeable_2 are_mergeable_2_object () const
{
return Are_mergeable_2();
}
/*! \class Merge_2
* A functor that merges two x-monotone arcs into one.
* A functor that merges two \f$x\f$-monotone arcs into one.
*/
class Merge_2
{
@ -773,7 +764,7 @@ public:
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
/*! Constructs
* \param traits the traits (in case it has state)
*/
Merge_2(const Traits* traits) : m_traits(traits) {}
@ -781,8 +772,7 @@ public:
friend class Arr_circle_segment_traits_2<Kernel, Filter>;
public:
/*!
* Merge two given x-monotone curves into a single curve.
/*! merges two given \f$x\f$-monotone curves into a single curve.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
@ -799,7 +789,7 @@ public:
}
};
/*! Get a Merge_2 functor object. */
/*! obtains a `Merge_2` functor object. */
Merge_2 merge_2_object () const
{
return Merge_2(this);
@ -808,10 +798,9 @@ public:
class Compare_endpoints_xy_2
{
public:
/*!
* compare lexicogrphic the endpoints of a x-monotone curve.
/*! compares lexicogrphic the endpoints of a \f$x\f$-monotone curve.
* \param cv the curve
* \return SMALLER if the curve is directed right, else return SMALLER
* \return `SMALLER` if the curve is directed right, else return `LARGER`.
*/
Comparison_result operator()(const X_monotone_curve_2& cv) const
{
@ -821,7 +810,7 @@ public:
}
};
/*! Get a Compare_endpoints_xy_2 functor object. */
/*! obtains a `Compare_endpoints_xy_2` functor object. */
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{
return Compare_endpoints_xy_2();
@ -830,10 +819,9 @@ public:
class Construct_opposite_2
{
public:
/*!
* construct an opposite x-monotone curve.
/*! constructs an opposite \f$x\f$-monotone curve.
* \param cv the curve
* \return an opposite x-monotone curve.
* \return an opposite \f$x\f$-monotone curve.
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2& cv) const
{
@ -841,7 +829,7 @@ public:
}
};
/*! Get a Construct_opposite_2 functor object. */
/*! obtains a `Construct_opposite_2` functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{
return Construct_opposite_2();
@ -854,7 +842,7 @@ public:
/*! The traits (in case it has state) */
const Traits& m_traits;
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Trim_2(const Traits& traits) : m_traits(traits) {}
@ -862,7 +850,7 @@ public:
friend class Arr_circle_segment_traits_2<Kernel, Filter>;
public:
/*! Obtain a trimmed version of an arc
/*! obtains a trimmed version of an arc
* \param xcv The arc
* \param src the new first endpoint
* \param tgt the new second endpoint
@ -893,14 +881,14 @@ public:
}
};
/*! Obtain a Trim_2 functor object. */
/*! obtains a `Trim_2` functor object. */
Trim_2 trim_2_object() const { return Trim_2(*this); }
// @}
};
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>

View File

@ -206,4 +206,4 @@ public:
#include <CGAL/enable_warnings.h>
#endif // CGAL_CIRCULAR_KERNEL_CIRCULAR_ARC_TRAITS_H
#endif

View File

@ -380,8 +380,7 @@ namespace CGAL {
typedef typename CircularKernel::Circular_arc_point_2
Circular_arc_point_2;
public :
public:
typedef Circular_arc_point_2 result_type;
//typedef const result_type& qualified_result_type;
@ -395,14 +394,13 @@ namespace CGAL {
}
};
template <class CircularKernel, class Arc1, class Arc2>
class Construct_max_vertex_2//: public Has_qrt
{
typedef typename CircularKernel::Circular_arc_point_2 Point_2;
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
/*! obtains the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
@ -418,10 +416,10 @@ namespace CGAL {
}
};
template <class CircularKernel>
template <class CircularKernel>
class Variant_Is_vertical_2
{
public :
public:
template < typename T >
bool
@ -449,7 +447,7 @@ namespace CGAL {
// an empty class used to have different types between Curve_2 and X_monotone_curve_2
// in Arr_circular_line_arc_traits_2.
namespace internal_Argt_traits{
namespace internal_Argt_traits {
struct Not_X_Monotone{};
inline std::ostream& operator << (std::ostream& os, const Not_X_Monotone&)
{return os;}
@ -520,45 +518,42 @@ namespace CGAL {
typedef VariantFunctors::Intersect_2<CircularKernel, Arc1, Arc2>
Intersect_2;
Compare_x_2 compare_x_2_object() const
{ return ck.compare_x_2_object(); }
Compare_x_2 compare_x_2_object() const
{ return ck.compare_x_2_object(); }
Compare_xy_2 compare_xy_2_object() const
{ return ck.compare_xy_2_object(); }
Compare_xy_2 compare_xy_2_object() const
{ return ck.compare_xy_2_object(); }
Compare_y_at_x_2 compare_y_at_x_2_object() const
{ return Compare_y_at_x_2(); }
Compare_y_at_x_2 compare_y_at_x_2_object() const
{ return Compare_y_at_x_2(); }
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const
{ return Compare_y_at_x_right_2(); }
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const
{ return Compare_y_at_x_right_2(); }
Equal_2 equal_2_object() const
{ return Equal_2(); }
Equal_2 equal_2_object() const
{ return Equal_2(); }
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(); }
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(); }
Split_2 split_2_object() const
{ return Split_2(); }
Split_2 split_2_object() const
{ return Split_2(); }
Intersect_2 intersect_2_object() const
Intersect_2 intersect_2_object() const
{ return Intersect_2(); }
Construct_min_vertex_2 construct_min_vertex_2_object() const
Construct_min_vertex_2 construct_min_vertex_2_object() const
{ return Construct_min_vertex_2(); }
Construct_max_vertex_2 construct_max_vertex_2_object() const
Construct_max_vertex_2 construct_max_vertex_2_object() const
{ return Construct_max_vertex_2(); }
Is_vertical_2 is_vertical_2_object() const
Is_vertical_2 is_vertical_2_object() const
{ return Is_vertical_2();}
};
} // namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_CIRCULAR_KERNEL_VARIANT_TRAITS_H
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -92,10 +92,10 @@ public:
/// \name Construction.
//@{
/*! Construct default. */
/*! constructs default. */
Arr_curve_data_traits_2() {}
/*! Construct from a base-traits class. */
/*! constructs from a base-traits class. */
Arr_curve_data_traits_2(const Base_traits_2& traits) : Base_traits_2(traits) {}
//@}
@ -113,10 +113,10 @@ public:
const Base_traits_2& m_base;
public:
/*! Constructor. */
/*! constructs. */
Make_x_monotone_2(const Base_traits_2& base) : m_base(base) {}
/*! Subdivide a given curve into x-monotone subcurves and insert them into
/*! subdivides a given curve into x-monotone subcurves and insert them into
* a given output iterator.
* \param cv the curve.
* \param oi the output iterator for the result. Its value type is a variant
@ -152,7 +152,7 @@ public:
}
};
/*! Obtain a Make_x_monotone_2 functor object. */
/*! obtains a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(*this); }
@ -161,10 +161,10 @@ public:
const Base_traits_2& m_base;
public:
/*! Constructor. */
/*! constructs. */
Split_2(const Base_traits_2& base) : m_base(base) {}
/*! Split a given x-monotone curve at a given point into two sub-curves.
/*! splits a given x-monotone curve at a given point into two sub-curves.
* \param cv[in] The curve to split
* \param p[in] The split point.
* \param c1[out] The left resulting subcurve (p is its right endpoint).
@ -183,7 +183,7 @@ public:
}
};
/*! Obtain a Split_2 functor object. */
/*! obtains a Split_2 functor object. */
Split_2 split_2_object() const { return Split_2(*this); }
class Intersect_2 {
@ -191,10 +191,10 @@ public:
const Base_traits_2& m_base;
public:
/*! Constructor. */
/*! constructs. */
Intersect_2(const Base_traits_2& base) : m_base(base) {}
/*! Find the intersections of the two given curves and insert them to the
/*! finds the intersections of the two given curves and insert them to the
* given output iterator. As two segments may itersect only once, only a
* single will be contained in the iterator.
* \param cv1 The first curve.
@ -240,7 +240,7 @@ public:
}
};
/*! Obtain an Intersect_2 functor object. */
/*! obtains an `Intersect_2` functor object. */
Intersect_2 intersect_2_object() const { return Intersect_2(*this); }
class Are_mergeable_2 {
@ -288,10 +288,10 @@ public:
}
public:
/*! Constructor. */
/*! constructs. */
Are_mergeable_2(const Base_traits_2& base) : m_base(base) {}
/*! Check whether it is possible to merge two given x-monotone curves.
/*! checks whether it is possible to merge two given x-monotone curves.
* \param cv1[in] The first curve.
* \param cv2[in] The second curve.
* \return (true) if the two curves are mergeable; (false) otherwise.
@ -301,7 +301,7 @@ public:
{ return are_mergeable<Base_traits_2>(cv1, cv2, m_base, 0); }
};
/*! Obtain an Are_mergeable_2 functor object. */
/*! obtains an Are_mergeable_2 functor object. */
Are_mergeable_2 are_mergeable_2_object() const
{ return Are_mergeable_2(*this); }
@ -312,7 +312,7 @@ public:
private:
const Base_traits_2& m_base;
/*! Generate a helper class template to find out whether the base geometry
/*! generates a helper class template to find out whether the base geometry
* traits has a nested type named Merge_2.
*/
BOOST_MPL_HAS_XXX_TRAIT_NAMED_DEF(has_merge_2, Are_mergeable_2, false)
@ -348,10 +348,10 @@ public:
{ CGAL_error_msg("Merging curves is not supported."); }
public:
/*! Constructor. */
/*! constructs. */
Merge_2(const Base_traits_2& base) : m_base(base) {}
/*! Merge two given x-monotone curves into a single curve (segment).
/*! merges two given x-monotone curves into a single curve (segment).
* \param[in] cv1 The first curve.
* \param[in] cv2 The second curve.
* \param[out] c The merged curve.
@ -363,7 +363,7 @@ public:
{ merge<Base_traits_2>(cv1, cv2, c); }
};
/*! Obtain a Merge_2 functor object. */
/*! obtains a `Merge_2` functor object. */
Merge_2 merge_2_object() const { return Merge_2(*this); }
//@}
@ -373,10 +373,10 @@ public:
const Base_traits_2& m_base;
public:
/*! Constructor. */
/*! constructs. */
Construct_x_monotone_curve_2(const Base_traits_2& base) : m_base(base) {}
/*! Obtain an x-monotone curve connecting the two given endpoints.
/*! obtains an x-monotone curve connecting the two given endpoints.
* \param p The first point.
* \param q The second point.
* \pre p and q must not be the same.
@ -390,7 +390,7 @@ public:
}
};
/*! Obtain a Construct_x_monotone_curve_2 functor object. */
/*! obtains a Construct_x_monotone_curve_2 functor object. */
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object() const
{ return Construct_x_monotone_curve_2(*this); }
@ -398,7 +398,7 @@ public:
private:
const Base_traits_2& m_base;
/*! Generate a helper class template to find out whether the base geometry
/*! generates a helper class template to find out whether the base geometry
* traits has a nested type named Construct_opposite_2.
*/
BOOST_MPL_HAS_XXX_TRAIT_NAMED_DEF(has_construct_opposite_2,
@ -431,10 +431,10 @@ public:
}
public:
/*! Constructor. */
/*! constructs. */
Construct_opposite_2(const Base_traits_2& base) : m_base(base) {}
/*! Construct an opposite x-monotone (with swapped source and target).
/*! constructs an opposite x-monotone (with swapped source and target).
* \param cv The curve.
* \return The opposite curve.
*/
@ -442,7 +442,7 @@ public:
{ return construct_opposite<Base_traits_2>(cv); }
};
/*! Obtain a Construct_opposite_2 functor object. */
/*! obtains a Construct_opposite_2 functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{ return Construct_opposite_2(*this); }
//@}

View File

@ -82,13 +82,13 @@ protected:
char pss[2]; // The x and y parameter spaces (condensed in two bytes).
public:
/*! Default constructor. */
/*! constructs default. */
Arr_vertex_base() :
p_inc(nullptr),
p_pt(nullptr)
{ pss[0] = pss[1] = static_cast<char>(CGAL::ARR_INTERIOR); }
/*! Destructor. */
/*! destructs. */
virtual ~Arr_vertex_base() {}
// Access/modification for pointer squatting
@ -96,35 +96,35 @@ public:
void set_inc(void * inc) const
{ const_cast<Arr_vertex_base&>(*this).p_inc = inc; }
/*! Check if the point pointer is nullptr. */
/*! checks if the point pointer is nullptr. */
bool has_null_point() const { return (p_pt == nullptr); }
/*! Obtain the point (const version). */
/*! obtains the point (const version). */
const Point& point() const
{
CGAL_assertion(p_pt != nullptr);
return (*p_pt);
}
/*! Obtain the point (non-const version). */
/*! obtains the point (non-const version). */
Point& point()
{
CGAL_assertion(p_pt != nullptr);
return (*p_pt);
}
/*! Set the point (may be a nullptr point). */
/*! sets the point (may be a nullptr point). */
void set_point(Point* p) { p_pt = p; }
/*! Obtain the boundary type in x. */
/*! obtains the boundary type in x. */
Arr_parameter_space parameter_space_in_x() const
{ return (Arr_parameter_space(pss[0])); }
/*! Obtain the boundary type in y. */
/*! obtains the boundary type in y. */
Arr_parameter_space parameter_space_in_y() const
{ return (Arr_parameter_space(pss[1])); }
/*! Set the boundary conditions of the vertex. */
/*! sets the boundary conditions of the vertex. */
void set_boundary(Arr_parameter_space ps_x, Arr_parameter_space ps_y)
{
pss[0] = static_cast<char>(ps_x);
@ -132,7 +132,7 @@ public:
return;
}
/*! Assign from another vertex. */
/*! assigns from another vertex. */
virtual void assign(const Arr_vertex_base<Point>& v)
{
p_pt = v.p_pt;
@ -170,7 +170,7 @@ protected:
X_monotone_curve* p_cv; // The associated x-monotone curve.
public:
/*! Default constructor */
/*! constructs default */
Arr_halfedge_base() :
p_opp(nullptr),
p_prev(nullptr),
@ -180,27 +180,27 @@ public:
p_cv(nullptr)
{}
/*! Destructor. */
/*! destructs. */
virtual ~Arr_halfedge_base() {}
/*! Check if the curve pointer is nullptr. */
/*! checks if the curve pointer is nullptr. */
bool has_null_curve() const { return (p_cv == nullptr); }
/*! Obtain the x-monotone curve (const version). */
/*! obtains the x-monotone curve (const version). */
const X_monotone_curve& curve() const
{
CGAL_precondition(p_cv != nullptr);
return (*p_cv);
}
/*! Obtain the x-monotone curve (non-const version). */
/*! obtains the x-monotone curve (non-const version). */
X_monotone_curve& curve()
{
CGAL_precondition(p_cv != nullptr);
return (*p_cv);
}
/*! Set the x-monotone curve. */
/*! sets the x-monotone curve. */
void set_curve(X_monotone_curve* c)
{
p_cv = c;
@ -212,13 +212,12 @@ public:
opp->p_cv = c;
}
/*! Assign from another halfedge. */
/*! assigns from another halfedge. */
virtual void assign(const Arr_halfedge_base<X_monotone_curve>& he)
{ p_cv = he.p_cv; }
};
/*!
* Base face class.
/*! Base face class.
*/
class Arr_face_base
{
@ -248,27 +247,27 @@ protected:
Isolated_vertices_container iso_verts; // The isolated vertices inside
// the face.
public:
/*! Default constructor. */
/*! constructs default. */
Arr_face_base() : flags(0) {}
/*! Destructor. */
/*! destructs. */
virtual ~Arr_face_base() {}
/*! Check if the face is unbounded. */
/*! checks if the face is unbounded. */
bool is_unbounded() const { return ((flags & IS_UNBOUNDED) != 0); }
/*! Set the face as bounded or unbounded. */
/*! sets the face as bounded or unbounded. */
void set_unbounded(bool unbounded)
{ flags = (unbounded) ? (flags | IS_UNBOUNDED) : (flags & ~IS_UNBOUNDED); }
/*! Check if the face is fictitious. */
/*! checks if the face is fictitious. */
bool is_fictitious() const { return ((flags & IS_FICTITIOUS) != 0); }
/*! Set the face as fictitious or valid. */
/*! sets the face as fictitious or valid. */
void set_fictitious(bool fictitious)
{ flags = (fictitious) ? (flags | IS_FICTITIOUS) : (flags & ~IS_FICTITIOUS); }
/*! Assign from another face. */
/*! assigns from another face. */
virtual void assign(const Arr_face_base& f) { flags = f.flags; }
};
@ -293,38 +292,38 @@ public:
typedef Arr_halfedge<V,H,F> Halfedge;
typedef Arr_isolated_vertex<V,H,F> Isolated_vertex;
/*! Default constructor. */
/*! constructs default. */
Arr_vertex() {}
/*! Check if the vertex is isolated. */
/*! checks if the vertex is isolated. */
bool is_isolated() const
{
// Note that we use the LSB of the p_inc pointer as a Boolean flag.
return (_is_lsb_set(this->p_inc));
}
/*! Obtain an incident halfedge (const version). */
/*! obtains an incident halfedge (const version). */
const Halfedge* halfedge() const
{
CGAL_precondition(! is_isolated());
return (reinterpret_cast<const Halfedge*>(this->p_inc));
}
/*! Obtain an incident halfedge (non-const version). */
/*! obtains an incident halfedge (non-const version). */
Halfedge* halfedge()
{
CGAL_precondition(! is_isolated());
return (reinterpret_cast<Halfedge*>(this->p_inc));
}
/*! Set an incident halfedge (for non-isolated vertices). */
/*! sets an incident halfedge (for non-isolated vertices). */
void set_halfedge(Halfedge* he)
{
// Set the halfedge pointer and reset the LSB.
this->p_inc = he;
}
/*! Obtain the isolated vertex information (const version). */
/*! obtains the isolated vertex information (const version). */
const Isolated_vertex* isolated_vertex() const
{
CGAL_precondition(is_isolated());
@ -332,14 +331,14 @@ public:
(this->p_inc)));
}
/*! Obtain the isolated vertex information (non-const version). */
/*! obtains the isolated vertex information (non-const version). */
Isolated_vertex* isolated_vertex()
{
CGAL_precondition(is_isolated());
return (reinterpret_cast<Isolated_vertex*>(_clean_pointer(this->p_inc)));
}
/*! Set the isolated vertex information. */
/*! sets the isolated vertex information. */
void set_isolated_vertex(Isolated_vertex* iv)
{
// Set the isolated vertex-information pointer and set its LSB.
@ -362,20 +361,20 @@ public:
typedef Arr_outer_ccb<V,H,F> Outer_ccb;
typedef Arr_inner_ccb<V,H,F> Inner_ccb;
/*! Default constructor. */
/*! constructs default. */
Arr_halfedge() {}
/*! Obtain the opposite halfedge (const version). */
/*! obtains the opposite halfedge (const version). */
const Halfedge* opposite () const
{ return (reinterpret_cast<const Halfedge*>(this->p_opp)); }
/*! Obtain the opposite halfedge (non-const version). */
/*! obtains the opposite halfedge (non-const version). */
Halfedge* opposite() { return (reinterpret_cast<Halfedge*>(this->p_opp)); }
/*! Sets the opposite halfedge. */
void set_opposite(Halfedge* he) { this->p_opp = he; }
/*! Obtain the direction of the halfedge. */
/*! obtains the direction of the halfedge. */
Arr_halfedge_direction direction() const
{
// Note that we use the LSB of the p_v pointer as a Boolean flag.
@ -383,7 +382,7 @@ public:
else return (ARR_RIGHT_TO_LEFT);
}
/*! Set the direction of the edge (and of its opposite halfedge). */
/*! sets the direction of the edge (and of its opposite halfedge). */
void set_direction(Arr_halfedge_direction dir)
{
Halfedge* opp = reinterpret_cast<Halfedge*>(this->p_opp);
@ -398,43 +397,43 @@ public:
}
}
/*! Obtain the previous halfedge along the chain (const version). */
/*! obtains the previous halfedge along the chain (const version). */
const Halfedge* prev() const
{ return (reinterpret_cast<const Halfedge*>(this->p_prev)); }
/*! Obtain the previous halfedge along the chain (const version). */
/*! obtains the previous halfedge along the chain (const version). */
Halfedge* prev() { return (reinterpret_cast<Halfedge*>(this->p_prev)); }
/*! Set the previous halfedge along the chain. */
/*! sets the previous halfedge along the chain. */
void set_prev(Halfedge* he)
{
this->p_prev = he;
he->p_next = this;
}
/*! Obtain the next halfedge along the chain (const version). */
/*! obtains the next halfedge along the chain (const version). */
const Halfedge* next() const
{ return (reinterpret_cast<const Halfedge*>(this->p_next)); }
/*! Obtain the next halfedge along the chain (const version). */
/*! obtains the next halfedge along the chain (const version). */
Halfedge* next() { return (reinterpret_cast<Halfedge*>(this->p_next)); }
/*! Set the next halfedge along the chain. */
/*! sets the next halfedge along the chain. */
void set_next(Halfedge* he)
{
this->p_next = he;
he->p_prev = this;
}
/*! Obtain the target vertex (const version). */
/*! obtains the target vertex (const version). */
const Vertex* vertex() const
{ return (reinterpret_cast<const Vertex*>(_clean_pointer(this->p_v))); }
/*! Obtain the target vertex (non-const version). */
/*! obtains the target vertex (non-const version). */
Vertex* vertex()
{ return (reinterpret_cast<Vertex*>(_clean_pointer(this->p_v))); }
/*! Set the target vertex. */
/*! sets the target vertex. */
void set_vertex(Vertex* v)
{
// Set the vertex pointer, preserving the content of the LSB.
@ -442,10 +441,10 @@ public:
else this->p_v = v;
}
/*! Check whether the halfedge lies on the boundary of an outer CCB. */
/*! checks whether the halfedge lies on the boundary of an outer CCB. */
bool is_on_outer_ccb() const { return (!_is_lsb_set(this->p_comp)); }
/*! Obtain an incident outer CCB (const version).
/*! obtains an incident outer CCB (const version).
* \pre The edge does not lie on an inner CCB.
*/
const Outer_ccb* outer_ccb() const
@ -454,7 +453,7 @@ public:
return (reinterpret_cast<const Outer_ccb*>(this->p_comp));
}
/*! Obtain an incident outer CCB (non-const version).
/*! obtains an incident outer CCB (non-const version).
* \pre The edge does not lie on an inner CCB.
*/
Outer_ccb* outer_ccb()
@ -463,17 +462,17 @@ public:
return (reinterpret_cast<Outer_ccb*>(this->p_comp));
}
/*! Set the incident outer CCB. */
/*! sets the incident outer CCB. */
void set_outer_ccb(Outer_ccb *oc)
{
// Set the component pointer and reset its LSB.
this->p_comp = oc;
}
/*! Check whether the halfedge lies on the boundary of an inner CCB. */
/*! checks whether the halfedge lies on the boundary of an inner CCB. */
bool is_on_inner_ccb() const { return (_is_lsb_set(this->p_comp)); }
/*! Obtain an incident inner CCB (const version).
/*! obtains an incident inner CCB (const version).
* \pre The edge lies on an inner CCB.
*/
const Inner_ccb* inner_ccb() const
@ -493,7 +492,7 @@ public:
return valid;
}
/*! Obtain an incident inner CCB (non-const version).
/*! obtains an incident inner CCB (non-const version).
* \pre The edge lies on an inner CCB.
*/
Inner_ccb* inner_ccb()
@ -519,7 +518,7 @@ public:
return reinterpret_cast<Inner_ccb*>(_clean_pointer(this->p_comp));
}
/*! Set the incident inner CCB. */
/*! sets the incident inner CCB. */
void set_inner_ccb(const Inner_ccb *ic)
{
// Set the component pointer and set its LSB.
@ -553,7 +552,7 @@ private:
public:
/*! Default constructor. */
/*! constructs default. */
Arr_face()
{}
@ -565,20 +564,20 @@ public:
_Const_ccb_to_halfedge_cast>
Outer_ccb_const_iterator;
/*! Obtain the number of outer CCBs the face has. */
/*! obtains the number of outer CCBs the face has. */
size_t number_of_outer_ccbs() const { return (this->outer_ccbs.size()); }
/*! Obtain an iterator for the first outer CCB of the face. */
/*! obtains an iterator for the first outer CCB of the face. */
Outer_ccb_iterator outer_ccbs_begin() { return (this->outer_ccbs.begin()); }
/*! Obtain a past-the-end iterator for the outer CCBs inside the face. */
/*! obtains a past-the-end iterator for the outer CCBs inside the face. */
Outer_ccb_iterator outer_ccbs_end() { return (this->outer_ccbs.end()); }
/*! Obtain an const iterator for the first outer CCB inside the face. */
/*! obtains an const iterator for the first outer CCB inside the face. */
Outer_ccb_const_iterator outer_ccbs_begin() const
{ return (this->outer_ccbs.begin()); }
/*! Obtain a const past-the-end iterator for the outer CCBs inside the face. */
/*! obtains a const past-the-end iterator for the outer CCBs inside the face. */
Outer_ccb_const_iterator outer_ccbs_end() const
{ return (this->outer_ccbs.end()); }
@ -601,20 +600,20 @@ public:
typedef Inner_ccb_iterator Hole_iterator;
typedef Inner_ccb_const_iterator Hole_const_iterator;
/*! Obtain the number of inner CCBs the face has. */
/*! obtains the number of inner CCBs the face has. */
size_t number_of_inner_ccbs() const { return (this->inner_ccbs.size()); }
/*! Obtain an iterator for the first inner CCB of the face. */
/*! obtains an iterator for the first inner CCB of the face. */
Inner_ccb_iterator inner_ccbs_begin() { return (this->inner_ccbs.begin()); }
/*! Obtain a past-the-end iterator for the inner CCBs inside the face. */
/*! obtains a past-the-end iterator for the inner CCBs inside the face. */
Inner_ccb_iterator inner_ccbs_end() { return (this->inner_ccbs.end()); }
/*! Obtain an const iterator for the first inner CCB inside the face. */
/*! obtains an const iterator for the first inner CCB inside the face. */
Inner_ccb_const_iterator inner_ccbs_begin() const
{ return (this->inner_ccbs.begin()); }
/*! Obtain a const past-the-end iterator for the inner CCBs inside the face. */
/*! obtains a const past-the-end iterator for the inner CCBs inside the face. */
Inner_ccb_const_iterator inner_ccbs_end() const
{ return (this->inner_ccbs.end()); }
@ -669,23 +668,23 @@ public:
typename F::Isolated_vertex_iterator::iterator_category>
Isolated_vertex_const_iterator;
/*! Obtain the number of isloated vertices inside the face. */
/*! obtains the number of isloated vertices inside the face. */
size_t number_of_isolated_vertices() const
{ return (this->iso_verts.size()); }
/*! Obtain an iterator for the first isloated vertex inside the face. */
/*! obtains an iterator for the first isloated vertex inside the face. */
Isolated_vertex_iterator isolated_vertices_begin()
{ return (this->iso_verts.begin()); }
/*! Obtain a past-the-end iterator for the isloated vertices inside the face. */
/*! obtains a past-the-end iterator for the isloated vertices inside the face. */
Isolated_vertex_iterator isolated_vertices_end()
{ return (this->iso_verts.end()); }
/*! Obtain an const iterator for the first isloated vertex inside the face. */
/*! obtains an const iterator for the first isloated vertex inside the face. */
Isolated_vertex_const_iterator isolated_vertices_begin() const
{ return (this->iso_verts.begin()); }
/*! Obtain a const past-the-end iterator for the isloated vertices inside the
/*! obtains a const past-the-end iterator for the isloated vertices inside the
* face. */
Isolated_vertex_const_iterator isolated_vertices_end() const
{ return (this->iso_verts.end()); }
@ -736,47 +735,47 @@ private:
bool iter_is_not_singular;
public:
/*! Default constructor. */
/*! constructs default. */
Arr_outer_ccb() : p_f(nullptr), iter_is_not_singular(false) {}
/*! Copy constructor. */
/*! constructs copy. */
Arr_outer_ccb(const Arr_outer_ccb& other) :
p_f(other.p_f), iter_is_not_singular(other.iter_is_not_singular)
{ if (other.iter_is_not_singular) iter = other.iter; }
/*! Obtain a halfedge along the component (const version). */
/*! obtains a halfedge along the component (const version). */
const Halfedge* halfedge() const { return (*iter); }
/*! Obtain a halfedge along the component (non-const version). */
/*! obtains a halfedge along the component (non-const version). */
Halfedge* halfedge() { return (*iter); }
/*! Set a representative halfedge for the component. */
/*! sets a representative halfedge for the component. */
void set_halfedge(Halfedge* he) { *iter = he; }
/*! Obtain the incident face (const version). */
/*! obtains the incident face (const version). */
const Face* face() const { return (p_f); }
/*! Obtain the incident face (non-const version). */
/*! obtains the incident face (non-const version). */
Face* face() { return (p_f); }
/*! Set the incident face. */
/*! sets the incident face. */
void set_face(Face* f) { p_f = f; }
/*! Obtain the iterator (const version). */
/*! obtains the iterator (const version). */
Outer_ccb_iterator iterator() const
{
CGAL_assertion(iter_is_not_singular);
return (iter);
}
/*! Obtain the iterator (non-const version). */
/*! obtains the iterator (non-const version). */
Outer_ccb_iterator iterator()
{
CGAL_assertion(iter_is_not_singular);
return (iter);
}
/*! Set the outer CCB iterator. */
/*! sets the outer CCB iterator. */
void set_iterator(Outer_ccb_iterator it)
{
iter = it;
@ -813,71 +812,71 @@ private:
} status;
public:
/*! Default constructor. */
/*! constructs default. */
Arr_inner_ccb() : status(ITER_IS_SINGULAR) { f_or_icc.f = nullptr; }
/*! Copy constructor. */
/*! constructs copy. */
Arr_inner_ccb(const Arr_inner_ccb& other) :
f_or_icc(other.f_or_icc), status(other.status)
{ if (other.status == ITER_IS_NOT_SINGULAR) iter = other.iter; }
/*! Obtain a halfedge along the component (const version). */
/*! obtains a halfedge along the component (const version). */
const Halfedge* halfedge() const
{
CGAL_assertion(is_valid());
return (*iter);
}
/*! Obtain a halfedge along the component (non-const version). */
/*! obtains a halfedge along the component (non-const version). */
Halfedge* halfedge()
{
CGAL_assertion(is_valid());
return (*iter);
}
/*! Set a representative halfedge for the component. */
/*! sets a representative halfedge for the component. */
void set_halfedge(Halfedge *he)
{
CGAL_assertion(is_valid());
*iter = he;
}
/*! Obtain the incident face (const version). */
/*! obtains the incident face (const version). */
const Face* face() const
{
CGAL_assertion(status != INVALID);
return f_or_icc.f;
}
/*! Obtain the incident face (non-const version). */
/*! obtains the incident face (non-const version). */
Face* face()
{
CGAL_assertion(status != INVALID);
return f_or_icc.f;
}
/*! Set the incident face. */
/*! sets the incident face. */
void set_face(Face* f)
{
CGAL_assertion(status != INVALID);
f_or_icc.f = f;
}
/*! Obtain the iterator (const version). */
/*! obtains the iterator (const version). */
Inner_ccb_iterator iterator() const
{
CGAL_assertion(status == ITER_IS_NOT_SINGULAR);
return (iter);
}
/*! Obtain the iterator (non-const version). */
/*! obtains the iterator (non-const version). */
Inner_ccb_iterator iterator()
{
CGAL_assertion(status == ITER_IS_NOT_SINGULAR);
return (iter);
}
/*! Set the inner CCB iterator. */
/*! sets the inner CCB iterator. */
void set_iterator(Inner_ccb_iterator it)
{
CGAL_assertion(is_valid());
@ -885,17 +884,17 @@ public:
status = ITER_IS_NOT_SINGULAR;
}
/*! Check validity */
/*! checks validity */
bool is_valid() const { return (status != INVALID); }
/*! Obtain the next CCB to primary chain. */
/*! obtains the next CCB to primary chain. */
Arr_inner_ccb* next() const
{
CGAL_assertion(status == INVALID);
return f_or_icc.icc;
}
/*! Set the next CCB to primary chain. */
/*! sets the next CCB to primary chain. */
void set_next(Arr_inner_ccb* next)
{
status = INVALID;
@ -921,38 +920,38 @@ private:
bool iter_is_not_singular;
public:
/*! Default constructor. */
/*! constructs default. */
Arr_isolated_vertex() : p_f(nullptr), iter_is_not_singular(false) {}
/*! Copy constructor. */
/*! constructs copy. */
Arr_isolated_vertex(const Arr_isolated_vertex& other) :
p_f(other.p_f), iter_is_not_singular(other.iter_is_not_singular)
{ if (other.iter_is_not_singular) iv_it = other.iv_it; }
/*! Obtain the containing face (const version). */
/*! obtains the containing face (const version). */
const Face* face() const { return (p_f); }
/*! Obtain the containing face (non-const version). */
/*! obtains the containing face (non-const version). */
Face* face() { return (p_f); }
/*! Set the incident face, the one that contains the isolated vertex. */
/*! sets the incident face, the one that contains the isolated vertex. */
void set_face(Face* f) { p_f = f; }
/*! Obtain the isolated vertex iterator (const version). */
/*! obtains the isolated vertex iterator (const version). */
Isolated_vertex_iterator iterator() const
{
CGAL_assertion(iter_is_not_singular);
return (iv_it);
}
/*! Obtain the isolated vertex iterator (non-const version). */
/*! obtains the isolated vertex iterator (non-const version). */
Isolated_vertex_iterator iterator()
{
CGAL_assertion(iter_is_not_singular);
return (iv_it);
}
/*! Set the isolated vertex iterator. */
/*! sets the isolated vertex iterator. */
void set_iterator(Isolated_vertex_iterator iv)
{
iv_it = iv;
@ -1035,40 +1034,40 @@ public:
Edge_const_iterator;
private:
// Copy constructor - not supported.
// Copy constructor not supported.
Arr_dcel_base(const Self&);
// Assignment operator - not supported.
// Assignment operator not supported.
Self& operator=(const Self&);
public:
/// \name Construction and destruction.
//@{
/*! Default constructor. */
/*! constructs default. */
Arr_dcel_base() {}
/*! Destructor. */
/*! destructs. */
~Arr_dcel_base() { delete_all(); }
//@}
/// \name The DCEL size.
//@{
/*! Obtain the number of DCEL vertices. */
/*! obtains the number of DCEL vertices. */
Size size_of_vertices() const { return (vertices.size()); }
/*! Obtain the number of DCEL halfedges (twice the number of edges). */
/*! obtains the number of DCEL halfedges (twice the number of edges). */
Size size_of_halfedges() const { return (halfedges.size()); }
/*! Obtain the number of DCEL faces. */
/*! obtains the number of DCEL faces. */
Size size_of_faces() const { return (faces.size()); }
/*! Obtain the number of outer CCBs. */
/*! obtains the number of outer CCBs. */
Size size_of_outer_ccbs() const { return (out_ccbs.size()); }
/*! Obtain the number of inner CCBs. */
/*! obtains the number of inner CCBs. */
Size size_of_inner_ccbs() const { return (in_ccbs.size()); }
/*! Obtain the number of isolated vertices. */
/*! obtains the number of isolated vertices. */
Size size_of_isolated_vertices() const { return (iso_verts.size()); }
//@}
@ -1141,7 +1140,7 @@ public:
// \name Creation of new DCEL features.
//@{
/*! Create a new vertex. */
/*! creates a new vertex. */
Vertex* new_vertex()
{
Vertex* v = vertex_alloc.allocate(1);
@ -1150,7 +1149,7 @@ public:
return v;
}
/*! Create a new pair of opposite halfedges. */
/*! creates a new pair of opposite halfedges. */
Halfedge* new_edge()
{
// Create two new halfedges.
@ -1164,7 +1163,7 @@ public:
return (h1);
}
/*! Create a new face. */
/*! creates a new face. */
Face* new_face()
{
Face* f = face_alloc.allocate(1);
@ -1173,7 +1172,7 @@ public:
return(f);
}
/*! Create a new outer CCB. */
/*! creates a new outer CCB. */
Outer_ccb* new_outer_ccb()
{
Outer_ccb* oc = out_ccb_alloc.allocate(1);
@ -1182,7 +1181,7 @@ public:
return (oc);
}
/*! Create a new inner CCB. */
/*! creates a new inner CCB. */
Inner_ccb* new_inner_ccb()
{
Inner_ccb* ic = in_ccb_alloc.allocate(1);
@ -1191,7 +1190,7 @@ public:
return (ic);
}
/*! Create a new isolated vertex. */
/*! creates a new isolated vertex. */
Isolated_vertex* new_isolated_vertex()
{
Isolated_vertex* iv = iso_vert_alloc.allocate(1);
@ -1304,7 +1303,7 @@ public:
}
//@}
/*! Assign our DCEL the contents of another DCEL.
/*! assigns our DCEL the contents of another DCEL.
*/
void assign(const Self& dcel)
{
@ -1504,7 +1503,7 @@ public:
}
protected:
/*! Create a new halfedge. */
/*! creates a new halfedge. */
Halfedge* _new_halfedge()
{
Halfedge* h = halfedge_alloc.allocate(1);
@ -1513,7 +1512,7 @@ protected:
return (h);
}
/*! Delete an existing halfedge. */
/*! deletes an existing halfedge. */
void _delete_halfedge(Halfedge* h)
{
halfedges.erase(h);
@ -1522,7 +1521,7 @@ protected:
}
};
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>

View File

@ -39,7 +39,7 @@ public:
typedef typename Base::Segment_assertions Segment_assertions;
typedef typename Base::Has_exact_division Has_exact_division;
/*! Default constructor. */
/*! constructs default. */
Arr_directional_non_caching_segment_basic_traits_2() : Base() {}
/// \name Types and functors inherited from the base, required by the
@ -103,7 +103,7 @@ public:
//@{
typedef typename Kernel::Construct_opposite_segment_2 Construct_opposite_2;
/*! Obtain a Construct_opposite_2 functor object. */
/*! obtains a Construct_opposite_2 functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{ return Construct_opposite_2(); }
@ -114,7 +114,7 @@ public:
/*! The traits (in case it has state). */
const Traits& m_traits;
/*! Constructor
/*! Constructs
* \param traits the traits (in case it has state).
*/
Compare_endpoints_xy_2(const Traits& traits) : m_traits(traits) {}
@ -122,7 +122,7 @@ public:
friend class Arr_directional_non_caching_segment_basic_traits_2<Kernel>;
public:
/*! Compare the two endpoints of a given curve lexigoraphically.
/*! compares the two endpoints of a given curve lexigoraphically.
* \param cv The curve.
* \return SMALLER if cv is directed from left to right and LARGER
* otherwise.
@ -138,7 +138,7 @@ public:
}
};
/*! Obtain a Compare_endpoints_xy_2 functor object. */
/*! obtains a Compare_endpoints_xy_2 functor object. */
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{ return Compare_endpoints_xy_2(*this); }
//@}

View File

@ -43,16 +43,16 @@ private:
Data m_data; // The auxiliary data field.
public:
/*! Get the auxiliary data (const version). */
/*! obtains the auxiliary data (const version). */
const Data& data() const { return m_data; }
/*! Get the auxiliary data (non-const version). */
/*! obtains the auxiliary data (non-const version). */
Data& data() { return m_data; }
/*! Set the auxiliary data. */
/*! sets the auxiliary data. */
void set_data(const Data& data) { m_data = data; }
/*! Assign from another vertex. */
/*! assigns from another vertex. */
virtual void assign(const Vertex_base& v) {
Vertex_base::assign(v);
const Self& ex_v = static_cast<const Self&>(v);
@ -83,16 +83,16 @@ private:
Data m_data; // The auxiliary data field.
public:
/*! Get the auxiliary data (const version). */
/*! obtains the auxiliary data (const version). */
const Data& data() const { return m_data; }
/*! Get the auxiliary data (non-const version). */
/*! obtains the auxiliary data (non-const version). */
Data& data() { return m_data; }
/*! Set the auxiliary data. */
/*! sets the auxiliary data. */
void set_data(const Data& data) { m_data = data; }
/*! Assign from another halfedge. */
/*! assigns from another halfedge. */
virtual void assign(const Halfedge_base& he) {
Halfedge_base::assign(he);
const Self& ex_he = static_cast<const Self&>(he);
@ -123,16 +123,16 @@ private:
Data m_data; // The auxiliary data field.
public:
/*! Get the auxiliary data (const version). */
/*! obtains the auxiliary data (const version). */
const Data& data() const { return m_data; }
/*! Get the auxiliary data (non-const version). */
/*! obtains the auxiliary data (non-const version). */
Data& data() { return m_data; }
/*! Set the auxiliary data. */
/*! sets the auxiliary data. */
void set_data(const Data& data) { m_data = data; }
/*! Assign from another face. */
/*! assigns from another face. */
virtual void assign(const Face_base& f) {
Face_base::assign(f);
const Self& ex_f = static_cast<const Self&>(f);
@ -176,10 +176,10 @@ public:
Halfedge_other, Face_base>;
};
/*! Default constructor. */
/*! constructs default. */
Arr_face_extended_dcel() {}
/*! Destructor. */
/*! destructs. */
virtual ~Arr_face_extended_dcel() {}
};
@ -227,14 +227,14 @@ public:
Vertex_other, Halfedge_other, Face_base>;
};
/*! Default constructor. */
/*! constructs default. */
Arr_extended_dcel() {}
/*! Destructor. */
/*! destructs. */
virtual ~Arr_extended_dcel() {}
};
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>

View File

@ -62,24 +62,24 @@ private:
enum {MIN_REV_MAP_SIZE = 32};
public:
/*! Default constructor. */
/*! constructs default. */
Arr_face_index_map() :
Base(),
n_faces(0),
rev_map(MIN_REV_MAP_SIZE)
{}
/*! Constructor with an associated arrangement. */
/*! constructs from an associated arrangement. */
Arr_face_index_map(const Base_aos& arr) :
Base(const_cast<Base_aos&>(arr))
{ _init(); }
/*! Copy constructor. */
/*! constructs copy. */
Arr_face_index_map(const Self& other) :
Base(const_cast<Base_aos&>(*(other.arrangement())))
{ _init(); }
/*! Assignment operator. */
/*! assigns. */
Self& operator= (const Self& other) {
if (this == &other) return (*this);
@ -89,13 +89,13 @@ public:
return (*this);
}
/*! Get the index of a given face.
/*! obtains the index of a given face.
* \param f A handle to the face.
* \pre f is a valid face in the arrangement.
*/
unsigned int operator[](Face_handle f) const { return (index_map[f]); }
/*! Get the face given its index.
/*! obtains the face given its index.
* \param i The index of the face.
* \pre i is less than the number of faces in the arrangement.
*/
@ -107,27 +107,27 @@ public:
/// \name Notification functions, to keep the mapping up-to-date.
//@{
/*! Update the mapping after the arrangement has been assigned with another
/*! updates the mapping after the arrangement has been assigned with another
* arrangement.
*/
virtual void after_assign() override { _init(); }
/*! Update the mapping after the arrangement is cleared.
/*! updates the mapping after the arrangement is cleared.
*/
virtual void after_clear() override { _init(); }
/*! Update the mapping after attaching to a new arrangement.
/*! updates the mapping after attaching to a new arrangement.
*/
virtual void after_attach() override { _init(); }
/*! Update the mapping after detaching the arrangement.
/*! updates the mapping after detaching the arrangement.
*/
virtual void after_detach() override {
n_faces = 0;
index_map.clear();
}
/*! Update the mapping after the creation of a new face is split from another
/*! updates the mapping after the creation of a new face is split from another
* face.
* \param f A handle to the existing face.
* \param new_f A handle to the newly created face.
@ -147,7 +147,7 @@ public:
rev_map[n_faces - 1] = new_f;
}
/*! Update the mapping before the merge of two faces.
/*! updates the mapping before the merge of two faces.
* \param f1 A handle to the face that is going to remain.
* \param f2 A handle to the face that is about to be removed.
*/
@ -181,7 +181,7 @@ public:
//@}
private:
/*! Initialize the map for the given arrangement. */
/*! initializes the map for the given arrangement. */
void _init() {
// Get the number of faces and allocate the reverse map accordingly.
n_faces = static_cast<unsigned int>(this->arrangement()->number_of_faces());
@ -206,7 +206,7 @@ private:
}
};
/*! Get the index property-map function. Provided so that boost is able to
/*! obtains the index property-map function. Provided so that boost is able to
* access the Arr_face_index_map above.
* \param index_map The index map.
* \param f A face handle.
@ -217,7 +217,7 @@ unsigned int get(const CGAL::Arr_face_index_map<Arrangement>& index_map,
typename Arrangement::Face_handle f)
{ return (index_map[f]); }
} //namespace CGAL
} // namespace CGAL
#include <CGAL/enable_warnings.h>

View File

@ -80,12 +80,12 @@ public:
const Self * m_traits;
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Less_xy_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points lexigoraphically: by x, then by y.
/*! compares two points lexigoraphically: by x, then by y.
* We actually reversing the order, so x <--> y.
* \param p1 the first endpoint directional point.
* \param p2 the second endpoint directional point.
@ -120,14 +120,12 @@ public:
const Self * m_traits;
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Less_yx_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points lexigoraphically: by y, then by x.
/*! compares two points lexigoraphically: by y, then by x.
* We actually reversing the order, so x <--> y.
* \param p1 the first endpoint directional point.
* \param p2 the second endpoint directional point.
@ -160,12 +158,12 @@ public:
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Orientation_2 (const Self * traits) : m_traits(traits) {}
/*! Checks the orientation between three points.
/*! checks the orientation between three points.
* We actually reversing the order, so x <--> y.
* \param p
* \param q
@ -231,7 +229,6 @@ public:
Compare_y_2 compare_y_2_object() const {return Base::compare_x_2_object(); }
/*! A functor that compares two points by x coordinate.
*/
class Compare_x_2
@ -241,14 +238,12 @@ public:
const Self * m_traits;
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Compare_x_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points by y coordinate.
/*! compares two points by y coordinate.
* We actually reversing the order, so x <--> y.
* \param p1 the first endpoint directional point.
* \param p2 the second endpoint directional point.
@ -388,7 +383,7 @@ public:
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Less_xy_2(const Self * traits) : m_traits(traits) {}
@ -429,7 +424,7 @@ public:
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Less_yx_2(const Self * traits) : m_traits(traits) {}
@ -467,7 +462,7 @@ public:
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Orientation_2 (const Self * traits) : m_traits(traits) {}
@ -549,7 +544,7 @@ public:
public:
/*! Constructor
/*! constructs
* \param traits the traits (in case it has state)
*/
Compare_x_2(const Self * traits) : m_traits(traits) {}

View File

@ -55,13 +55,13 @@ private:
FT m_c;
public:
/*! Default Constructor */
/*! constructs default */
Arr_plane_3() : m_a(0), m_b(0), m_c(0) {}
/*! Constructor */
/*! constructs */
Arr_plane_3(int a, int b, int c) : m_a(a), m_b(b), m_c(c) {}
/*! Constructor */
/*! constructs */
Arr_plane_3(typename Kernel::Plane_3 p)
{
CGAL_precondition_code(Kernel kernel;);
@ -71,7 +71,7 @@ public:
m_a = p.a(); m_b = p.b(); m_c = p.c() ;
}
/*! Constructor */
/*! constructs */
Arr_plane_3(const Point_3 & p, const Point_3 & r)
{
FT prx = r.x() - p.x();
@ -82,16 +82,16 @@ public:
m_c = r.x() * pry - prx * r.y();
}
/*! Obtain the x coefficient */
/*! obtains the x coefficient */
const FT & a() const { return m_a; }
/*! Obtain the y coefficient */
/*! obtains the y coefficient */
const FT & b() const { return m_b; }
/*! Obtain the z coefficient */
/*! obtains the z coefficient */
const FT & c() const { return m_c; }
/*! Obtain the i-th coefficient of the plane
/*! obtains the i-th coefficient of the plane
* \param i the index of the coefficient
* \return the i-th coefficient
*/
@ -108,14 +108,14 @@ public:
(c() == plane.c()));
}
/*! Convert to kernel's plane */
/*! converts to kernel's plane */
operator typename Kernel::Plane_3 () const
{
Kernel kernel;
return kernel.construct_plane_3_object() (m_a, m_b, m_c, 0);
}
/*! Compute the image point of the projection of p under an affine
/*! computes the image point of the projection of p under an affine
* transformation, which maps the plane onto the xy-plane, with the
* z-coordinate removed.
* \param p the point
@ -139,7 +139,7 @@ public:
return Point_2(x, y);
}
/*! Compute a 3d point p_3 coincident to the plane, such that the image point
/*! computes a 3d point p_3 coincident to the plane, such that the image point
* of the projection of p_3 under an affine transformation, which maps the
* plane onto the a given axis-parallel plane is a given 2d point.
* \param p_2 the image point
@ -183,7 +183,7 @@ public:
return p_3;
}
/*! Determine the relative position of a point and the plane
/*! determines the relative position of a point and the plane
* \param p the point
* \return ON_ORIENTED_BOUNDARY, ON_POSITIVE_SIDE, or ON_NEGATIVE_SIDE,
* determined by the position of p relative to the oriented plane.
@ -194,7 +194,7 @@ public:
}
};
/*! Intersect 2 planes
/*! intersects 2 planes
* \param plane1 the first plane
* \param plane2 the second plane
* \return a variant that represents the intersection. It wraps a line of
@ -244,7 +244,7 @@ intersect(const Arr_plane_3<Kernel> & plane1,
return Intersection_result(plane1);
}
/*! Compute the image point of the projection of p under an affine
/*! computes the image point of the projection of p under an affine
* transformation, which maps the plane onto the xy-plane, with the
* z-coordinate removed.
* \param plane the plane
@ -259,7 +259,7 @@ construct_projected_xy_point(const Arr_plane_3<Kernel> & plane,
return plane.to_2d(p);
}
/*! Export a plane to an output stream
/*! exports a plane to an output stream
* \param os the output stream
* \param plane the plane
* \return the output stream
@ -272,6 +272,6 @@ inline std::ostream & operator<<(std::ostream & os,
return os;
}
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -63,7 +63,7 @@ public:
Algebraic x; // The x-coordinate.
Algebraic y; // The y-coordinate.
/*! Constructor. */
/*! constructs. */
Intersection_point (const Algebraic& _s, const Algebraic& _t,
const Algebraic& _x, const Algebraic& _y) :
s(_s), t(_t),
@ -124,7 +124,7 @@ private:
app_y (0)
{}
/*! Constructor. */
/*! constructs. */
My_point_2 (typename Parameter_list::const_iterator it,
const Algebraic& _x, const Algebraic& _y) :
prm_it (it),
@ -134,7 +134,7 @@ private:
app_y (CGAL::to_double(_y))
{}
/*! Get the parameter value. */
/*! obtains the parameter value. */
const Algebraic& parameter () const
{
return (*prm_it);
@ -177,7 +177,7 @@ private:
public:
/*! Constructor. */
/*! constructs. */
_Bezier_cache ()
{}
@ -869,6 +869,6 @@ _Bezier_cache<NtTraits>::_compute_resultant
return (det);
}
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -105,7 +105,7 @@ private:
public:
/*! Default constructor. */
/*! constructs default. */
_Bezier_curve_2_rep () :
_no_self_inter (true),
p_polyX(nullptr),
@ -114,7 +114,7 @@ public:
p_normY(nullptr)
{}
/*! Copy constructor (isn't really used). */
/*! constructs copy (isn't really used). */
_Bezier_curve_2_rep (const _Bezier_curve_2_rep& other) :
_ctrl_pts(other._ctrl_pts),
_bbox(other._bbox),
@ -134,8 +134,7 @@ public:
p_normY = new Integer(*(other.p_normY));
}
/*!
* Constructor from a given range of control points.
/*! constructs from a given range of control points.
* \param pts_begin An iterator pointing to the first point in the range.
* \param pts_end A past-the-end iterator for the range.
* \pre The value-type of the input iterator must be Rat_kernel::Point_2.
@ -206,7 +205,7 @@ public:
_no_self_inter = ! bound_tr.may_have_self_intersections (_ctrl_pts);
}
/*! Destructor. */
/*! destructs. */
~_Bezier_curve_2_rep ()
{
if (p_polyX != nullptr)
@ -222,14 +221,14 @@ public:
/// \name Access the polynomials (lazily evaluated).
//@{
/*! Check if the polynomials are already constructed. */
/*! checks if the polynomials are already constructed. */
bool has_polynomials () const
{
return (p_polyX != nullptr && p_normX != nullptr &&
p_polyY != nullptr && p_normY != nullptr);
}
/*! Get the polynomial X(t). */
/*! obtains the polynomial X(t). */
const Polynomial& x_polynomial () const
{
if (p_polyX == nullptr)
@ -238,7 +237,7 @@ public:
return (*p_polyX);
}
/*! Get the normalizing factor for X(t). */
/*! obtains the normalizing factor for X(t). */
const Integer& x_norm () const
{
if (p_normX == nullptr)
@ -247,7 +246,7 @@ public:
return (*p_normX);
}
/*! Get the polynomial Y(t). */
/*! obtains the polynomial Y(t). */
const Polynomial& y_polynomial () const
{
if (p_polyY == nullptr)
@ -256,7 +255,7 @@ public:
return (*p_polyY);
}
/*! Get the normalizing factor for Y(t). */
/*! obtains the normalizing factor for Y(t). */
const Integer& y_norm () const
{
if (p_normY == nullptr)
@ -268,14 +267,12 @@ public:
private:
/*!
* Construct the representation of X(t) and Y(t).
/*! construct the representation of X(t) and Y(t).
* The function is declared as "const" as it changes only mutable members.
*/
void _construct_polynomials () const;
/*!
* Compute the value of n! / (j! k! (n-k-j)!).
/*! computes the value of n! / (j! k! (n-k-j)!).
*/
Integer _choose (int n, int j, int k) const;
@ -324,22 +321,19 @@ public:
public:
/*!
* Default constructor.
/*!constructs default.
*/
_Bezier_curve_2 () :
Bcv_handle (Bcv_rep())
{}
/*!
* Copy constructor.
/*! constructs copy.
*/
_Bezier_curve_2 (const Self& bc) :
Bcv_handle (bc)
{}
/*!
* Constructor from a given range of control points.
/*! constructs from a given range of control points.
* \param pts_begin An iterator pointing to the first point in the range.
* \param pts_end A past-the-end iterator for the range.
* \pre The value-type of the input iterator must be Rat_kernel::Point_2.
@ -350,8 +344,7 @@ public:
Bcv_handle (Bcv_rep (pts_begin, pts_end))
{}
/*!
* Assignment operator.
/*! assigns.
*/
Self& operator= (const Self& bc)
{
@ -362,56 +355,49 @@ public:
return (*this);
}
/*!
* Get a unique curve ID (based on the actual representation pointer).
/*! obtains a unique curve ID (based on the actual representation pointer).
*/
size_t id () const
{
return (reinterpret_cast<size_t> (this->ptr()));
}
/*!
* Get the polynomial for the x-coordinates of the curve.
/*! obtains the polynomial for the x-coordinates of the curve.
*/
const Polynomial& x_polynomial () const
{
return (this->_rep().x_polynomial());
}
/*!
* Get the normalizing factor for the x-coordinates.
/*! obtains the normalizing factor for the x-coordinates.
*/
const Integer& x_norm () const
{
return (this->_rep().x_norm());
}
/*!
* Get the polynomial for the y-coordinates of the curve.
/*! obtains the polynomial for the y-coordinates of the curve.
*/
const Polynomial& y_polynomial () const
{
return (this->_rep().y_polynomial());
}
/*!
* Get the normalizing factor for the y-coordinates.
/*! obtains the normalizing factor for the y-coordinates.
*/
const Integer& y_norm () const
{
return (this->_rep().y_norm());
}
/*!
* Get the number of control points inducing the Bezier curve.
/*! obtains the number of control points inducing the Bezier curve.
*/
unsigned int number_of_control_points () const
{
return static_cast<unsigned int>((this->_rep()._ctrl_pts.size()));
}
/*!
* Get the i'th control point.
/*! obtains the i'th control point.
* \pre i must be between 0 and n - 1, where n is the number of control
* points.
*/
@ -422,46 +408,40 @@ public:
return ((this->_rep()._ctrl_pts)[i]);
}
/*!
* Get an iterator for the first control point.
/*! obtains an iterator for the first control point.
*/
Control_point_iterator control_points_begin () const
{
return (this->_rep()._ctrl_pts.begin());
}
/*!
* Get a past-the-end iterator for control points.
/*! obtains a past-the-end iterator for control points.
*/
Control_point_iterator control_points_end () const
{
return (this->_rep()._ctrl_pts.end());
}
/*!
* Check if both curve handles refer to the same object.
/*! checks if both curve handles refer to the same object.
*/
bool is_same (const Self& bc) const
{
return (this->identical (bc));
}
/*!
* Compute a point of the Bezier curve given a rational t-value.
/*! computes a point of the Bezier curve given a rational t-value.
* \param t The given t-value.
* \return The point B(t).
*/
Rat_point_2 operator() (const Rational& t) const;
/*!
* Compute a point of the Bezier curve given an algebraic t-value.
/*! computes a point of the Bezier curve given an algebraic t-value.
* \param t The given t-value.
* \return The point B(t).
*/
Alg_point_2 operator() (const Algebraic& t) const;
/*!
* Sample a portion of the curve (for drawing purposes, etc.).
/*! samples a portion of the curve (for drawing purposes, etc.).
* \param t_start The t-value to start with.
* \param t_end The t-value to end at.
* \param n_samples The required number of samples.
@ -507,8 +487,7 @@ public:
return (oi);
}
/*!
* Compute all parameter values t such that the x-coordinate of B(t) is x0.
/*! computes all parameter values t such that the x-coordinate of B(t) is x0.
* Note that the function does not return only values between 0 and 1, so
* the output t-values may belong to the imaginary continuation of the curve.
* \param x0 The given x-coordinate.
@ -525,8 +504,7 @@ public:
oi));
}
/*!
* Compute all parameter values t such that the y-coordinate of B(t) is y0.
/*! computes all parameter values t such that the y-coordinate of B(t) is y0.
* Note that the function does not return only values between 0 and 1, so
* the output t-values may belong to the imaginary continuation of the curve.
* \param y0 The given y-coordinate.
@ -542,21 +520,18 @@ public:
oi));
}
/*!
* Check if the two curves have the same support.
/*! checks if the two curves have the same support.
*/
bool has_same_support (const Self& bc) const;
/*!
* Get the bounding box of the curve.
/*! obtains the bounding box of the curve.
*/
const Bbox_2& bbox () const
{
return (this->_rep()._bbox);
}
/*!
* Check if the curve contains not self intersections.
/*! checks if the curve contains not self intersections.
* Note that there may not be any self intersections even if the
* function returns true (but not vice versa).
*/
@ -578,8 +553,7 @@ private:
return (*(this->ptr()));
}
/*!
* Compute all parameter values t, such that P(t) = val.
/*! computes all parameter values t, such that P(t) = val.
* \param poly The polynomial.
* \param norm Its normalizing factor.
* \param val The required value.
@ -618,8 +592,7 @@ private:
}
};
/*!
* Exporter for Bezier curves.
/*! exports a Bezier curves.
*/
template <class Rat_kernel, class Alg_kernel, class Nt_traits,
class Bounding_traits>
@ -638,8 +611,7 @@ operator<< (std::ostream& os,
return (os);
}
/*!
* Importer for Bezier curves.
/*! imports a Bezier curves.
*/
template <class Rat_kernel, class Alg_kernel, class Nt_traits,
class Bounding_traits>
@ -947,6 +919,6 @@ bool _Bezier_curve_2<RatKer, AlgKer, NtTrt, BndTrt>::has_same_support
return (true);
}
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -95,7 +95,7 @@ private:
public:
/*! Constructor, given an exact algebraic representation. */
/*! constructs, given an exact algebraic representation. */
Originator (const Curve_2& c, const Algebraic& t) :
_curve (c),
_xid (0),
@ -104,7 +104,7 @@ private:
set_parameter (t);
}
/*! Constructor, given an exact algebraic representation. */
/*! constructs, given an exact algebraic representation. */
Originator (const Curve_2& c, unsigned int xid,
const Algebraic& t) :
_curve (c),
@ -114,7 +114,7 @@ private:
set_parameter (t);
}
/*! Constructor with bounding information and no exact representation. */
/*! constructs with bounding information and no exact representation. */
Originator (const Curve_2& c, const Bez_point_bound& bpb) :
_curve (c),
_xid (0),
@ -122,7 +122,7 @@ private:
p_t (nullptr)
{}
/*! Constructor with bounding information and no exact representation. */
/*! constructs with bounding information and no exact representation. */
Originator (const Curve_2& c, unsigned int xid,
const Bez_point_bound& bpb) :
_curve (c),
@ -174,19 +174,19 @@ private:
return (*this);
}
/*! Get the originating curve. */
/*! obtains the originating curve. */
const Curve_2& curve () const
{
return (_curve);
}
/*! Get the serial number of the originating x-monotone curve. */
/*! obtains the serial number of the originating x-monotone curve. */
unsigned int xid () const
{
return (_xid);
}
/*! Get the bounding information. */
/*! obtains the bounding information. */
const Bez_point_bound& point_bound () const
{
return (_bpb);
@ -264,7 +264,7 @@ private:
BoundNT t_min; /*!< Minimal parameter value. */
BoundNT t_max; /*!< Maximal parameter value. */
/*! Constructor given control points an a t-range. */
/*! constructs given control points an a t-range. */
Subcurve (const Control_points& _ctrl,
const BoundNT& _tmin,
const BoundNT& _tmax) :
@ -273,7 +273,7 @@ private:
t_max (_tmax)
{}
/*! Constructor given a t-range. */
/*! constructs given a t-range. */
Subcurve (const BoundNT& _tmin,
const BoundNT& _tmax) :
t_min (_tmin),
@ -924,7 +924,7 @@ public:
_rep()._bbox = bbox;
}
/*! Get the bounding box of the point. */
/*! obtains the bounding box of the point. */
void get_bbox (typename Bounding_traits::NT& min_x,
typename Bounding_traits::NT& min_y,
typename Bounding_traits::NT& max_x,
@ -938,13 +938,13 @@ public:
private:
/*! Get the representation (const version). */
/*! obtains the representation (const version). */
inline const Bpt_rep& _rep () const
{
return (*(this->ptr()));
}
/*! Get the representation (non-const version). */
/*! obtains the representation (non-const version). */
inline Bpt_rep& _rep ()
{
return (*(this->ptr()));
@ -1701,6 +1701,6 @@ void _Bezier_point_2_rep<RatKer, AlgKer, NtTrt, BndTrt>::_make_exact
CGAL_error();
}
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -130,7 +130,7 @@ private:
Rational t_min;
Rational t_max;
/*! Get the rational bounding box of the subcurve. */
/*! obtains the rational bounding box of the subcurve. */
void bbox(Rational& x_min, Rational& y_min,
Rational& x_max, Rational& y_max) const
{
@ -464,7 +464,7 @@ private:
const Point_2& p,
Bezier_cache& cache) const;
/*! Get the range of t-value over which the subcurve is defined.
/*! obtains the range of t-value over which the subcurve is defined.
* \param cache Caches the vertical tangency points and intersection points.
* \return A pair comprised of the t-value for the source point and the
* t-value for the target point.
@ -2585,6 +2585,6 @@ _exact_vertical_position(const Point_2& p,
return EQUAL;
}
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -50,13 +50,13 @@ private:
CoordNT _y;
public:
/*! Default constructor. */
/*! constructs default. */
_One_root_point_2_rep() :
_x(0),
_y(0)
{}
/*! Constructor of a point with one-root coefficients.
/*! constructs a point with one-root coefficients.
This constructor of a point can also be used with rational coefficients
thanks to convertor of CoordNT. */
_One_root_point_2_rep(const CoordNT& x, const CoordNT& y) :
@ -83,28 +83,29 @@ private:
public:
typedef typename Point_rep::CoordNT CoordNT;
/*! Default constructor. */
/*! constructs default. */
_One_root_point_2() : Point_handle(Point_rep()) {}
/*! Copy constructor. */
/*! constructs copy. */
_One_root_point_2(const Self& p) : Point_handle(p) {}
_One_root_point_2& operator=(const _One_root_point_2&)=default;
/*! Constructor of a point with one-root coefficients.
This constructor of a point can also be used with rational coefficients
thanks to convertor of CoordNT. */
/*! constructs a point with one-root coefficients.
* This constructor of a point can also be used with rational coefficients
* thanks to convertor of CoordNT.
*/
_One_root_point_2(const CoordNT& x, const CoordNT& y) :
Point_handle(Point_rep(x, y))
{}
/*! Get the x-coordinate. */
/*! obtains the x-coordinate. */
const CoordNT& x() const { return (this->ptr()->_x); }
/*! Get the y-coordinate. */
/*! obtains the y-coordinate. */
const CoordNT& y() const { return (this->ptr()->_y); }
/*! Check for equality. */
/*! checks for equality. */
bool equals(const Self& p) const
{
if (this->identical(p)) return (true);
@ -117,7 +118,7 @@ public:
bool operator == (const Self& p) const { return equals(p); }
/*! Set the point coordinates. */
/*! sets the point coordinates. */
void set(const NT& x, const NT& y)
{
this->copy_on_write();
@ -126,7 +127,7 @@ public:
return;
}
/*! Set the point coordinates. */
/*! sets the point coordinates. */
void set(const CoordNT& x, const CoordNT& y)
{
this->copy_on_write();
@ -136,8 +137,7 @@ public:
}
};
/*!
* Exporter for conic arcs.
/*! exports a conic arc.
*/
template <typename NT, bool Filter>
std::ostream& operator<<(std::ostream& os,
@ -187,14 +187,14 @@ protected:
Orientation m_orient; // The orientation (COLLINEAR for line segments).
public:
/*! Default constructor. */
/*! constructs default. */
_Circle_segment_2() :
m_is_full(false),
m_has_radius(false),
m_orient(COLLINEAR)
{}
/*! Constructor from a line segment.
/*! constructs from a line segment.
* \param seg The segment.
*/
_Circle_segment_2(const Segment_2& seg) :
@ -206,7 +206,7 @@ public:
m_orient(COLLINEAR)
{}
/*! Constructor from of a line segment.
/*! constructs from of a line segment.
* \param ps The source point.
* \param pt The target point.
*/
@ -220,7 +220,7 @@ public:
m_orient(COLLINEAR)
{}
/*! Constructor of a segment, given a supporting line and two endpoints,
/*! constructs a segment, given a supporting line and two endpoints,
* which need not necessarily have rational coordinates.
* \param line The supporting line.
* \param source The source point.
@ -243,7 +243,7 @@ public:
-target.y() * line.b()) == EQUAL);
}
/*! Constructor from a circle.
/*! constructs from a circle.
* \param circ The circle.
*/
_Circle_segment_2(const Circle_2& circ) :
@ -253,7 +253,7 @@ public:
m_orient(circ.orientation())
{ CGAL_assertion(m_orient != COLLINEAR); }
/*! Constructor from a circle.
/*! constructs from a circle.
* \param c The circle center.
* \param r The radius.
* \param orient The orientation of the circle.
@ -267,7 +267,7 @@ public:
m_orient(orient)
{ CGAL_assertion (orient != COLLINEAR); }
/*! Constructor of a circular arc, given a supporting circle and two
/*! constructs a circular arc, given a supporting circle and two
* endpoints, which need not necessarily have rational coordinates.
* The orientation of the circle determines the orientation of the arc.
* \param circ The supporting circle.
@ -297,7 +297,7 @@ public:
CGAL::square(target.y() - circ.center().y())) == EQUAL);
}
/*! Constructor of a circular arc, given a supporting circle and two
/*! constructs a circular arc, given a supporting circle and two
* endpoints, which need not necessarily have rational coordinates.
* \param c The circle center.
* \param r The radius.
@ -330,7 +330,7 @@ public:
CGAL::square(target.y() - c.y())) == EQUAL);
}
/*! Constructor of a circular arc, from the given three points, in case of
/*! constructs a circular arc, from the given three points, in case of
* three collinear points, a segment will be constructed.
* \param p1 The arc source.
* \param p2 A point in the interior of the arc.
@ -408,19 +408,19 @@ public:
m_circ = Circle_2(circ_center, sqr_rad, m_orient);
}
/*! Get the orientation of the curve.
/*! obtains the orientation of the curve.
* \return COLLINEAR in case of a line segment,
* CLOCKWISE or COUNTERCLOCKWISE for circular curves.
*/
inline Orientation orientation() const { return (m_orient); }
/*! Check if the arc is linear. */
/*! checks if the arc is linear. */
inline bool is_linear() const { return (m_orient == COLLINEAR); }
/*! Check if the arc is circular. */
/*! checks if the arc is circular. */
inline bool is_circular() const { return (m_orient != COLLINEAR); }
/*! Obtain the supporting line.
/*! obtains the supporting line.
* \pre The curve orientation is COLLINEAR.
*/
const Line_2& supporting_line() const
@ -429,7 +429,7 @@ public:
return m_line;
}
/*! Obtain the supporting circle.
/*! obtains the supporting circle.
* \pre The curve orientation is not COLLINEAR.
*/
const Circle_2& supporting_circle() const
@ -438,11 +438,10 @@ public:
return m_circ;
}
/*! Check if the curve is a full circle. */
/*! checks if the curve is a full circle. */
bool is_full() const { return (m_is_full); }
/*!
* Get the source point.
/*! obtains the source point.
* \pre The curve is not a full circle.
*/
const Point_2& source() const
@ -451,8 +450,7 @@ public:
return (m_source);
}
/*!
* Get the target point.
/*! obtains the target point.
* \pre The curve is not a full circle.
*/
const Point_2& target() const
@ -461,7 +459,7 @@ public:
return (m_target);
}
/*! Get the vertical tangency points the arc contains.
/*! obtains the vertical tangency points the arc contains.
* \param vpts Output: The vertical tangency points.
* \pre The curve is circular.
* \return The number of points (0, 1, or 2).
@ -514,7 +512,7 @@ public:
}
private:
/*! Obtain the vertical tangency points the arc contains, assuming it is
/*! obtains the vertical tangency points the arc contains, assuming it is
* counterclockwise oriented.
* \param vpts Output: The vertical tangency points.
* \return The number of points (0, 1, or 2).
@ -580,7 +578,7 @@ private:
return (n_vpts);
}
/*! Obtain the index of the quarter-plane containing the given point,
/*! obtains the index of the quarter-plane containing the given point,
* where the circle center is considered to be the origin.
*/
int _quart_index(const Point_2& p) const
@ -606,7 +604,7 @@ private:
}
};
/*! Exporter for line segments and circular arcs.
/*! exports a line segments or a circular arc.
*/
template <typename Kernel, bool Filter>
std::ostream&
@ -648,8 +646,7 @@ public:
typedef std::pair<Point_2, Multiplicity> Intersection_point;
typedef std::list<Intersection_point> Intersection_list;
/*!
* \struct Less functor for Curve_id_pair.
/*! \struct Less functor for Curve_id_pair.
*/
struct Less_id_pair {
bool operator()(const Curve_id_pair& ip1, const Curve_id_pair& ip2) const
@ -692,7 +689,7 @@ protected:
// The rest of the bits represent the curve index.
public:
/*! Default constructor.
/*! constructs default.
*/
_X_monotone_circle_segment_2() :
m_first(),
@ -703,7 +700,7 @@ public:
m_info(0)
{}
/*! Construct an arc from a line segment.
/*! constructs an arc from a line segment.
* \param line The supporting line.
* \param source The source point.
* \param target The target point.
@ -734,7 +731,7 @@ public:
if (res == SMALLER) m_info = (m_info | IS_DIRECTED_RIGHT_MASK);
}
/*! Construct a segment arc from two kernel points
/*! constructs a segment arc from two kernel points
* \param source the source point.
* \ param target the target point.
* \pre source and target are not equal.
@ -766,7 +763,7 @@ public:
if (res == SMALLER) m_info = (m_info | IS_DIRECTED_RIGHT_MASK);
}
/*! Construct a circular arc.
/*! constructs a circular arc.
* \param line The supporting line.
* \param source The source point.
* \param target The target point.
@ -795,14 +792,14 @@ public:
else m_info = (m_info | CLOCKWISE_CODE);
}
/*! Check if the arc is linear. */
/*! checks if the arc is linear. */
inline bool is_linear () const { return ((m_info & ORIENTATION_MASK) == 0); }
/*! Check if the arc is circular. */
/*! checks if the arc is circular. */
inline bool is_circular () const
{ return ((m_info & ORIENTATION_MASK) != 0); }
/*! Obtain the supporting line.
/*! obtains the supporting line.
* \pre The arc is linear (a line segment).
*/
Line_2 supporting_line() const
@ -811,7 +808,7 @@ public:
return (Line_2 (a(), b(), c()));
}
/*! Obtain the supporting circle.
/*! obtains the supporting circle.
* \pre The arc is circular.
*/
Circle_2 supporting_circle() const
@ -822,13 +819,13 @@ public:
return (Circle_2(center , sqr_r(), orientation()));
}
/*! Get the source point. */
/*! obtains the source point. */
inline const Point_2& source() const { return (m_source); }
/*! Get the target point. */
/*! obtains the target point. */
inline const Point_2& target() const { return (m_target); }
/*! True if the arc is directed right, false otherwise. */
/*! returns true if the arc is directed right, false otherwise. */
bool is_directed_right() const
{ return ((m_info & IS_DIRECTED_RIGHT_MASK) != 0); }
@ -836,15 +833,15 @@ public:
bool has_right() const { return true; }
/*! Get the left endpoint of the arc. */
/*! obtains the left endpoint of the arc. */
inline const Point_2& left() const
{ return (((m_info & IS_DIRECTED_RIGHT_MASK) != 0) ? m_source : m_target); }
/*! Get the right endpoint of the arc. */
/*! obtains the right endpoint of the arc. */
inline const Point_2& right() const
{ return (((m_info & IS_DIRECTED_RIGHT_MASK) != 0) ? m_target : m_source); }
/*! Check whether the given point is in the x-range of the arc.
/*! checks whether the given point is in the x-range of the arc.
*/
bool is_in_x_range(const Point_2& p) const
{
@ -856,11 +853,11 @@ public:
return (CGAL::compare (p.x(), right().x()) != LARGER);
}
/*! Check if the arc is a vertical segment. */
/*! checks if the arc is a vertical segment. */
inline bool is_vertical() const
{ return ((m_info & IS_VERTICAL_SEGMENT_MASK) != 0); }
/*! Get the orientation of the arc. */
/*! obtains the orientation of the arc. */
inline Orientation orientation() const
{
unsigned int or_ = (m_info & ORIENTATION_MASK);
@ -871,7 +868,7 @@ public:
return (CGAL::COLLINEAR);
}
/*! Check the position of a given point with respect to the arc.
/*! checks the position of a given point with respect to the arc.
*/
Comparison_result point_position(const Point_2& p) const
{
@ -879,7 +876,7 @@ public:
else return (_circ_point_position (p));
}
/*! Compare the two arcs to the right of their intersection point.
/*! compares the two arcs to the right of their intersection point.
*/
Comparison_result compare_to_right(const Self& cv, const Point_2& p) const
{
@ -895,7 +892,7 @@ public:
}
}
/*! Compare the two arcs to the left of their intersection point.
/*! compares the two arcs to the left of their intersection point.
*/
Comparison_result compare_to_left(const Self& cv, const Point_2& p) const
{
@ -911,7 +908,7 @@ public:
}
}
/*! Check whether the two arcs have the same supporting curve.
/*! checks whether the two arcs have the same supporting curve.
*/
bool has_same_supporting_curve(const Self& cv) const
{
@ -951,7 +948,7 @@ public:
CGAL::compare(fact2*c(), fact1*cv.c()) == EQUAL);
}
/*! Check whether the two curves are equal.
/*! checks whether the two curves are equal.
*/
bool equals(const Self& cv) const
{
@ -970,7 +967,7 @@ public:
m_source.equals(cv.m_target) && m_target.equals(cv.m_source)));
}
/*! Split the curve at a given point into two sub-arcs.
/*! splits the curve at a given point into two sub-arcs.
*/
void split(const Point_2& p, Self& c1, Self& c2) const
{
@ -989,7 +986,7 @@ public:
}
}
/*! Compute the intersections between the two arcs or segments.
/*! computes the intersections between the two arcs or segments.
*/
template <typename OutputIterator>
OutputIterator intersect(const Self& cv, OutputIterator oi,
@ -1076,7 +1073,7 @@ public:
return oi;
}
/*! Check whether it is possible to merge our arc with the given arc.
/*! checks whether it is possible to merge our arc with the given arc.
*/
bool can_merge_with(const Self& cv) const
{
@ -1089,7 +1086,7 @@ public:
return (right().equals(cv.left()) || left().equals(cv.right()));
}
/*! Merge our arc with the given arc.
/*! merges our arc with the given arc.
* \pre The two arcs are mergeable.
*/
void merge(const Self& cv)
@ -1111,7 +1108,7 @@ public:
}
}
/*! construct an opposite arc. */
/*! constructs an opposite arc. */
Self construct_opposite() const
{
Self opp_cv;
@ -1153,23 +1150,22 @@ public:
}
protected:
/*! Get the curve index. */
/*! obtains the curve index. */
inline unsigned int _index() const { return (m_info >> INDEX_SHIFT_BITS); }
/// \name Accessors for circular arcs.
//@{
/*! Get the x-coordinate of the center of the supporting circle. */
/*! obtains the x-coordinate of the center of the supporting circle. */
inline const NT& x0() const { return (m_first); }
/*! Get the y-coordinate of the center of the supporting circle. */
/*! obtains the y-coordinate of the center of the supporting circle. */
inline const NT& y0() const { return (m_second); }
/*! Get the squared radius of the supporting circle. */
/*! obtains the squared radius of the supporting circle. */
inline const NT& sqr_r() const { return (m_third); }
/*!
* Check if the circular arc lies on the upper half of the supporting circle.
/*! checks if the circular arc lies on the upper half of the supporting circle.
*/
inline bool _is_upper() const
{
@ -1186,21 +1182,20 @@ protected:
/// \name Accessors for line segments.
//@{
/*! Get the coefficient of x in the equation of the supporting line. */
/*! obtains the coefficient of x in the equation of the supporting line. */
inline const NT& a() const { return (m_first); }
/*! Get the coefficient of y in the equation of the supporting line. */
/*! obtains the coefficient of y in the equation of the supporting line. */
inline const NT& b() const { return (m_second); }
/*! Get the free coefficient in the equation of the supporting line. */
/*! obtains the free coefficient in the equation of the supporting line. */
inline const NT& c() const { return (m_third); }
//@}
/// \name Auxiliary functions for the point_position predicate.
//@{
/*!
* Check the position of a given point with respect to a line segment.
/*! checks the position of a given point with respect to a line segment.
*/
Comparison_result _line_point_position(const Point_2& p) const
{
@ -1232,8 +1227,7 @@ protected:
return (CGAL::compare (p.y(), y_proj));
}
/*!
* Check the position of a given point with respect to a circular arc.
/*! checks the position of a given point with respect to a circular arc.
*/
Comparison_result _circ_point_position(const Point_2& p) const
{
@ -1274,8 +1268,7 @@ protected:
/// \name Auxiliary functions for the compare_to_right predicate.
//@{
/*!
* Compare two line segments to the right of their intersection point.
/*! compares two line segments to the right of their intersection point.
*/
Comparison_result _lines_compare_to_right(const Self& cv,
const Point_2& /* p */) const
@ -1295,8 +1288,7 @@ protected:
return (CGAL::compare (cv.a()/cv.b(), a()/b()));
}
/*!
* Compare a circular arcs (this) and a line segment (cv) to the right of
/*! compares a circular arcs (this) and a line segment (cv) to the right of
* their intersection point.
*/
Comparison_result _circ_line_compare_to_right(const Self& cv,
@ -1339,7 +1331,7 @@ protected:
return (_is_upper() ? SMALLER : LARGER);
}
/*! Compare two circular arcs to the right of their intersection point.
/*! compares two circular arcs to the right of their intersection point.
*/
Comparison_result _circs_compare_to_right(const Self& cv,
const Point_2& p) const
@ -1471,8 +1463,7 @@ protected:
/// \name Auxiliary functions for the compare_to_left predicate.
//@{
/*!
* Compare two line segments to the left of their intersection point.
/*! compares two line segments to the left of their intersection point.
*/
Comparison_result _lines_compare_to_left(const Self& cv,
const Point_2& ) const
@ -1494,7 +1485,7 @@ protected:
return (CGAL::compare (a()/b(), cv.a()/cv.b()));
}
/*! Compare a circular arcs (this) and a line segment (cv) to the left of
/*! compares a circular arcs (this) and a line segment (cv) to the left of
* their intersection point.
*/
Comparison_result _circ_line_compare_to_left(const Self& cv,
@ -1540,8 +1531,7 @@ protected:
return (_is_upper() ? SMALLER : LARGER);
}
/*!
* Compare the two arcs to the left of their intersection point.
/*! compares the two arcs to the left of their intersection point.
*/
Comparison_result _circs_compare_to_left(const Self& cv,
const Point_2& p) const
@ -1675,7 +1665,7 @@ protected:
/// \name Auxiliary functions for computing intersections.
//@{
/*! Compute the intersections between two line segments.
/*! computes the intersections between two line segments.
*/
void _lines_intersect(const Self& cv,
Intersection_list& inter_list) const
@ -1701,7 +1691,7 @@ protected:
inter_list.push_back(Intersection_point(p, mult));
}
/*! Compute the intersections between the supporting circle of (*this) and
/*! computes the intersections between the supporting circle of (*this) and
* the supporting line of the segment cv.
*/
void _circ_line_intersect(const Self& cv,
@ -1826,7 +1816,7 @@ protected:
}
}
/*! Compute the intersections between two circles.
/*! computes the intersections between two circles.
*/
void _circs_intersect(const Self& cv, Intersection_list& inter_list) const
{
@ -1891,7 +1881,7 @@ protected:
}
}
/*! Check if the given point lies on the arc.
/*! checks if the given point lies on the arc.
* \pre p lies on the supporting curve.
*/
bool _is_between_endpoints(const Point_2& p) const
@ -1928,7 +1918,7 @@ protected:
return (this->is_in_x_range(p));
}
/*! Check whether the given point lies in the interior of the arc.
/*! checks whether the given point lies in the interior of the arc.
* \pre p lies on the supporting curve.
*/
bool _is_strictly_between_endpoints(const Point_2& p) const
@ -1937,7 +1927,7 @@ protected:
return (_is_between_endpoints(p));
}
/*! Compute the overlap with a given arc having the same supporting curve.
/*! computes the overlap with a given arc having the same supporting curve.
* \param cv The given arc.
* \param overlap Output: The overlapping arc (if any).
* \return Whether we found an overlap.
@ -2048,7 +2038,7 @@ protected:
*oi++ = std::make_pair(x_right, y_right); // The right point.
}
/*! Trim the arc given its new endpoints.
/*! trims the arc given its new endpoints.
* \param ps The new source point.
* \param pt The new target point.
* \return The new trimmed arc.
@ -2068,7 +2058,7 @@ protected:
//@}
};
/*! Exporter for circular arcs (or line segments).
/*! exports a circular arcs or a line segment
*/
template <class Kernel, bool Filter>
std::ostream&
@ -2082,6 +2072,6 @@ operator<<(std::ostream& os,
return (os);
}
} //namespace CGAL
} // namespace CGAL
#endif

View File

@ -105,7 +105,7 @@ public:
/// \name Deprecated Constructions.
//@{
/*!Construct a conic arc which is the full conic:
/*! constructs a conic arc which is the full conic:
* C: r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
* \pre The conic C must be an ellipse (so 4rs - t^2 > 0).
*/
@ -129,7 +129,7 @@ public:
_set_full(rat_coeffs, true);
}
/*! Construct a conic arc which lies on the conic:
/*! constructs a conic arc which lies on the conic:
* C: r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
* \param orient The orientation of the arc (clockwise or counterclockwise).
* \param source The source point.
@ -156,7 +156,7 @@ public:
_set(rat_coeffs);
}
/*! Construct a segment conic arc from two endpoints.
/*! constructs a segment conic arc from two endpoints.
* \param source the source point with rational coordinates.
*/
CGAL_DEPRECATED Conic_arc_2(const Point_2& source, const Point_2& target) :
@ -186,7 +186,7 @@ public:
m_extra_data->side = ZERO;
}
/*! Construct a conic arc from the given line segment.
/*! constructs a conic arc from the given line segment.
* \param seg The line segment with rational endpoints.
*/
CGAL_DEPRECATED Conic_arc_2 (const Rat_segment_2& seg) :
@ -241,7 +241,7 @@ public:
_set(rat_coeffs);
}
/*! Set a circular arc that corresponds to a full circle.
/*! sets a circular arc that corresponds to a full circle.
* \param circ The circle (with rational center and rational squared radius).
*/
CGAL_DEPRECATED Conic_arc_2(const Rat_circle_2& circ) :
@ -277,7 +277,7 @@ public:
_set_full(rat_coeffs, false);
}
/*! Set a circular arc that lies on the given circle:
/*! sets a circular arc that lies on the given circle:
* C: (x - x0)^2 + (y - y0)^2 = R^2
* \param orient The orientation of the circle.
* \param source The source point.
@ -342,7 +342,7 @@ public:
_set(rat_coeffs);
}
/*! Construct a circular arc from the given three points.
/*! constructs a circular arc from the given three points.
* \param p1 The arc source.
* \param p2 A point in the interior of the arc.
* \param p3 The arc target.
@ -424,7 +424,7 @@ public:
_set(rat_coeffs);
}
/*! Construct a conic arc from the given five points, specified by the
/*! constructs a conic arc from the given five points, specified by the
* points p1, p2, p3, p4 and p5.
* \param p1 The source point of the given arc.
* \param p2,p3,p4 Points lying on the conic arc, between p1 and p5.
@ -515,7 +515,7 @@ public:
}
}
/*! Construct a conic arc which lies on the conic:
/*! constructs a conic arc which lies on the conic:
* C: r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
* The source and the target are specified by the intersection of the
* conic with:
@ -684,7 +684,7 @@ public:
_set(rat_coeffs);
}
/*! Get a bounding box for the conic arc.
/*! obtains a bounding box for the conic arc.
* \return The bounding box.
*/
CGAL_DEPRECATED Bbox_2 bbox() const {
@ -769,7 +769,7 @@ public:
//@}
protected:
/*! Calculate the vertical tangency points of the arc.
/*! calculates the vertical tangency points of the arc.
* \param vpts The vertical tangency points.
* \pre The vpts vector should be allocated at the size of 2.
* \return The number of vertical tangency points.
@ -797,7 +797,7 @@ protected:
return m;
}
/*! Calculate the horizontal tangency points of the arc.
/*! calculates the horizontal tangency points of the arc.
* \param hpts The horizontal tangency points.
* \pre The hpts vector should be allocated at the size of 2.
* \return The number of horizontal tangency points.
@ -825,7 +825,7 @@ protected:
return m;
}
/*! Check whether the given point is strictly between the source and the
/*! checks whether the given point is strictly between the source and the
* target (but not any of them).
* The point is assumed to be on the conic's boundary.
* \param p The query point.
@ -892,7 +892,7 @@ protected:
}
}
/*! Find the vertical tangency points of the underlying conic.
/*! finds the vertical tangency points of the underlying conic.
* \param ps The output points of vertical tangency.
* This area must be allocated at the size of 2.
* \return The number of vertical tangency points.
@ -970,7 +970,7 @@ protected:
return n;
}
/*! Find the horizontal tangency points of the underlying conic.
/*! finds the horizontal tangency points of the underlying conic.
* \param ps The output points of horizontal tangency.
* This area must be allocated at the size of 2.
* \return The number of horizontal tangency points.
@ -1020,7 +1020,7 @@ protected:
return n;
}
/*! Set the properties of a conic arc that is really a full curve
/*! sets the properties of a conic arc that is really a full curve
* (that is, an ellipse).
* \param rat_coeffs A vector of size 6, storing the rational coefficients
* of x^2, y^2, xy, x, y and the free coefficient resp.
@ -1074,7 +1074,7 @@ protected:
else reset_flags(); // invalid arc
}
/*! Check whether the given point lies on the supporting conic of the arc.
/*! checks whether the given point lies on the supporting conic of the arc.
* \param p The query point.
* \return (true) if p lies on the supporting conic; (false) otherwise.
*/
@ -1093,7 +1093,7 @@ protected:
return (CGAL::sign(val) == ZERO);
}
/*! Build the data for hyperbolic arc, containing the characterization of the
/*! builds the data for hyperbolic arc, containing the characterization of the
* hyperbolic branch the arc is placed on.
*/
CGAL_DEPRECATED void _build_hyperbolic_arc_data() {
@ -1189,7 +1189,7 @@ protected:
sign_of_extra_data(m_target.x(), m_target.y()));
}
/*! Check whether the given point is between the source and the target.
/*! checks whether the given point is between the source and the target.
* The point is assumed to be on the conic's boundary.
* \param p The query point.
* \return (true) if the point is between the two endpoints,
@ -1206,7 +1206,7 @@ protected:
else return _is_strictly_between_endpoints(p);
}
/*! Find the y coordinates of the underlying conic at a given x coordinate.
/*! finds the y coordinates of the underlying conic at a given x coordinate.
* \param x The x coordinate.
* \param ys The output y coordinates.
* \pre The vector ys must be allocated at the size of 2.
@ -1224,7 +1224,7 @@ protected:
return (_solve_quadratic_equation(A, B, C, ys[0], ys[1]));
}
/*! Find all points on the arc with a given x-coordinate.
/*! finds all points on the arc with a given x-coordinate.
* \param p A placeholder for the x-coordinate.
* \param ps The point on the arc at x(p).
* \pre The vector ps should be allocated at the size of 2.
@ -1248,7 +1248,7 @@ protected:
return m;
}
/*! Solve the given quadratic equation: Ax^2 + B*x + C = 0.
/*! solves the given quadratic equation: Ax^2 + B*x + C = 0.
* \param x_minus The root obtained from taking -sqrt(discriminant).
* \param x_plus The root obtained from taking -sqrt(discriminant).
* \return The number of disticnt solutions to the equation.
@ -1289,7 +1289,7 @@ protected:
return 2;
}
/*! Find the x coordinates of the underlying conic at a given y coordinate.
/*! finds the x coordinates of the underlying conic at a given y coordinate.
* \param y The y coordinate.
* \param xs The output x coordinates.
* \pre The vector xs must be allocated at the size of 2.
@ -1308,7 +1308,7 @@ protected:
return (_solve_quadratic_equation(A, B, C, xs[0], xs[1]));
}
/*! Find all points on the arc with a given y-coordinate.
/*! finds all points on the arc with a given y-coordinate.
* \param p A placeholder for the y-coordinate.
* \param ps The point on the arc at x(p).
* \pre The vector ps should be allocated at the size of 2.
@ -1332,7 +1332,7 @@ protected:
return m;
}
/*! Set the properties of a conic arc (for the usage of the constructors).
/*! sets the properties of a conic arc (for the usage of the constructors).
* \param rat_coeffs A vector of size 6, storing the rational coefficients
* of x^2, y^2, xy, x, y and the free coefficient resp.
*/
@ -1454,7 +1454,7 @@ public:
/// \name Construction and destruction functions.
//@{
/*! Default constructor.
/*! constructs default.
*/
Conic_arc_2() :
m_r(0), m_s(0), m_t(0), m_u(0), m_v(0), m_w(0),
@ -1463,7 +1463,7 @@ public:
m_extra_data(nullptr)
{}
/*! Copy constructor.
/*! constructs copy.
* \param arc The copied arc.
*/
Conic_arc_2(const Self& arc) :
@ -1478,11 +1478,11 @@ public:
new Extra_data(*(arc.m_extra_data)) : nullptr;
}
/*! Destructor.
/*! destructs.
*/
virtual ~Conic_arc_2() { if (m_extra_data != nullptr) delete m_extra_data; }
/*! Assignment operator.
/*! assigns.
* \param arc The copied arc.
*/
const Self& operator=(const Self& arc) {
@ -1515,15 +1515,15 @@ public:
/// \name Get the arc properties.
//@{
/*! Determine whether the arc is valid.
/*! determines whether the arc is valid.
*/
bool is_valid() const { return test_flag(IS_VALID); }
/*! Determine whether the arc represents a full conic curve.
/*! determines whether the arc represents a full conic curve.
*/
bool is_full_conic() const { return test_flag(IS_FULL_CONIC); }
/*! Obtain the coefficients of the underlying conic.
/*! obtains the coefficients of the underlying conic.
*/
const Integer& r() const { return (m_r); }
const Integer& s() const { return (m_s); }
@ -1532,7 +1532,7 @@ public:
const Integer& v() const { return (m_v); }
const Integer& w() const { return (m_w); }
/*! Obtain the arc's source.
/*! obtains the arc's source.
* \return The source point.
* \pre The arc does not represent a full conic curve.
*/
@ -1541,14 +1541,14 @@ public:
return m_source;
}
/*! Obtain the non const reference to the curve source point.
/*! obtains the non const reference to the curve source point.
*/
Point_2& source() {
CGAL_precondition(! is_full_conic());
return (this->m_source);
}
/*! Obtain the arc's target.
/*! obtains the arc's target.
* \return The target point.
* \pre The arc does not represent a full conic curve.
*/
@ -1557,19 +1557,19 @@ public:
return m_target;
}
/*! Obtain the non const reference to the curve source point.
/*! obtains the non const reference to the curve source point.
*/
Point_2& target() {
CGAL_precondition(! is_full_conic());
return this->m_target;
}
/*! Obtain the orientation of the arc.
/*! obtains the orientation of the arc.
* \return The orientation.
*/
Orientation orientation() const { return m_orient; }
/*! Obtain the extra data.
/*! obtains the extra data.
*/
const Extra_data* extra_data() const { return m_extra_data; }
//@}
@ -1603,17 +1603,17 @@ public:
// only friends have the privilege to use.
//@{
/*! Set the source point of the conic arc.
/*! sets the source point of the conic arc.
* \param ps The new source point.
*/
void set_source(const Point_2& ps) { m_source = ps; }
/*! Set the target point of the conic arc.
/*! sets the target point of the conic arc.
* \param pt The new source point.
*/
void set_target(const Point_2& pt) { m_target = pt; }
/*! Set the coefficients.
/*! sets the coefficients.
*/
void set_coefficients(Integer r, Integer s, Integer t,
Integer u, Integer v, Integer w) {
@ -1625,22 +1625,22 @@ public:
m_w = w;
}
/*! Set the orientation.
/*! sets the orientation.
*/
void set_orientation(Orientation orient) { m_orient = orient; }
/*! Set the endpoints.
/*! sets the endpoints.
*/
void set_endpoints(const Point_2& source, const Point_2& target) {
m_source = source;
m_target = target;
}
/*! Set the extra data field.
/*! sets the extra data field.
*/
void set_extra_data(Extra_data* extra_data) { m_extra_data = extra_data; }
/*! Set the extra data field.
/*! sets the extra data field.
*/
void set_extra_data(const Algebraic& a, const Algebraic& b,
const Algebraic& c, Sign side)
@ -1652,7 +1652,7 @@ public:
m_extra_data->side = side;
}
/*! Update the extra data field.
/*! updates the extra data field.
*/
void update_extra_data() {
const Algebraic x1 = source().x();
@ -1675,7 +1675,7 @@ public:
/// \name Auxiliary functions.
//@{
/*! Evaluate the sign of (a*x + b*y + c) stored with the extra data field
/*! evaluates the sign of (a*x + b*y + c) stored with the extra data field
* at a given point.
* \param px The x-coordinate of query point.
* \param py The y-coordinate of query point.
@ -1691,7 +1691,7 @@ public:
//@}
};
/*! Exporter for conic arcs.
/*! exports a conic arc.
*/
template <typename Rat_kernel, typename Alg_kernel, typename Nt_traits>
std::ostream&
@ -1721,6 +1721,6 @@ operator<< (std::ostream& os,
return os;
}
} //namespace CGAL
} // namespace CGAL
#endif

Some files were not shown because too many files have changed in this diff Show More