VC8 STL Fixes

This commit is contained in:
Fernando Cacciola 2007-01-15 14:08:48 +00:00
parent 24e6b1a4f3
commit e6ddc1f499
1 changed files with 372 additions and 304 deletions

View File

@ -23,40 +23,106 @@
#include <map> #include <map>
#include <iostream> #include <iostream>
#include <CGAL/circulator.h> #include <CGAL/circulator.h>
#include <CGAL/Partition_2/Indirect_less_xy_2.h>
#include <cassert> #include <cassert>
#include <sstream>
namespace CGAL { namespace CGAL {
const int PARTITION_VMAP_UNSHARED_EDGE = -1; const int PARTITION_VMAP_UNSHARED_EDGE = -1;
template<class Traits_>
class Vertex_info
{
public:
typedef Traits_ Traits;
typedef typename Traits::Polygon_2 Polygon_2 ;
typedef typename Traits::Polygon_2::Vertex_iterator Vertex_iterator;
typedef typename Traits::Less_xy_2 Less_xy_2;
Vertex_info ( Vertex_iterator const& vx_it, Polygon_2 const* poly_ptr )
:
m_vx_it(vx_it)
,m_poly_ptr(poly_ptr)
{}
Vertex_iterator vertex_it() const { return m_vx_it ; }
Polygon_2 const* poly_ptr () const { return m_poly_ptr ; }
friend bool operator == ( Vertex_info const& a, Vertex_info const& b )
{
return a.poly_ptr() == b.poly_ptr() && a.vertex_it() == b.vertex_it() ;
}
friend bool operator != ( Vertex_info const& a, Vertex_info const& b ) { return !(a==b); }
friend bool operator < ( Vertex_info const& a, Vertex_info const& b )
{
return Traits().less_xy_2_object()(*a.vertex_it(), *b.vertex_it());
}
private:
Vertex_iterator m_vx_it ;
Polygon_2 const* m_poly_ptr ;
} ;
template <class Traits_>
class Edge_info
{
public:
typedef Traits_ Traits;
typedef Vertex_info<Traits> Vertex_info ;
public:
Edge_info(Vertex_info e_ref, int p_num1) : _endpoint_ref(e_ref),
_poly_num1(p_num1), _poly_num2(PARTITION_VMAP_UNSHARED_EDGE)
{ }
void set_poly_num2(int p_num)
{
_poly_num2 = p_num;
}
Vertex_info endpoint() const { return _endpoint_ref; }
int poly_num1() const { return _poly_num1; }
int poly_num2() const { return _poly_num2; }
private:
Vertex_info _endpoint_ref;
int _poly_num1;
int _poly_num2;
};
template <class Traits> template <class Traits>
class Partition_vertex_map;
template <class Iterator>
class Edge_info;
template <class Iterator, class Traits>
class CW_indirect_edge_info_compare class CW_indirect_edge_info_compare
{ {
public: public:
typedef typename Traits::Left_turn_2 Left_turn_2;
typedef typename Traits::Less_xy_2 Less_xy_2;
typedef typename Traits::Point_2 Point_2;
typedef CGAL::Edge_info<Iterator> Edge_info;
CW_indirect_edge_info_compare(){} typedef Vertex_info<Traits> Vertex_info ;
CW_indirect_edge_info_compare (Iterator v_it) : vertex_it(v_it), typedef Edge_info<Traits> Edge_info;
typedef typename Vertex_info::Vertex_iterator Vertex_iterator ;
typedef typename Traits::Left_turn_2 Left_turn_2;
typedef typename Traits::Less_xy_2 Less_xy_2;
typedef typename Traits::Point_2 Point_2;
CW_indirect_edge_info_compare (Vertex_iterator v_info) : vertex_it(v_info),
left_turn(Traits().left_turn_2_object()), left_turn(Traits().left_turn_2_object()),
less_xy(Traits().less_xy_2_object()) less_xy(Traits().less_xy_2_object())
{} {}
bool operator()(Edge_info e1, Edge_info e2) bool operator()(Edge_info e1, Edge_info e2)
{ {
bool e1_less = less_xy((*e1.endpoint()), *vertex_it); bool e1_less = less_xy((*e1.endpoint().vertex_it()), *vertex_it);
bool e2_less = less_xy((*e2.endpoint()), *vertex_it); bool e2_less = less_xy((*e2.endpoint().vertex_it()), *vertex_it);
bool e1_to_e2_left_turn = left_turn((*e1.endpoint()), *vertex_it, bool e1_to_e2_left_turn = left_turn((*e1.endpoint().vertex_it()), *vertex_it,
(*e2.endpoint())); (*e2.endpoint().vertex_it()));
// if both edges are on the same side of the vertical line through // if both edges are on the same side of the vertical line through
// _vertex then e1 comes before e2 (in CW order from the vertical line) // _vertex then e1 comes before e2 (in CW order from the vertical line)
@ -68,249 +134,238 @@ public:
} }
private: private:
Iterator vertex_it; Vertex_iterator vertex_it;
Left_turn_2 left_turn; Left_turn_2 left_turn;
Less_xy_2 less_xy; Less_xy_2 less_xy;
}; };
template <class Iterator>
class Edge_info
{
public:
Edge_info() {}
Edge_info(Iterator e_ref, int p_num1, int p_num2) : _endpoint_ref(e_ref),
_poly_num1(p_num1), _poly_num2(p_num2)
{ }
Edge_info(Iterator e_ref, int p_num1) : _endpoint_ref(e_ref),
_poly_num1(p_num1), _poly_num2(PARTITION_VMAP_UNSHARED_EDGE)
{ }
void set_poly_num1(int p_num)
{
_poly_num1 = p_num;
}
void set_poly_num2(int p_num)
{
_poly_num2 = p_num;
}
void set_endpoint(Iterator e_ref)
{
_endpoint_ref = e_ref;
}
bool same_edge(Iterator e_ref)
{
return e_ref == endpoint();
}
Iterator endpoint() const { return _endpoint_ref; }
int poly_num1() const { return _poly_num1; }
int poly_num2() const { return _poly_num2; }
private:
Iterator _endpoint_ref;
int _poly_num1;
int _poly_num2;
};
template <class Traits_> template <class Traits_>
class Pvm_edge_list : public std::list< class Edge_list
Edge_info<typename Traits_::Polygon_2::Vertex_iterator> >
{ {
public: public:
typedef Traits_ Traits;
typedef Pvm_edge_list<Traits> Self;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Orientation_2 Orientation_pred;
typedef typename Traits::Polygon_2::Vertex_iterator Vertex_iterator;
typedef Edge_info<Vertex_iterator> Edge;
typedef typename std::list<Edge>::iterator Self_iterator;
typedef typename std::list<Edge>::const_iterator Self_const_iterator;
typedef Circulator_from_iterator<Self_const_iterator>
Self_const_circulator;
typedef Traits_ Traits;
typedef Edge_list<Traits> Self;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Orientation_2 Orientation_pred;
typedef typename Traits::Polygon_2 Polygon_2 ;
typedef typename Traits::Polygon_2::Vertex_iterator Vertex_iterator;
typedef Vertex_info<Traits> Vertex_info;
typedef Edge_info<Traits> Edge_info;
typedef std::list<Edge_info> List ;
typedef typename List::iterator Self_iterator;
typedef typename List::const_iterator Self_const_iterator;
typedef typename List::size_type size_type ;
typedef Circulator_from_iterator<Self_const_iterator> Self_const_circulator;
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES #ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
static CW_indirect_edge_info_compare<Vertex_iterator, Traits> static CW_indirect_edge_info_compare<Traits> cw_indirect_edge_info_compare;
cw_indirect_edge_info_compare;
static bool compare(const Edge& e1, const Edge& e2) static bool compare(const Edge_info& e1, const Edge_info& e2)
{ {
return cw_indirect_edge_info_compare(e1,e2); return cw_indirect_edge_info_compare(e1,e2);
} }
#endif #endif
void insert_next(Vertex_iterator endpoint_ref, int num) Self_const_iterator begin() const { return m_list.begin() ; }
{ Self_iterator begin() { return m_list.begin() ; }
Self_iterator e_it; Self_const_iterator end () const { return m_list.end () ; }
Self_iterator end () { return m_list.end () ; }
for (e_it = this->begin(); size_type size() const { return m_list.size() ; }
e_it != this->end() && (*e_it).endpoint() != endpoint_ref;
e_it++)
{}
if (e_it != this->end()) Edge_info const& front() const { return m_list.front() ; }
(*e_it).set_poly_num2(num); Edge_info & front() { return m_list.front() ; }
else
push_back(Edge(endpoint_ref, num));
}
void insert_prev(Vertex_iterator endpoint_ref, int num) Edge_info const& back() const { return m_list.back() ; }
{ Edge_info & back() { return m_list.back() ; }
Self_iterator e_it;
for (e_it = this->begin(); template<class Compare> void sort ( Compare c ) { m_list.sort(c); }
e_it != this->end() && (*e_it).endpoint() != endpoint_ref;
e_it++)
{}
if (e_it != this->end()) void insert_next(Vertex_info endpoint_ref, int num)
(*e_it).set_poly_num2(num); {
else
push_front(Edge(endpoint_ref, num));
}
// PRE: polygons must be simple Self_iterator e_it;
bool edges_overlap(Vertex_iterator vertex_it)
{ for (e_it = m_list.begin(); e_it != m_list.end() && e_it->endpoint() != endpoint_ref ; e_it++)
{
}
if (e_it != m_list.end())
{
(*e_it).set_poly_num2(num);
}
else
{
m_list.push_back(Edge_info(endpoint_ref, num));
}
}
void insert_prev(Vertex_info endpoint_ref, int num)
{
Self_iterator e_it;
for (e_it = m_list.begin(); e_it != m_list.end() && e_it->endpoint() != endpoint_ref ; e_it++)
{
}
if (e_it != m_list.end())
{
(*e_it).set_poly_num2(num);
}
else
{
m_list.push_front(Edge_info(endpoint_ref, num));
}
}
// PRE: polygons must be simple
bool edges_overlap(Vertex_iterator vertex_it)
{
#ifdef CGAL_PARTITION_CHECK_DEBUG #ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "before sort: edges for " << *vertex_it << std::endl; std::cout << "before sort: edges for " << *vertex_it << std::endl;
std::cout << *this << std::endl; std::cout << *this << std::endl;
#endif #endif
int num_unshared = 0; int num_unshared = 0;
// Don't want to sort the edges for vertices of degree 2 because they // Don't want to sort the edges for vertices of degree 2 because they
// are already in CCW order (since the partition polygons were in CCW // are already in CCW order (since the partition polygons were in CCW
// order), and this is what you need when you construct the union // order), and this is what you need when you construct the union
// polygon. // polygon.
if (this->size() > 2){ if (m_list.size() > 2)
{
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES #ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
cw_indirect_edge_info_compare = cw_indirect_edge_info_compare =
CW_indirect_edge_info_compare<Vertex_iterator,Traits>(vertex_it); CW_indirect_edge_info_compare<Traits>(vertex_it);
this->sort(&Self::compare); m_list.sort(&Self::compare);
#else #else
this->sort m_list.sort
(CW_indirect_edge_info_compare<Vertex_iterator,Traits>(vertex_it)); (CW_indirect_edge_info_compare<Traits>(vertex_it));
#endif #endif
} }
#ifdef CGAL_PARTITION_CHECK_DEBUG #ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "after sort: edges for " << *vertex_it << std::endl; std::cout << "after sort: edges for " << *vertex_it << std::endl;
std::cout << *this << std::endl; std::cout << *this << std::endl;
#endif #endif
Self_const_iterator prev_e_it = this->begin(); Self_const_iterator prev_e_it = m_list.begin();
Self_const_iterator e_it; Self_const_iterator e_it;
for (e_it = this->begin(); e_it != this->end(); e_it++) for (e_it = m_list.begin(); e_it != m_list.end(); e_it++)
{ {
if ((*e_it).poly_num1() == PARTITION_VMAP_UNSHARED_EDGE) if ((*e_it).poly_num1() == PARTITION_VMAP_UNSHARED_EDGE)
num_unshared++; num_unshared++;
if ((*e_it).poly_num2() == PARTITION_VMAP_UNSHARED_EDGE) if ((*e_it).poly_num2() == PARTITION_VMAP_UNSHARED_EDGE)
num_unshared++; num_unshared++;
if ((*prev_e_it).poly_num1() != (*e_it).poly_num1() && if ((*prev_e_it).poly_num1() != (*e_it).poly_num1() &&
(*prev_e_it).poly_num1() != (*e_it).poly_num2() && (*prev_e_it).poly_num1() != (*e_it).poly_num2() &&
(*prev_e_it).poly_num2() != (*e_it).poly_num1() && (*prev_e_it).poly_num2() != (*e_it).poly_num1() &&
(*prev_e_it).poly_num2() != (*e_it).poly_num2()) (*prev_e_it).poly_num2() != (*e_it).poly_num2())
{
return true;
}
prev_e_it = e_it;
}
if ((*prev_e_it).poly_num1() != (*this->begin()).poly_num1() &&
(*prev_e_it).poly_num1() != (*this->begin()).poly_num2() &&
(*prev_e_it).poly_num2() != (*this->begin()).poly_num1() &&
(*prev_e_it).poly_num2() != (*this->begin()).poly_num2())
{ {
return true; return true;
} }
prev_e_it = e_it;
}
if ((*prev_e_it).poly_num1() != (*m_list.begin()).poly_num1() &&
(*prev_e_it).poly_num1() != (*m_list.begin()).poly_num2() &&
(*prev_e_it).poly_num2() != (*m_list.begin()).poly_num1() &&
(*prev_e_it).poly_num2() != (*m_list.begin()).poly_num2())
{
return true;
}
return (num_unshared > 2); return (num_unshared > 2);
} }
// NOTE: the edges here are sorted in CW order so the next CCW edge // NOTE: the edges here are sorted in CW order so the next CCW edge
// comes BEFORE the edge with endpoint v_it in the sorted list // comes BEFORE the edge with endpoint v_info in the sorted list
Edge next_ccw_edge_info(Vertex_iterator v_it) const Edge_info next_ccw_edge_info(Vertex_info v_info) const
{ {
Self_const_circulator first_e(this->begin(), this->end(), this->begin()); Self_const_circulator first_e(m_list.begin(), m_list.end(), m_list.begin());
Self_const_circulator e_circ = first_e; Self_const_circulator e_circ = first_e;
do do
{
if ((*e_circ).endpoint() == v_info)
{ {
if ((*e_circ).endpoint() == v_it) e_circ--; // go to the previous endpoint
{ return *e_circ;
e_circ--; // go to the previous endpoint
return *e_circ;
}
} }
while (++e_circ != first_e); }
return *first_e; // shouldn't get here unless v_it is not in list while (++e_circ != first_e);
} return *first_e; // shouldn't get here unless v_info is not in list
}
private :
List m_list ;
}; };
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES #ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
template <class Traits> template <class Traits>
CW_indirect_edge_info_compare<typename Traits::Polygon_2::Vertex_iterator, CW_indirect_edge_info_compare< Edge_info<Traits> >
Traits> Edge_list<Traits>::cw_indirect_edge_info_compare;
Pvm_edge_list<Traits>::cw_indirect_edge_info_compare;
#endif #endif
template <class Traits> template <class Traits>
std::ostream& operator<<(std::ostream& os, std::ostream& operator<<(std::ostream& os, const Edge_list<Traits>& edges)
const Pvm_edge_list<Traits>& edges)
{ {
typename Pvm_edge_list<Traits>::const_iterator e_it; typename Edge_list<Traits>::const_iterator e_it;
for (e_it = edges.begin(); e_it != edges.end(); e_it++) for (e_it = edges.begin(); e_it != edges.end(); e_it++)
{ {
os << " " << (*(*e_it).endpoint()) os << "edge with endpoint (" << (*(*e_it).endpoint().vertex_it())
<< " from poly #" << (*e_it).poly_num1() << ") from poly #" << (*e_it).poly_num1()
<< " and poly #" << (*e_it).poly_num2() << " and poly #" << (*e_it).poly_num2()
<< std::endl; << std::endl;
} }
return os; return os;
} }
template <class Traits> template <class Traits_>
class Partition_vertex_map : class Partition_vertex_map
public std::map<typename Traits::Polygon_2::Vertex_iterator,
Pvm_edge_list<Traits>,
Indirect_less_xy_2<Traits> >
{ {
public: public:
typedef Partition_vertex_map<Traits> Self;
typedef typename std::map<typename Traits::Polygon_2::Vertex_iterator,
Pvm_edge_list<Traits>,
Indirect_less_xy_2<Traits> >::iterator
Self_iterator;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Polygon_2::Vertex_iterator Vertex_iterator;
typedef Traits_ Traits ;
typedef Vertex_info<Traits> Vertex_info ;
typedef Edge_info <Traits> Edge_info ;
typedef Edge_list <Traits> Edge_list ;
typedef Edge_info<Vertex_iterator> Edge; typedef Partition_vertex_map<Traits> Self;
typedef std::map<Vertex_info, Edge_list> Map ;
typedef typename Map::const_iterator Self_const_iterator;
typedef typename Map::iterator Self_iterator;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Polygon_2 Polygon_2 ;
typedef typename Polygon_2::Vertex_iterator Vertex_iterator;
Partition_vertex_map() {} Partition_vertex_map() {}
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES #ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
static CW_indirect_edge_info_compare<Vertex_iterator,Traits> static CW_indirect_edge_info_compare<Traits> cw_indirect_edge_info_compare;
cw_indirect_edge_info_compare; static bool compare(const Edge_info & e1, const Edge_info& e2)
static bool compare(const Edge & e1, const Edge& e2)
{ {
return cw_indirect_edge_info_compare(e1, e2); return cw_indirect_edge_info_compare(e1, e2);
} }
@ -318,14 +373,121 @@ public:
template <class InputIterator> template <class InputIterator>
Partition_vertex_map(InputIterator first_poly, InputIterator last_poly) Partition_vertex_map(InputIterator first_poly, InputIterator last_poly)
{ build(first_poly, last_poly); } { _build(first_poly, last_poly); }
Self_const_iterator begin() const { return m_map.begin() ; }
Self_iterator begin() { return m_map.begin() ; }
Self_const_iterator end () const { return m_map.end () ; }
Self_iterator end () { return m_map.end () ; }
bool polygons_overlap()
{
Self_iterator v_info;
for (v_info = m_map.begin(); v_info != m_map.end(); v_info++)
{
if ((*v_info).second.edges_overlap((*v_info).first.vertex_it()))
return true;
}
return false;
}
template <class OutputIterator>
OutputIterator union_vertices(OutputIterator result)
{
if (m_map.empty())
return result;
Self_iterator m_it = m_map.begin();
// find a vertex with degree 2 (there must be at least one)
while (m_it != m_map.end() && (*m_it).second.size() != 2)
m_it++;
CGAL_assertion (m_it != m_map.end());
// insert this vertex and the two around it
Vertex_info first_v_info = (*m_it).second.front().endpoint();
Vertex_info prev_v_info = first_v_info ;
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting " << (*prev_v_info.vertex_it()) << std::endl;
#endif
*result = *prev_v_info.vertex_it();
result++;
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting "<< *(*m_it).first.vertex_it() << std::endl;
#endif
*result = *(*m_it).first.vertex_it();
result++;
Vertex_info next_v_info = (*m_it).second.back().endpoint();
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting " << *next_v_info.vertex_it() << std::endl;
#endif
*result = *next_v_info.vertex_it();
result++;
// find the map iterator corresponding to the next vertex
prev_v_info = (*m_it).first;
Vertex_info v_info = next_v_info;
m_it = m_map.find(v_info);
while (v_info != first_v_info && m_it != m_map.end())
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: prev_v_info " << (*prev_v_info.vertex_it())
<< " v_info " << (*v_info.vertex_it()) << " next_v_info "
<< (*next_v_info.vertex_it()) << std::endl;
#endif
// Don't want to sort the edges for vertices of degree 2 because they
// are already in CCW order (since the partition polygons were in CCW
// order), and this is what you need to begin the construction
// of the union polygon.
if ((*m_it).second.size() > 2)
{
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
cw_indirect_edge_info_compare =
CW_indirect_edge_info_compare<Traits>((*m_it).first.vertex_it());
(*m_it).second.sort(&Self::compare);
#else
(*m_it).second.sort(
CW_indirect_edge_info_compare<Traits>((*m_it).first.vertex_it()));
#endif
}
// find the previous vertex in this vertex's list
next_v_info=(*m_it).second.next_ccw_edge_info(prev_v_info).endpoint();
if (next_v_info != first_v_info)
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting "
<< *next_v_info.vertex_it() << std::endl;
#endif
*result = *next_v_info.vertex_it();
result++;
}
prev_v_info = v_info;
v_info = next_v_info;
m_it = m_map.find(v_info);
CGAL_assertion (m_it == m_map.end() || (*m_it).first == v_info);
}
#ifdef CGAL_PARTITION_CHECK_DEBUG
if (v_info == first_v_info)
std::cout << "union_vertices: stopped because first was reached "
<< std::endl;
else
std::cout << "union_vertices: stopped because end was reached "
<< std::endl;
#endif
return result;
}
private :
template <class InputIterator> template <class InputIterator>
void build(InputIterator poly_first, InputIterator poly_last) void _build(InputIterator poly_first, InputIterator poly_last)
{ {
typedef std::pair<Self_iterator, bool> Location_pair; typedef std::pair<Self_iterator, bool> Location_pair;
typedef Pvm_edge_list<Traits> Pvm_edge_list; typedef std::pair<Vertex_info, Edge_list> P_Vertex;
typedef std::pair<Vertex_iterator, Pvm_edge_list> P_Vertex;
Location_pair v_loc_pair; Location_pair v_loc_pair;
Location_pair begin_v_loc_pair; Location_pair begin_v_loc_pair;
@ -338,20 +500,25 @@ public:
int poly_num = 0; int poly_num = 0;
for (; poly_first != poly_last; poly_first++, poly_num++) for (; poly_first != poly_last; poly_first++, poly_num++)
{ {
Polygon_2 const* poly_ptr = &(*poly_first);
vtx_begin = (*poly_first).vertices_begin(); vtx_begin = (*poly_first).vertices_begin();
vtx_end = (*poly_first).vertices_end(); vtx_end = (*poly_first).vertices_end();
begin_v_loc_pair = this->insert(P_Vertex(vtx_begin, Pvm_edge_list())); begin_v_loc_pair = m_map.insert(P_Vertex( Vertex_info(vtx_begin,poly_ptr), Edge_list()));
prev_v_loc_pair = begin_v_loc_pair; prev_v_loc_pair = begin_v_loc_pair;
v_it = vtx_begin; v_it = vtx_begin;
for (v_it++; v_it != vtx_end; v_it++) for (v_it++; v_it != vtx_end; v_it++)
{ {
v_loc_pair = this->insert(P_Vertex(v_it, Pvm_edge_list()));
insert_next_edge(prev_v_loc_pair.first, v_loc_pair = m_map.insert(P_Vertex( Vertex_info(v_it,poly_ptr), Edge_list()));
v_loc_pair.first,
poly_num); insert_next_edge(prev_v_loc_pair.first, v_loc_pair.first, poly_num);
insert_prev_edge(v_loc_pair.first,
prev_v_loc_pair.first, insert_prev_edge(v_loc_pair.first, prev_v_loc_pair.first, poly_num);
poly_num);
prev_v_loc_pair = v_loc_pair; prev_v_loc_pair = v_loc_pair;
} }
insert_next_edge(prev_v_loc_pair.first, begin_v_loc_pair.first, insert_next_edge(prev_v_loc_pair.first, begin_v_loc_pair.first,
@ -362,123 +529,24 @@ public:
} }
void insert_next_edge(Self_iterator& v1_ref, Self_iterator& v2_ref, void insert_next_edge(Self_iterator& v1_ref, Self_iterator& v2_ref, int num)
int num)
{ {
(*v1_ref).second.insert_next((*v2_ref).first, num); (*v1_ref).second.insert_next((*v2_ref).first, num);
} }
void insert_prev_edge(Self_iterator& v1_ref, Self_iterator& v2_ref, void insert_prev_edge(Self_iterator& v1_ref, Self_iterator& v2_ref, int num)
int num)
{ {
(*v1_ref).second.insert_prev((*v2_ref).first, num); (*v1_ref).second.insert_prev((*v2_ref).first, num);
} }
bool polygons_overlap() private :
{
Self_iterator v_it;
for (v_it = this->begin(); v_it != this->end(); v_it++)
{
if ((*v_it).second.edges_overlap((*v_it).first)) return true;
}
return false;
}
template <class OutputIterator> Map m_map ;
OutputIterator union_vertices(OutputIterator result)
{
if (this->empty()) return result;
Self_iterator m_it = this->begin();
Vertex_iterator v_it;
Vertex_iterator first_v_it;
Vertex_iterator prev_v_it;
Vertex_iterator next_v_it;
// find a vertex with degree 2 (there must be at least one)
while (m_it != this->end() && (*m_it).second.size() != 2)
m_it++;
CGAL_assertion (m_it != this->end());
// insert this vertex and the two around it
first_v_it = prev_v_it = (*(*m_it).second.begin()).endpoint();
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting " << (*prev_v_it) << std::endl;
#endif
*result = *prev_v_it;
result++;
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting "<< *(*m_it).first << std::endl;
#endif
*result = *(*m_it).first;
result++;
next_v_it = (*m_it).second.back().endpoint();
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting " << *next_v_it << std::endl;
#endif
*result = *next_v_it;
result++;
// find the map iterator corresponding to the next vertex
prev_v_it = (*m_it).first;
v_it = next_v_it;
m_it = this->find(v_it);
while (v_it != first_v_it && m_it != this->end())
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: prev_v_it " << (*prev_v_it)
<< " v_it " << (*v_it) << " next_v_it "
<< (*next_v_it) << std::endl;
#endif
// Don't want to sort the edges for vertices of degree 2 because they
// are already in CCW order (since the partition polygons were in CCW
// order), and this is what you need to begin the construction
// of the union polygon.
if ((*m_it).second.size() > 2){
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
cw_indirect_edge_info_compare =
CW_indirect_edge_info_compare<Vertex_iterator,Traits>((*m_it).first);
(*m_it).second.sort(&Self::compare);
#else
(*m_it).second.sort(
CW_indirect_edge_info_compare<Vertex_iterator,Traits>((*m_it).first));
#endif
}
// find the previous vertex in this vertex's list
next_v_it=(*m_it).second.next_ccw_edge_info(prev_v_it).endpoint();
if (next_v_it != first_v_it)
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting "
<< *next_v_it << std::endl;
#endif
*result = *next_v_it;
result++;
}
prev_v_it = v_it;
v_it = next_v_it;
m_it = this->find(v_it);
CGAL_assertion (m_it == this->end() || (*m_it).first == v_it);
}
#ifdef CGAL_PARTITION_CHECK_DEBUG
if (v_it == first_v_it)
std::cout << "union_vertices: stopped because first was reached "
<< std::endl;
else
std::cout << "union_vertices: stopped because end was reached "
<< std::endl;
#endif
return result;
}
}; };
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES #ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
template <class Traits> template <class Traits>
CW_indirect_edge_info_compare<typename Traits::Polygon_2::Vertex_iterator, CW_indirect_edge_info_compare<Traits>
Traits>
Partition_vertex_map<Traits>::cw_indirect_edge_info_compare; Partition_vertex_map<Traits>::cw_indirect_edge_info_compare;
#endif #endif