mirror of https://github.com/CGAL/cgal
Small corrections in ref manual after a last proofread.
This commit is contained in:
parent
8779d9c684
commit
e706ed3b6e
|
|
@ -176,7 +176,7 @@ if for all dart handle \emph{dh} such that
|
|||
\ccMethod{bool is_without_boundary(unsigned int i) const;}
|
||||
{Returns true iff \ccc{cm} is wihout \emph{i}-boundary
|
||||
(i.e. there is no \ccc{i}-free dart).
|
||||
\ccPrecond{0\myleq{}\emph{i}\myleq{}\emph{dimension}.}}
|
||||
\ccPrecond{1\myleq{}\emph{i}\myleq{}\emph{dimension}.}}
|
||||
|
||||
\ccMethod{bool is_without_boundary() const;}
|
||||
{Returns true iff \ccc{cm} is without boundary in all dimensions.}
|
||||
|
|
@ -200,9 +200,8 @@ if for all dart handle \emph{dh} such that
|
|||
a bijection \emph{f} between all the darts of the orbit
|
||||
\emph{D1}=\orbit{\betaun{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}}(\emph{dh1}) and
|
||||
\emph{D2}=\orbit{\betaun{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}}(\emph{dh2})
|
||||
satisfying: \emph{f}(\emph{dh1})=\emph{dh2}, and for all \emph{d'1}\myin{}\emph{D1}, for all \emph{j}\myin{}
|
||||
\{1,\myldots{},\emph{i}-2,\emph{i}+2,\myldots{},\emph{d}\},
|
||||
\emph{f}(\betaj{}(\emph{d'1}))=\betajinv{}(\emph{f}(\emph{d'1})).
|
||||
satisfying: \emph{f}(\emph{dh1})=\emph{dh2}, and for all \emph{e}\myin{}\emph{D1}, for all \emph{j}\myin{}\{1,\myldots{},\emph{i}-2,\emph{i}+2,\myldots{},\emph{d}\},
|
||||
\emph{f}(\betaj{}(\emph{e}))=\betajinv{}(\emph{f}(\emph{e})).
|
||||
\ccPrecond{0\myleq{}\emph{i}\myleq{}\emph{dimension}, \ccc{*dh1}\myin{}\ccc{cm.darts()},
|
||||
and \ccc{*dh2}\myin{}\ccc{cm.darts()}.}}
|
||||
|
||||
|
|
@ -242,7 +241,8 @@ combinatorial tetrahedra:\\
|
|||
\ccMethod{template<unsigned int ... Beta> Dart_of_orbit_range darts_of_orbit(Dart_handle dh);}
|
||||
{Returns a range of all the darts of the orbit \ccc{<Beta...>(dh)}.
|
||||
\ccPrecond{\ccc{*dh}\myin{}\ccc{cm.darts()} and \ccc{Beta...} is a
|
||||
sequence of integers \ccTexHtml{$i_1$}{i<sub>1</sub>},\myldots{},\ccTexHtml{$i_k$}{i<sub>k</sub>}, such that each \ccTexHtml{$i_j$}{i<sub>j</sub>}\myin{}\{0,\myldots{},\emph{dimension}\}, with \ccTexHtml{$i_1$}{i<sub>1</sub>}\mylt{}\ccTexHtml{$i_2$}{i<sub>2</sub>}\mylt{}\myldots{}\mylt{}\ccTexHtml{$i_k$}{i<sub>k</sub>}, and (\ccTexHtml{$i_1$}{i<sub>1</sub>}\myneq{}0 or \ccTexHtml{$i_2$}{i<sub>2</sub>}\myneq{}1).}}
|
||||
sequence of integers \ccTexHtml{$i_1$}{i<sub>1</sub>},\myldots{},\ccTexHtml{$i_k$}{i<sub>k</sub>}, such that
|
||||
0\myleq{}\ccTexHtml{$i_1$}{i<sub>1</sub>}\mylt{}\ccTexHtml{$i_2$}{i<sub>2</sub>}\mylt{}\myldots{}\mylt{}\ccTexHtml{$i_k$}{i<sub>k</sub>}\myleq{}\emph{dimension}, and (\ccTexHtml{$i_1$}{i<sub>1</sub>}\myneq{}0 or \ccTexHtml{$i_2$}{i<sub>2</sub>}\myneq{}1).}}
|
||||
\ccGlue
|
||||
\ccMethod{template<unsigned int ... Beta> Dart_of_orbit_const_range darts_of_orbit(Dart_const_handle dh) const;}
|
||||
{Returns a const range of all the darts of the orbit \ccc{<Beta...>(dh)}.
|
||||
|
|
@ -292,12 +292,12 @@ combinatorial tetrahedra:\\
|
|||
\ccHeading{Modifiers}
|
||||
\ccMethod{Dart_handle create_dart();}
|
||||
{Creates a new dart in \ccc{cm}, and returns the corresponding handle.
|
||||
A new dart is initialized to be emph{i}-free,
|
||||
A new dart is initialized to be \emph{i}-free,
|
||||
\myforall{}\emph{i}: 0\myleq{}\emph{i}\myleq{}\emph{dimension}, and to have no associated
|
||||
attribute for each non void attribute.
|
||||
}
|
||||
\ccMethod{void erase_dart(Dart_handle dh);}
|
||||
{Removes \ccc{dh} from \ccc{cm}.}
|
||||
{Removes \ccc{*dh} from \ccc{cm}.}
|
||||
|
||||
\ccMethod{template<unsigned int i> Attribute_handle<i>::type create_attribute();}
|
||||
{Creates a new \emph{i}-attribute in \ccc{cm}, and returns the corresponding handle.
|
||||
|
|
@ -313,7 +313,7 @@ combinatorial tetrahedra:\\
|
|||
\ccPrecond{0\myleq{}\emph{i}\myleq{}\emph{dimension}, and \emph{i}-attributes are non void.}}
|
||||
|
||||
\ccMethod{template <unsigned int i> void erase_attribute(Attribute_handle<i>::type ah);}
|
||||
{Removes the \emph{i}-attribute \ccc{ah} from \ccc{cm}.
|
||||
{Removes the \emph{i}-attribute \ccc{*ah} from \ccc{cm}.
|
||||
\ccPrecond{0\myleq{}\emph{i}\myleq{}\emph{dimension}, \emph{i}-attributes are non void,
|
||||
and \ccc{*ah}\myin{}\ccc{cm.attributes<i>()}.}}
|
||||
|
||||
|
|
@ -334,9 +334,9 @@ combinatorial tetrahedra:\\
|
|||
\emph{D1}=\orbit{\betaun{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}}(\ccc{dh1}) and
|
||||
\emph{D2}=\orbit{\betazero{},\betadeux{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}} (\ccc{dh2})
|
||||
such that \emph{d2}=\emph{f}(\emph{d1}), \emph{f} being the bijection between \emph{D1} and \emph{D2}
|
||||
satisfying: \emph{f}(\emph{dh1})=\emph{dh2}, and for all \emph{d'1}\myin{}\emph{D1}, for all
|
||||
satisfying: \emph{f}(\emph{dh1})=\emph{dh2}, and for all \emph{e}\myin{}\emph{D1}, for all
|
||||
\emph{j}\myin{}\{1,\myldots{},\emph{i}-2,\emph{i}+2,\myldots{},\emph{d}\},
|
||||
\emph{f}(\betaj{}(\emph{d'1}))=\betajinv{}(\emph{f}(\emph{d'1})).
|
||||
\emph{f}(\betaj{}(\emph{e}))=\betajinv{}(\emph{f}(\emph{e})).
|
||||
|
||||
If \ccc{update_attributes} is \ccc{true}, when necessary, non void
|
||||
attributes are updated to ensure the validity of \ccc{cm}: for each
|
||||
|
|
@ -392,7 +392,7 @@ combinatorial tetrahedra:\\
|
|||
|
||||
|
||||
\ccMethod{template <unsigned int i> void unlink_beta(Dart_handle dh);}
|
||||
{Unlinks \ccc{dh} and \betai{}(\ccc{dh}) by \betai{} .
|
||||
{Unlinks \ccc{dh} and \betai{}(\ccc{dh}) by \betai{}.
|
||||
\ccc{cm} can be no more valid after this modification.
|
||||
Attributes of \ccc{dh} and \betai{}(\ccc{dh})
|
||||
are not modified.
|
||||
|
|
|
|||
|
|
@ -45,7 +45,8 @@ The complexity of \ccc{sew} and \ccc{unsew} is in \emph{O}($|$\emph{S}$|$\mytime
|
|||
being the set of darts of the orbit
|
||||
\orbit{\betaun{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}} for the
|
||||
considered dart, and \emph{c} the biggest \emph{j}-cell merged or
|
||||
split during the sew such that \emph{j}-attributes are non void.
|
||||
split during the sew such that \emph{j}-attributes are non void.
|
||||
The complexity of \ccc{is_sewable} is in \emph{O}($|$\emph{S}$|$).
|
||||
|
||||
% The complexity of \ccc{topo_sew}, and \ccc{topo_unsew} are in
|
||||
% $O(|S|\times c)$, $S$ being the set of darts of the orbit
|
||||
|
|
@ -55,10 +56,18 @@ split during the sew such that \emph{j}-attributes are non void.
|
|||
The complexity of \ccc{set_attribute} is in \emph{O}($|$\emph{c}$|$), \emph{c} being the
|
||||
\emph{i}-cell containing the considered dart.
|
||||
|
||||
The complexity of \ccc{is_without_boundary(unsigned int i)} is in \emph{O}($|$\emph{D}$|$),
|
||||
\emph{D} being the set of darts of the combinatorial map, and the complexity of
|
||||
\ccc{is_without_boundary()} is in \emph{O}($|$\emph{D}$|$\mytimes{}\emph{d}).
|
||||
|
||||
The complexity of \ccc{unmark_all} and \ccc{free_mark} is in \emph{O}(1) if
|
||||
all the darts of the combinatorial map have the same mark, and in
|
||||
\emph{O}($|$\emph{D}$|$) otherwise, \emph{D} being the set of darts of the combinatorial
|
||||
map.
|
||||
\emph{O}($|$\emph{D}$|$) otherwise.
|
||||
|
||||
The complexity of \ccc{is_valid} is in
|
||||
\emph{O}($|$\emph{D}$|$\mytimes{}\emph{d}\ccTexHtml{$^2$}{<sup>2</sup>}).
|
||||
|
||||
The complexity of \ccc{clear} is in \emph{O}($|$\emph{D}$|$\mytimes{}\emph{d}).
|
||||
|
||||
Other methods have all a constant time complexity.
|
||||
|
||||
|
|
|
|||
|
|
@ -189,7 +189,7 @@
|
|||
typename CMap::Dart_handle insert_cell_0_in_cell_1(CMap& cm,
|
||||
typename CMap::Dart_handle dh);}
|
||||
{Inserts a 0-cell in the 1-cell containing \ccc{dh}.
|
||||
Returns a handle on one dart of this cell.
|
||||
Returns a handle on one dart belonging to the new 0-cell.
|
||||
\ccPrecond{\ccc{CMap::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{cm.darts()}.}\\
|
||||
See example in Figure~\ref{fig-insert-vertex}.\\
|
||||
% \begin{ccAdvanced}
|
||||
|
|
@ -257,7 +257,7 @@
|
|||
typename CMap::Dart_handle insert_cell_1_in_cell_2(CMap& cm,
|
||||
typename CMap::Dart_handle dh1,typename CMap::Dart_handle dh2);}
|
||||
{Inserts a 1-cell in the 2-cell containing \ccc{dh1} and \ccc{dh2}.
|
||||
Returns a handle on one dart of this cell.
|
||||
Returns a handle on one dart belonging to the new 1-cell.
|
||||
\ccPrecond{\ccc{is_insertable_cell_1_in_cell_2<Map>(cm,dh1,dh2)}.}\\
|
||||
See example in Figure~\ref{fig-insert-edge}.\\
|
||||
% \begin{ccAdvanced}
|
||||
|
|
@ -293,7 +293,7 @@
|
|||
typename CMap::Dart_handle dh);}
|
||||
{Inserts a 1-cell in a the 2-cell containing \ccc{dh}, the 1-cell
|
||||
being attached only by one of its extremity to the 0-cell containing \ccc{dh}.
|
||||
Returns a handle on one dart belonging to the new 0-cell.
|
||||
Returns a handle on one dart belonging to the new 1-cell.
|
||||
\ccPrecond{\ccc{CMap::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{cm.darts()}.}\\
|
||||
See example in Figure~\ref{fig-insert-edge}.
|
||||
}
|
||||
|
|
@ -319,9 +319,9 @@ being attached only by one of its extremity to the 0-cell containing \ccc{dh}.
|
|||
\ccFunction{template <class CMap, class InputIterator>
|
||||
typename CMap::Dart_handle insert_cell_2_in_cell_3(CMap & cm,
|
||||
InputIterator afirst, InputIterator alast);}
|
||||
{Inserts a 2-cell along the path of 1-cell incident to darts given
|
||||
by the range \ccc{[afirst,alast)}
|
||||
Returns a handle on one dart of this cell.
|
||||
{Inserts a 2-cell along the path of 1-cells containing darts given
|
||||
by the range \ccc{[afirst,alast)}.
|
||||
Returns a handle on one dart belonging to the new 2-cell.
|
||||
\ccPrecond{\ccc{is_insertable_cell_2_in_cell_3<Map>(cm,afirst,alast)}.}\\
|
||||
See example in Figure~\ref{fig-insert-face}.\\
|
||||
% \begin{ccAdvanced}
|
||||
|
|
|
|||
Loading…
Reference in New Issue