This commit is contained in:
Efi Fogel 2007-08-24 21:28:29 +00:00
parent 4f527dd122
commit e83471d962
1 changed files with 406 additions and 118 deletions

View File

@ -41,25 +41,25 @@ template <typename Base_traits>
class Arr_tracing_traits_2 : public Base_traits {
public:
enum Operation_id {
COMPARE_X = 0,
COMPARE_XY,
CONSTRUCT_MIN_VERTEX,
CONSTRUCT_MAX_VERTEX,
BOUNDARY_IN_X,
BOUNDARY_IN_Y,
IS_VERTICAL,
COMPARE_Y_AT_X,
EQUAL_POINTS,
EQUAL_CURVES,
COMPARE_Y_AT_X_LEFT,
COMPARE_Y_AT_X_RIGHT,
MAKE_X_MONOTONE,
SPLIT,
INTERSECT,
ARE_MERGEABLE,
MERGE,
CONSTRUCT_OPPOSITE,
COMPARE_ENDPOINTS_XY,
COMPARE_X_OP = 0,
COMPARE_XY_OP,
CONSTRUCT_MIN_VERTEX_OP,
CONSTRUCT_MAX_VERTEX_OP,
BOUNDARY_IN_X_OP,
BOUNDARY_IN_Y_OP,
IS_VERTICAL_OP,
COMPARE_Y_AT_X_OP,
EQUAL_POINT_OP,
EQUAL_CURVE_OP,
COMPARE_Y_AT_X_LEFT_OP,
COMPARE_Y_AT_X_RIGHT_OP,
MAKE_X_MONOTONE_OP,
SPLIT_OP,
INTERSECT_OP,
ARE_MERGEABLE_OP,
MERGE_OP,
CONSTRUCT_OPPOSITE_OP,
COMPARE_ENDPOINTS_XY_OP,
NUMBER_OF_OPERATIONS
};
@ -67,26 +67,93 @@ private:
typedef Base_traits Base;
typedef Arr_tracing_traits_2<Base> Self;
bool m_trace[NUMBER_OF_OPERATIONS];
/*! A set of bits that indicate whether operations should be traced */
unsigned int m_flags;
bool compare_x_op() const
{ return m_flags & (0x1 << COMPARE_X_OP); }
bool compare_xy_op() const
{ return m_flags & (0x1 << COMPARE_XY_OP); }
bool construct_min_vertex_op() const
{ return m_flags & (0x1 << CONSTRUCT_MIN_VERTEX_OP); }
bool construct_max_vertex_op() const
{ return m_flags & (0x1 << CONSTRUCT_MAX_VERTEX_OP); }
bool boundary_in_x_op() const
{ return m_flags & (0x1 << BOUNDARY_IN_X_OP); }
bool boundary_in_y_op() const
{ return m_flags & (0x1 << BOUNDARY_IN_Y_OP); }
bool is_vertical_op() const
{ return m_flags & (0x1 << IS_VERTICAL_OP); }
bool compare_y_at_x_op() const
{ return m_flags & (0x1 << COMPARE_Y_AT_X_OP); }
bool equal_point_op() const
{ return m_flags & (0x1 << EQUAL_POINT_OP); }
bool equal_curve_op() const
{ return m_flags & (0x1 << EQUAL_CURVE_OP); }
bool compare_y_at_x_left_op() const
{ return m_flags & (0x1 << COMPARE_Y_AT_X_LEFT_OP); }
bool compare_y_at_x_right_op() const
{ return m_flags & (0x1 << COMPARE_Y_AT_X_RIGHT_OP); }
bool make_x_monotone_op() const
{ return m_flags & (0x1 << MAKE_X_MONOTONE_OP); }
bool split_op() const
{ return m_flags & (0x1 << SPLIT_OP); }
bool intersect_op() const
{ return m_flags & (0x1 << INTERSECT_OP); }
bool are_mergeable_op() const
{ return m_flags & (0x1 << ARE_MERGEABLE_OP); }
bool merge_op() const
{ return m_flags & (0x1 << MERGE_OP); }
bool construct_opposite_op() const
{ return m_flags & (0x1 << CONSTRUCT_OPPOSITE_OP); }
bool compare_endpoints_xy_op() const
{ return m_flags & (0x1 << COMPARE_ENDPOINTS_XY_OP); }
public:
/*! Default constructor */
Arr_tracing_traits_2() :
Base()
{
unsigned int i;
for (i = 0; i < NUMBER_OF_OPERATIONS; ++i) m_trace[i] = true;
enable_all_traces();
}
/*! Enable the trace of a traits operation
* \param id the operation identifier
*/
void enable_trace(Operation_id id) { m_trace[id] = true; }
void enable_trace(Operation_id id) { m_flags[id] |= 0x1 << id; }
/*! Enable the trace of all traits operations
* \param id the operation identifier
*/
void enable_all_traces() { m_flags = 0xffffffff; }
/*! Disable the trace of a traits operation
* \param id the operation identifier
*/
void disable_trace(Operation_id id) { m_trace[id] = false; }
void disable_trace(Operation_id id) { m_flags[id] &= ~(0x1 << id); }
/*! Disable the trace of all traits operations
* \param id the operation identifier
*/
void disable_all_traces() { m_flags = 0x0; }
/// \name Types and functors inherited from the base
//@{
@ -104,11 +171,21 @@ public:
class Compare_x_2 {
private:
typename Base::Compare_x_2 m_object;
bool m_enabled;
public:
Compare_x_2(const Base * base) : m_object(base->compare_x_2_object()) {}
/*! Construct */
Compare_x_2(const Base * base, bool enabled = true) :
m_object(base->compare_x_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 first point
* \param p2 second point
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled) return m_object(p1, p2);
std::cout << "compare_x 1" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
@ -117,10 +194,17 @@ public:
return cr;
}
/*! Operate
* \param p the first point
* \param xc the curve the end of which is to be compared
* \param ind the curve-end index
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p,
const X_monotone_curve_2 & xc, Curve_end ind)
const
{
if (!m_enabled) return m_object(p, xc, ind);
std::cout << "compare_x 2" << std::endl
<< " p: " << p << std::endl
<< " ind: " << ind << ", xc: " << xc << std::endl;
@ -129,10 +213,19 @@ public:
return cr;
}
Comparison_result operator()(const X_monotone_curve_2 & xc1, Curve_end ind1,
const X_monotone_curve_2 & xc2, Curve_end ind2)
const
/*! Operate
* \param xc1 the first curve the end of which is to be compared
* \param ind1 the index of the end of the first curve
* \param xc2 the second curve the end of which is to be compared
* \param ind2 the index of the end of the second curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xc1,
Curve_end ind1,
const X_monotone_curve_2 & xc2,
Curve_end ind2) const
{
if (!m_enabled) return m_object(xc1, ind1, xc2, ind2);
std::cout << "compare_x 2" << std::endl
<< " ind1: " << ind1 << ", xc1: " << xc1 << std::endl
<< " ind2: " << ind2 << ", xc2: " << xc2 << std::endl;
@ -146,10 +239,21 @@ public:
class Compare_xy_2 {
private:
typename Base::Compare_xy_2 m_object;
bool m_enabled;
public:
Compare_xy_2(const Base * base) : m_object(base->compare_xy_2_object()) {}
/*! Construct */
Compare_xy_2(const Base * base, bool enabled = true) :
m_object(base->compare_xy_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 the first point
* \param p2 the second point
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled) return m_object(p1, p2);
std::cout << "compare_xy" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
@ -165,9 +269,23 @@ public:
class Boundary_in_x_2 {
private:
typename Base::Boundary_in_x_2 m_object;
bool m_enabled;
public:
Boundary_type operator()(const X_monotone_curve_2 & xc, Curve_end ind) const
/*! Construct */
Boundary_in_x_2(const Base * base, bool enabled = true) :
m_object(base->boundary_in_x_2_object()), m_enabled(enabled)
{}
/*! Operate
* \param xc the curve the end of which is tested
* \param ind the curve-end index
* \return the boundary type
*/
Boundary_type operator()(const X_monotone_curve_2 & xc,
Curve_end ind) const
{
if (!m_enabled) return m_object(xc, ind);
std::cout << "boundary_in_x" << std::endl
<< " ind: " << ind << ", xc: " << xc << std::endl;
Boundary_type bt = m_object(xc, ind);
@ -176,17 +294,29 @@ public:
}
};
/*! Determine whether an endpoint of an x-monotone curve lies on an
/*! Determine whether an endpoint of an x-monotone curve lies on a
* y-boundary.
*/
class Boundary_in_y_2 {
private:
typename Base::Boundary_in_y_2 m_object;
bool m_enabled;
public:
/*! Construct */
Boundary_in_y_2(const Base * base, bool enabled = true) :
m_object(base->boundary_in_y_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc the curve the end of which is tested
* \param ind the curve-end index
* \return the boundary type
*/
Boundary_type operator()(const X_monotone_curve_2 & xc, Curve_end ind) const
{
std::cout << "boundary_in_y" << std::endl
<< " ind: " << ind << ", xc: " << xc << std::endl;
if (!m_enabled) return m_object(xc, ind);
std::cout << "boundary_in_y" << std::endl
<< " ind: " << ind << ", xc: " << xc << std::endl;
Boundary_type bt = m_object(xc, ind);
std::cout << " result: " << bt << std::endl;
return bt;
@ -197,11 +327,20 @@ public:
class Construct_min_vertex_2 {
private:
typename Base::Construct_min_vertex_2 m_object;
bool m_enabled;
public:
Construct_min_vertex_2(const Base * base) :
m_object(base->construct_min_vertex_2_object()) {}
/*! Construct */
Construct_min_vertex_2(const Base * base, bool enabled = true) :
m_object(base->construct_min_vertex_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc the curev the left endpoint of which is obtained
* \return the left endpoint
*/
const Point_2 operator()(const X_monotone_curve_2 & xc) const
{
if (!m_enabled) return m_object(xc);
std::cout << "construct_min_vertex" << std::endl
<< " xc: " << xc << std::endl;
Point_2 p = m_object(xc);
@ -214,11 +353,20 @@ public:
class Construct_max_vertex_2 {
private:
typename Base::Construct_max_vertex_2 m_object;
bool m_enabled;
public:
Construct_max_vertex_2(const Base * base) :
m_object(base->construct_max_vertex_2_object()) {}
/*! Construct */
Construct_max_vertex_2(const Base * base, bool enabled = true) :
m_object(base->construct_max_vertex_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc the curev the right endpoint of which is obtained
* \return the right endpoint
*/
const Point_2 operator()(const X_monotone_curve_2 & xc) const
{
if (!m_enabled) return m_object(xc);
std::cout << "construct_max_vertex" << std::endl
<< " xc: " << xc << std::endl;
Point_2 p = m_object(xc);
@ -231,10 +379,20 @@ public:
class Is_vertical_2 {
private:
typename Base::Is_vertical_2 m_object;
bool m_enabled;
public:
Is_vertical_2(const Base * base) : m_object(base->is_vertical_2_object()) {}
/*! Construct */
Is_vertical_2(const Base * base, bool enabled = true) :
m_object(base->is_vertical_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc the curve
* \return a Boolean that indicates whether the curve is vertical or not
*/
bool operator()(const X_monotone_curve_2 & xc) const
{
if (!m_enabled) return m_object(xc);
std::cout << "is_vertical" << std::endl
<< " xc: " << xc << std::endl;
bool is_vertical = m_object(xc);
@ -249,12 +407,22 @@ public:
class Compare_y_at_x_2 {
private:
typename Base::Compare_y_at_x_2 m_object;
bool m_enabled;
public:
Compare_y_at_x_2(const Base * base) :
m_object(base->compare_y_at_x_2_object()) {}
/*! Construct */
Compare_y_at_x_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_at_x_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p the point
* \param xc the curve
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p,
const X_monotone_curve_2 & xc) const
{
if (!m_enabled) return m_object(p, xc);
std::cout << "compare_y_at_x 1" << std::endl
<< " p: " << p << std::endl
<< " xc: " << xc << std::endl;
@ -263,10 +431,17 @@ public:
return cr;
}
/*! Operate
* \param xc1 the first curve the end point of which is tested
* \param xc2 the second curve the end point of which is tested
* \param ind the curve-end index
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2,
Curve_end ind) const
{
if (!m_enabled) return m_object(xc1, xc2, ind);
std::cout << "compare_y_at_x 2" << std::endl
<< " ind: " << ind << std::endl
<< " xc1: " << xc1 << std::endl
@ -276,11 +451,19 @@ public:
return cr;
}
/*! Operate
* \param xc1 the first curve
* \param ind1 the index of the end of the first curve
* \param xc2 the second curve
* \param ind2 the index of the end of the second curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xc1,
Curve_end ind1,
const X_monotone_curve_2 & xc2,
Curve_end ind2) const
{
if (!m_enabled) return m_object(xc1, ind1, xc2, ind2);
std::cout << "compare_y_at_x 3" << std::endl
<< " ind1: " << ind1 << ", xc1: " << xc1 << std::endl
<< " ind2: " << ind2 << ", xc2: " << xc2 << std::endl;
@ -294,11 +477,27 @@ public:
class Equal_2 {
private:
typename Base::Equal_2 m_object;
bool m_enabled_point;
bool m_enabled_curve;
public:
Equal_2(const Base * base) : m_object(base->equal_2_object()) {}
/*! Construct */
Equal_2(const Base * base,
bool enabled_point = true, bool enabled_curve = true) :
m_object(base->equal_2_object()),
m_enabled_point(enabled_point),
m_enabled_curve(enabled_curve)
{}
/*! Operate
* \param xc1 the first curve
* \param xc2 the second curve
* \return true if the x-monotone curves are equal and false otherwise
*/
bool operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2) const
{
if (!m_enabled_curve) return m_object(xc1, xc2);
std::cout << "equal 1" << std::endl
<< " xc1: " << xc1 << std::endl
<< " xc1: " << xc1 << std::endl;
@ -306,8 +505,15 @@ public:
std::cout << " result: " << equal << std::endl;
return equal;
}
/*! Operate
* \param p1 the first point
* \param p2 the second point
* \return true if the points are equal and false otherwise
*/
bool operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled_point) return m_object(p1, p2);
std::cout << "equal 2" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
@ -323,13 +529,24 @@ public:
class Compare_y_at_x_left_2 {
private:
typename Base::Compare_y_at_x_left_2 m_object;
bool m_enabled;
public:
Compare_y_at_x_left_2(const Base * base) :
m_object(base->compare_y_at_x_left_2_object()) {}
/*! Construct */
Compare_y_at_x_left_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_at_x_left_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc1 the first curve
* \param xc2 the second curve
* \param p the reference point
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2,
const Point_2 & p) const
{
if (!m_enabled) return m_object(xc1, xc2, p);
std::cout << "compare_y_at_x_left" << std::endl
<< " p: " << p << std::endl
<< " xc1: " << xc1 << std::endl
@ -346,13 +563,24 @@ public:
class Compare_y_at_x_right_2 {
private:
typename Base::Compare_y_at_x_right_2 m_object;
bool m_enabled;
public:
Compare_y_at_x_right_2(const Base * base) :
m_object(base->compare_y_at_x_right_2_object()) {}
/*! Construct */
Compare_y_at_x_right_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_at_x_right_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc1 the first curve
* \param xc2 the second curve
* \param p the reference point
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2,
const Point_2 & p) const
{
if (!m_enabled) return m_object(xc1, xc2, p);
std::cout << "compare_y_at_x_right" << std::endl
<< " p: " << p << std::endl
<< " xc1: " << xc1 << std::endl
@ -367,35 +595,48 @@ public:
class Make_x_monotone_2 {
private:
typename Base::Make_x_monotone_2 m_object;
bool m_enabled;
public:
Make_x_monotone_2(Base * base) :
m_object(base->make_x_monotone_2_object()) {}
/*! Construct */
Make_x_monotone_2(Base * base, bool enabled = true) :
m_object(base->make_x_monotone_2_object()), m_enabled(enabled) {}
/*! Operate
* \param cv the curve
* \param oi an output iterator that contains the result. It's value
* type is CGAL::Object, which wraps either an x-monotone curve or a point
* \return the output iterator
*/
template<typename OutputIterator>
OutputIterator operator()(const Curve_2 & cv, OutputIterator oi)
{
if (!m_enabled) return m_object(cv, oi);
std::cout << "make_x_monotone" << std::endl
<< " cv: " << cv << std::endl;
OutputIterator res_oi = m_object(cv, oi);
#if 1
return res_oi;
#else
/*! \todo the following code will fail to compile if OutputIterator is
* a back_inserter (e.g., of a list container).
* What is the right way to write generic code in this case?
*/
if (res_oi == oi) return res_oi;
std::list<CGAL::Object> container;
m_object(cv, std::back_inserter(container));
if (container.empty()) return oi;
std::list<CGAL::Object>::iterator it;
unsigned int i = 0;
OutputIterator it;
for (it = oi; it != res_oi; ++it) {
for (it = container.begin(); it != container.end(); ++it) {
X_monotone_curve_2 xc;
if (assign (xc, *it)) {
std::cout << " result[" << i++ << "]: xc: " << xc << std::endl;
continue;
}
Point_2 p;
if (assign (p, *it)) {
std::cout << " result[" << i++ << "]: p: " << p << std::endl;
continue;
}
}
#endif
return res_oi;
for (it = container.begin(); it != container.end(); ++it) *oi++ = *it;
container.clear();
return oi;
}
};
@ -403,8 +644,19 @@ public:
class Split_2 {
private:
typename Base::Split_2 m_object;
bool m_enabled;
public:
Split_2(Base * base) : m_object(base->split_2_object()) {}
/*! Construct */
Split_2(Base * base, bool enabled = true) :
m_object(base->split_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc
* \param p
* \param xc1
* \param xc2
*/
void operator()(const X_monotone_curve_2 & xc, const Point_2 & p,
X_monotone_curve_2 & xc1, X_monotone_curve_2 & xc2)
{
@ -421,13 +673,28 @@ public:
class Intersect_2 {
private:
typename Base::Intersect_2 m_object;
bool m_enabled;
public:
Intersect_2(Base * base) : m_object(base->intersect_2_object()) {}
/*! Construct */
Intersect_2(Base * base, bool enabled = true) :
m_object(base->intersect_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc1 the first curve
* \param xc2 the ssecond curve
* \param oi an output iterator that contains the result. It's value
* type is CGAL::Object, which wraps either an x-monotone overlapping
* curve or pair that consists of an intersection point and its
* multiplicity
* \return the output iterator
*/
template<typename OutputIterator>
OutputIterator operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2,
OutputIterator oi)
{
if (!m_enabled) return m_object(xc1, xc2, oi);
std::cout << "intersect" << std::endl
<< " xc1: " << xc1 << std::endl
<< " xc2: " << xc2 << std::endl;
@ -435,8 +702,8 @@ public:
m_object(xc1, xc2, std::back_inserter(container));
if (container.empty()) return oi;
unsigned int i = 0;
std::list<CGAL::Object>::iterator it;
unsigned int i = 0;
for (it = container.begin(); it != container.end(); ++it) {
X_monotone_curve_2 xc;
if (assign (xc, *it)) {
@ -451,6 +718,7 @@ public:
continue;
}
}
for (it = container.begin(); it != container.end(); ++it) *oi++ = *it;
container.clear();
return oi;
@ -461,12 +729,24 @@ public:
class Are_mergeable_2 {
private:
typename Base::Are_mergeable_2 m_object;
bool m_enabled;
public:
Are_mergeable_2(const Base * base) :
m_object(base->are_mergeable_2_object()) {}
/*! Construct */
Are_mergeable_2(const Base * base, bool enabled = true) :
m_object(base->are_mergeable_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc1 the first curve
* \param xc2 the second curve
* \return true if the the two curve are mergeable and false otherwise.
* Two curves are mergeable if they have the same underlying theoretical
* curve
*/
bool operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2) const
{
if (!m_enabled) return m_object(xc1, xc2);
std::cout << "are_mergeable" << std::endl
<< " xc1: " << xc1 << std::endl
<< " xc2: " << xc2 << std::endl;
@ -480,8 +760,18 @@ public:
class Merge_2 {
private:
typename Base::Merge_2 m_object;
bool m_enabled;
public:
Merge_2(Base * base) : m_object(base->merge_2_object()) {}
/*! Construct */
Merge_2(Base * base, bool enabled = true) :
m_object(base->merge_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc1 the first curve
* \param xc2 the second curve
* \param xc the merged curve
*/
void operator()(const X_monotone_curve_2 & xc1,
const X_monotone_curve_2 & xc2,
X_monotone_curve_2 & xc)
@ -498,12 +788,25 @@ public:
class Construct_opposite_2 {
private:
typename Base::Construct_opposite_2 m_object;
bool m_enabled;
public:
Construct_opposite_2(const Base * base) :
m_object(base->construct_opposite_2_object()) {}
/*! Construct */
Construct_opposite_2(const Base * base, bool enabled = true) :
m_object(base->construct_opposite_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc the curve
* \return the opposite curve
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2 & xc)
{
return m_object(xc);
if (!m_enabled) return m_object(xc);
std::cout << "construct_opposite" << std::endl;
<< " xc: " << xc << std::endl;
X_monotone_curve_2 xc = m_object(xc);
std::cout << " result: " << xc << std::endl;
return xc;
}
};
@ -511,15 +814,24 @@ public:
class Compare_endpoints_xy_2 {
private:
typename Base::Compare_endpoints_xy_2 m_object;
bool m_enabled;
public:
Compare_endpoints_xy_2(const Base * base) :
m_object(base->compare_endpoints_xy_2_object()) {}
/*! Construct */
Compare_endpoints_xy_2(const Base * base, bool enabled = true) :
m_object(base->compare_endpoints_xy_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xc the curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xc)
{
if (!m_enabled) return m_object(xc);
std::cout << "compare_endpoints_xy" << std::endl
<< " xc: " << xc << std::endl;
Comparison_result cr = m_object(xc);
std::cout << " result: " << cr;
std::cout << " result: " << cr << std::endl;
return cr;
}
};
@ -529,52 +841,58 @@ public:
/// \name Obtain the appropriate functor
//@{
Compare_x_2 compare_x_2_object() const
{ return Compare_x_2(this); }
{ return Compare_x_2(this, compare_x_op()); }
Compare_xy_2 compare_xy_2_object() const
{ return Compare_xy_2(this); }
{ return Compare_xy_2(this, compare_xy_op()); }
Construct_min_vertex_2 construct_min_vertex_2_object() const
{ return Construct_min_vertex_2(this); }
{ return Construct_min_vertex_2(this, construct_min_vertex_op()); }
Construct_max_vertex_2 construct_max_vertex_2_object() const
{ return Construct_max_vertex_2(this); }
{ return Construct_max_vertex_2(this, construct_max_vertex_op()); }
Boundary_in_x_2 boundary_in_x_2_object() const
{ return Boundary_in_x_2(this, boundary_in_x_op()); }
Boundary_in_y_2 boundary_in_y_2_object() const
{ return Boundary_in_y_2(this, boundary_in_y_op()); }
Is_vertical_2 is_vertical_2_object() const
{ return Is_vertical_2(this); }
{ return Is_vertical_2(this, is_vertical_op()); }
Compare_y_at_x_2 compare_y_at_x_2_object() const
{ return Compare_y_at_x_2(this); }
{ return Compare_y_at_x_2(this, compare_y_at_x_op()); }
Equal_2 equal_2_object() const
{ return Equal_2(this); }
{ return Equal_2(this, equal_point_op(), equal_curve_op()); }
Compare_y_at_x_left_2 compare_y_at_x_left_2_object() const
{ return Compare_y_at_x_left_2(this); }
{ return Compare_y_at_x_left_2(this, compare_y_at_x_left_op()); }
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const
{ return Compare_y_at_x_right_2(this); }
{ return Compare_y_at_x_right_2(this, compare_y_at_x_right_op()); }
Make_x_monotone_2 make_x_monotone_2_object()
{ return Make_x_monotone_2(this); }
{ return Make_x_monotone_2(this, make_x_monotone_op()); }
Split_2 split_2_object()
{ return Split_2(this); }
{ return Split_2(this, split_op()); }
Intersect_2 intersect_2_object()
{ return Intersect_2(this); }
{ return Intersect_2(this, intersect_op()); }
Are_mergeable_2 are_mergeable_2_object() const
{ return Are_mergeable_2(this); }
{ return Are_mergeable_2(this, are_mergeable_op()); }
Merge_2 merge_2_object()
{ return Merge_2(this); }
{ return Merge_2(this, merge_op()); }
Construct_opposite_2 construct_opposite_2_object() const
{ return Construct_opposite_2(this); }
{ return Construct_opposite_2(this, construct_opposite_op()); }
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{ return Compare_endpoints_xy_2(this); }
{ return Compare_endpoints_xy_2(this, compare_endpoints_xy_op()); }
//@}
};
@ -586,36 +904,6 @@ OutputStream & operator<<(OutputStream & os, Comparison_result cr)
return os;
}
/*! Inserter for the spherical_arc class used by the traits-class */
template <class T_Traits, class OutputStream>
OutputStream & operator<<(OutputStream & os,
const typename
Arr_tracing_traits_2<T_Traits>::Point_2 & p)
{
typename T_Traits::Point_2 p_base = p;
os << "(" << p_base << ")"
<< ", "
<<
(p.is_min_boundary() ? "min" :
p.is_max_boundary() ? "max" :
p.is_mid_boundary() ? "dis" : "reg");
return os;
}
/*! Inserter for the spherical_arc class used by the traits-class */
template <class T_Traits, class OutputStream>
OutputStream & operator<<(OutputStream & os,
const typename
Arr_tracing_traits_2<T_Traits>::
X_monotone_curve_2 & xc)
{
typename T_Traits::X_monotone_curve_2 xc_base = xc;
os << "(" << xc << ")"
<< ", " << (xc.is_vertical() ? " |" : "!|")
<< ", " << (xc.is_directed_right() ? "=>" : "<=");
return os;
}
CGAL_END_NAMESPACE
#endif