function documentation fixes

remove the repetition of the name of the function in its brief description
 add parenthesis for function matching "function\s+`[a-z0-9_]`"
This commit is contained in:
Sébastien Loriot 2013-09-03 14:22:33 +02:00
parent 04a0d963c8
commit e8975dbac7
44 changed files with 123 additions and 123 deletions

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgArrangement2PointLocation
The function `locate` performs a batched point-location operation on a
Performs a batched point-location operation on a
given arrangement. It accepts a range of query points, and locates each
point in the arrangement. The query results are returned through the output
iterator. Each query result is given as a pair of the query point and an

View File

@ -3,7 +3,7 @@ namespace CGAL {
\defgroup PkgArrangement2Read CGAL::read()
\ingroup PkgArrangement2IO
The function `read` reads a given arrangement from a given input stream
Reads a given arrangement from a given input stream
using a specific input format.
\cgalHeading{Requirements}
@ -40,7 +40,7 @@ std::istream& read (Arrangement_2<Traits,Dcel>& arr,
\defgroup PkgArrangement2Write CGAL::write()
\ingroup PkgArrangement2IO
The function `write` writes a given arrangement into a given output stream
Writes a given arrangement into a given output stream
using a specific output format.
\cgalHeading{Requirements}

View File

@ -6,7 +6,7 @@ namespace CGAL {
the output arrangement `res` to represent the overlaid arrangement.
\details
The function `overlay` computes the overlay of two input arrangement
Computes the overlay of two input arrangement
objects, and returns the overlaid arrangement. All three arrangements
can be instantiated with different geometric traits classes and different
<span class="textsc">Dcel</span> classes (encapsulated in the various topology-traits classes).
@ -42,7 +42,7 @@ represent the overlaid arrangement. The function also constructs a
consolidated set of curves that induce `res`.
\details
The function `overlay` computes the overlay of two input arrangement
Computes the overlay of two input arrangement
objects, and returns the overlaid arrangement. All three arrangements
can be instantiated with different geometric traits classes and different
<span class="textsc">Dcel</span> classes (encapsulated in the various topology-traits classes).

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgArrangement2Funcs
The function `decompose` produces the symbolic vertical decomposition of a
Produces the symbolic vertical decomposition of a
given arrangement, performing a batched vertical ray-shooting query from
all arrangement vertices, such that every vertex is associated with a pair
of objects, one corresponds to the arrangement feature that lies below it,

View File

@ -1045,7 +1045,7 @@ void insert (Arrangement_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `do_intersect` checks if a given curve or \f$ x\f$-monotone
Checks if a given curve or \f$ x\f$-monotone
curve intersects an existing arrangement's edges or vertices.
If the give curve is not an \f$ x\f$-monotone curve then the function
@ -1091,7 +1091,7 @@ bool do_intersect (
/*!
\ingroup PkgArrangement2Funcs
The function `insert_non_intersecting_curve` inserts a given \f$ x\f$-monotone curve into a given
Inserts a given \f$ x\f$-monotone curve into a given
arrangement, where the interior of the given curve is disjoint from all
existing arrangement vertices and edges. Under this assumption, it is
possible to locate the endpoints of the given curve in the arrangement,
@ -1129,7 +1129,7 @@ insert_non_intersecting_curve (Arrangement_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `insert_non_intersecting_curves` inserts a set of \f$ x\f$-monotone curves in a given
Inserts a set of \f$ x\f$-monotone curves in a given
range into a given arrangement. The insertion is performed in an aggregated
manner, using the sweep-line algorithm. The input curves should be pairwise
disjoint in their interior and pairwise interior-disjoint from all existing
@ -1152,7 +1152,7 @@ void insert_non_intersecting_curves(Arrangement_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `insert_point` inserts a given point into a given arrangement.
Inserts a given point into a given arrangement.
It uses a given point-location object to locate the given
point in the given arrangement. If the point conincides with an existing
vertex, there is nothing left to do; if it lies on an edge, the edge is
@ -1190,7 +1190,7 @@ insert_point (Arrangement_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `is_valid` checks the validity of a given arrangement.
Checks the validity of a given arrangement.
Invokes the member function `arr.is_valid()` to verify the
topological correctness of the arrangement. Then it performs additional
@ -1214,7 +1214,7 @@ bool is_valid (const Arrangement_2<Traits, Dcel>& arr);
/*!
\ingroup PkgArrangement2Funcs
The function `remove_edge` removes an edge given by one of the twin halfedges
Removes an edge given by one of the twin halfedges
that forms it, from a given arrangement. Once the edge is removed, if the
vertices associated with its endpoints become isolated, they are removed as
well. The call `remove_edge(arr, e)` is equivalent to the call
@ -1246,7 +1246,7 @@ remove_edge (Arrangement_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `remove_vertex` attempts to removed a given vertex from a given
Attempts to removed a given vertex from a given
arrangement. The vertex can be removed if it is either an isolated vertex,
(and has no incident edge,) or if it is a <I>redundant</I> vertex. That
is, it has exactly two incident edges, whose associated curves can be
@ -1271,7 +1271,7 @@ bool remove_vertex (Arrangement_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `zone` compute the zone of the given \f$ x\f$-monotone
Compute the zone of the given \f$ x\f$-monotone
curve in the existing arrangement. Meaning, it output the
arrangement's vertices, edges and faces that the \f$ x\f$-monotone curve
intersects. The order of the objects is the order that they are

View File

@ -310,9 +310,9 @@ void insert(Arrangement_with_history_2<Traits,Dcel>& arr,
/*!
\ingroup PkgArrangement2Funcs
The function `remove_curve` removes a given curve from a given arrangement.
Removes a given curve from a given arrangement.
`remove_curve` removes a curve, specified by its handle `ch`, from
The curve is specified by its handle `ch`, from
the arrangement `arr`, by deleting all the edges it induces. The
function returns the number of deleted edges.

View File

@ -5,7 +5,7 @@ namespace CGAL {
The class `Rectangular_p_center_default_traits_2` defines types and operations
needed to compute rectilinear \f$ p\f$-centers of a planar point set
using the function `rectangular_p_center_2`.
using the function `rectangular_p_center_2()`.
\tparam K must be a model for `Kernel`.
@ -196,7 +196,7 @@ construct_iso_rectangle_2_above_right_point_2_object() const;
/*!
\ingroup PkgBoundingVolumes
The function `rectangular_p_center_2` computes rectilinear
Computes rectilinear
\f$ p\f$-centers of a planar point set, i.e.\ a set of \f$ p\f$ points such
that the maximum minimal \f$ L_{\infty}\f$-distance between both sets is
minimized.

View File

@ -22,10 +22,10 @@ Point type.
typedef unspecified_type Point;
/*!
Distance type. The function `squared_radius` (see below)
Distance type. The function `squared_radius()` (see below)
returns an object of this type.
\note Only needed, if the member function `is_valid`
\note Only needed, if the member function `is_valid()`
of `Min_circle_2` is used.
*/
@ -128,7 +128,7 @@ bool is_degenerate( ) const;
returns `true`, iff `circle` and `circle2` are equal.
\note Only needed, if the member function `is_valid` of `Min_circle_2` is used.
\note Only needed, if the member function `is_valid()` of `Min_circle_2` is used.
*/
bool operator == ( const Circle& circle2) const;
@ -136,7 +136,7 @@ bool operator == ( const Circle& circle2) const;
/*!
returns the center of `circle`.
\note Only needed, if the member function `is_valid` of `Min_circle_2` is used.
\note Only needed, if the member function `is_valid()` of `Min_circle_2` is used.
*/
Point center( ) const;
@ -145,7 +145,7 @@ Point center( ) const;
returns the squared radius of `circle`.
\note Only needed, if the member function `is_valid` of `Min_circle_2` is used.
\note Only needed, if the member function `is_valid()` of `Min_circle_2` is used.
*/
Distance squared_radius( ) const;

View File

@ -259,7 +259,7 @@ CGAL::box_self_intersection_d( ptr.begin(), ptr.end(), report_inters);
\endcode
In addition, the callback function `report_inters` needs to be
In addition, the callback function `report_inters()` needs to be
changed to work with pointers to boxes. The full example program looks
as follows:
@ -314,7 +314,7 @@ box at the center and the box from the upper-right corner of the grid.
We write a more involved callback function object `Report` that
stores an output iterator and writes the `id`-number of the
box in the first argument to the output iterator. We also provide a
small helper function `report` that simplifies the use of the function
small helper function `report()` that simplifies the use of the function
object.
We call the box intersection algorithm twice; once for the default

View File

@ -315,7 +315,7 @@ circulator category for iterators, i.e.\ one of
\cgalHeading{Example}
A generic function `bar` that distinguishes between a call with a
A generic function `bar()` that distinguishes between a call with a
circulator range and a call with an iterator range:
\code{.cpp}
@ -545,7 +545,7 @@ In order to write algorithms that work with iterator ranges as well as
with circulator ranges we have to consider the difference of
representing an empty range. For iterators this is the range `[i,i)`,
while for circulators it would be `c == NULL`, the empty sequence test.
The function `is_empty_range` provides the necessary generic test
The function `is_empty_range()` provides the necessary generic test
which accepts an iterator range or a circulator range and says whether
the range is empty or not.
@ -553,7 +553,7 @@ the range is empty or not.
\cgalHeading{Example}
The following function `process_all` accepts a range `[i, j)` of an iterator or circulator `IC` and processes each
The following function `process_all()` accepts a range `[i, j)` of an iterator or circulator `IC` and processes each
element in this range:
\code{.cpp}
@ -642,12 +642,12 @@ In order to write algorithms that work with iterator ranges as well as
with circulator ranges we have to consider the difference of
representing an empty range. For iterators this is the range `[i,i)`,
while for circulators it would be `c == NULL`, the empty sequence test.
The function `is_empty_range` provides the necessary generic test
The function `is_empty_range()` provides the necessary generic test
which accepts an iterator range or a circulator range and says whether
the range is empty or not.
A macro `CGAL_For_all( i, j)` simplifies the writing of such simple
loops as the one in the example of the function `is_empty_range`.
loops as the one in the example of the function `is_empty_range()`.
`i` and `j` can be either iterators or circulators. The macro
loops through the range `[i, j)`. It increments `i` until it
reaches `j`. The implementation looks like:

View File

@ -60,7 +60,7 @@ namespace CGAL {
/*!
\ingroup PkgConvexHull2Subsequence
The function `ch_jarvis_march` generates the counterclockwise sequence of extreme
Generates the counterclockwise sequence of extreme
points from a given set of input points that line between two input points.
The default traits class `Default_traits` is the kernel in which the

View File

@ -8,7 +8,7 @@ counterclockwise) to `result`. The polygon generated will have a number
of vertices equal to the number of unique points in the first \f$ n\f$ points
generated by `pg`.
The function `random_polygon_2` constructs a random simple polygon
Constructs a random simple polygon
from points that are drawn from a specific domain.
Though each simple polygon defined on this set of
points has a non-zero probability of being constructed, some polygons may

View File

@ -113,7 +113,7 @@ Orientation_2 orientation_2_object();
The class `Extremal_polygon_perimeter_traits_2` provides the
types and operations needed to compute a maximum perimeter \f$
k\f$-gon \f$ P_k\f$ that can be inscribed into a given convex polygon
\f$ P\f$ using the function `extremal_polygon_2`.
\f$ P\f$ using the function `extremal_polygon_2()`.
\cgalAdvancedEnd
\tparam K must be a model of `Kernel`.

View File

@ -58,7 +58,7 @@ vertices to `o` and returns the past-the-end iterator of this
sequence.
The function `maximum_area_inscribed_k_gon_2` computes a maximum area
Computes a maximum area
`k`-gon \f$ P_k\f$ that can be inscribed into a given convex polygon \f$ P\f$.
Note that
<UL>

View File

@ -336,7 +336,7 @@ classes for halfspaces. Halfspaces are supposed to be represented by
oriented hyperplanes. All kernel objects are equality comparable via
`operator==` and `operator!=`. For those oriented objects
whose orientation can be reversed (segments, lines, hyperplanes,
spheres) there is also a global function `weak_equality` that
spheres) there is also a global function `weak_equality()` that
allows to test for point set equality disregarding the orientation.
\subsection Kernel_dOrientationandRelativePosition Orientation and Relative Position

View File

@ -137,7 +137,7 @@ Seeds_const_iterator seeds_end () const;
/*!
\name Meshing methods
The function `set_criteria` scans all faces to recalculate the list of
The function `set_criteria()` scans all faces to recalculate the list of
<I>bad faces</I>, that are faces not conforming to the meshing criteria.
This function actually has an optional argument that permits to prevent
this recalculation. The filling of the list of bad faces can then be done
@ -177,7 +177,7 @@ void set_criteria(Criteria criteria);
/*!
Assigns `criteria` to the criteria traits object. If
`recalculate_bad_faces` is `false`, the list of bad faces is
let empty and the function `set_bad_faces` should be called before
let empty and the function `set_bad_faces()` should be called before
`refine_mesh`.
*/
void set_criteria(Criteria criteria, bool

View File

@ -57,7 +57,7 @@ The general idea is that firstly the gcd is computed with respect
to one prime only. If this modular gcd is constant we can (in most cases)
conclude that the actual gcd is constant as well.
For this purpose the example introduces the function `may_have_common_factor`.
For this purpose the example introduces the function `may_have_common_factor()`.
Note that there are two versions of this function, namely for the case
that the coefficient type is `Modularizable` and that it is not.
If the type is not `Modularizable` the filter is just not applied and the

View File

@ -266,7 +266,7 @@ public:
\image html snc.png
\image latex snc.png
The member function `twin` returns the opposite halffacet, `incident_volume`
The member function `twin()` returns the opposite halffacet, `incident_volume`
returns the incident volume. A Halffacet cycle either consists of consecutive
shalfedges along the border (or a hole) of the halffacet, or of a single
shalfloop on the sphere map of a vertex isolated on the halffacet. The

View File

@ -460,7 +460,7 @@ standard kernel.
\subsection Nef_3ExploringaSphereMap Exploring a Sphere Map
A sphere map is explored by using the function `get_sphere_map`, which
A sphere map is explored by using the function `get_sphere_map()`, which
returns the sphere map of the specified vertex as a `Nef_polyhedron_S2`.
`Nef_polyhedron_S2` provides the functionality necessary for the
exploration.

View File

@ -6,7 +6,7 @@ namespace CGAL {
computes the rational number with the smallest denominator in the
interval `[d1,d2]`.
The function `simplest_rational_in_interval` computes the simplest rational number in an
Computes the simplest rational number in an
interval of two `double` values.
\cgalHeading{Implementation}

View File

@ -5,7 +5,7 @@ namespace CGAL {
computes the rational number that equals `d`.
The function `to_rational` computes the rational number representing a
Computes the rational number representing a
given double precision floating point number.
\sa `CGAL::simplest_rational_in_interval()`

View File

@ -4,7 +4,7 @@ namespace CGAL {
\ingroup nt_util
Not all values of a type need to be valid.
The function `is_valid` returns whether the argument is valid.
Returns whether the argument is valid.
\sa `CGAL::Is_valid`
@ -19,7 +19,7 @@ namespace CGAL {
/*!
\ingroup nt_util
The function `max` returns the larger of two values.
Returns the larger of two values.
\sa `CGAL::Max`
@ -34,7 +34,7 @@ namespace CGAL {
/*!
\ingroup nt_util
The function `min` returns the smaller of two values.
Returns the smaller of two values.
\sa `CGAL::Min`

View File

@ -25,7 +25,7 @@ public:
/*!
`Traits` satisfies the
requirements of the function `is_convex_2`
requirements of the function `is_convex_2()`
*/
Is_convex_2(const Traits& t);

View File

@ -3,7 +3,7 @@
\cgalConcept
Requirements of a traits class to be
used with the function `is_y_monotone_2` that tests whether a sequence of
used with the function `is_y_monotone_2()` that tests whether a sequence of
2D points defines a \f$ y\f$-monotone polygon or not.
\cgalHasModel `CGAL::Partition_traits_2<R>`

View File

@ -3,7 +3,7 @@
\cgalConcept
Requirements of a traits class to be
used with the function `optimal_convex_partition_2` that computes
used with the function `optimal_convex_partition_2()` that computes
an optimal convex partition of a polygon.
\cgalRefines `PartitionTraits_2`

View File

@ -10,7 +10,7 @@ same as a polygon represented by a given sequence of points. Note that the
traits class for `partition_is_valid_2` may have to satisfy additional
requirements if each partition polygon is to be tested for having a
particular property; see, for example, the descriptions of the
function `is_convex_2`
function `is_convex_2()`
and the concept `YMonotonePartitionTraits_2` for the additional requirements
for testing for convexity and \f$ y\f$-monotonicity, respectively.

View File

@ -3,7 +3,7 @@
\cgalConcept
Requirements of a traits class to be
used with the function `y_monotone_partition_2`.
used with the function `y_monotone_partition_2()`.
\cgalRefines `PartitionTraits_2`

View File

@ -142,7 +142,7 @@ Requirements of `Pred`:
</UL>
The `operator()` is used for testing the current point in the search operation.
If this operator returns `true` and `return_if_succeded` is `true`, the range search will stop.
Otherwise the range search operation will continue. Member function `set_result` can be used to
Otherwise the range search operation will continue. Member function `set_result()` can be used to
store the result of the range search in the function object. The result will be `true` if the last
call to the `operator()` of the predicate returned `true`, `false` otherwise.

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `canonicalize` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Canonicalize`.
@ -25,7 +25,7 @@ canonicalize(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `compare` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Compare`.
@ -44,7 +44,7 @@ compare(const Polynomial_d& p, const Polynomial_d& q);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `degree` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Degree`.
@ -67,7 +67,7 @@ index = Polynomial_traits_d<Polynomial_d>::d-1);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `degree_vector` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::DegreeVector`.
@ -89,7 +89,7 @@ degree_vector(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `differentiate` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Differentiate`.
@ -112,7 +112,7 @@ index = Polynomial_traits_d<Polynomial_d>::d-1 );
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `evaluate_homogeneous` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Evaluate_homogeneous`.
@ -137,7 +137,7 @@ Polynomial_traits_d<Polynomial_d>::Coefficient_type v);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `evaluate` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Evaluate`.
@ -160,7 +160,7 @@ Polynomial_traits_d<Polynomial_d>::Coefficient_type x);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `gcd_up_to_constant_factor` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Gcd_up_to_constant_factor`.
@ -182,7 +182,7 @@ gcd_up_to_constant_factor(const Polynomial_d& p, const Polynomial_d& q);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `get_coefficient` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::GetCoefficient`.
@ -205,7 +205,7 @@ get_coefficient(const Polynomial_d& p, int i);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `get_innermost_coefficient` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::GetInnermostCoefficient`.
@ -228,7 +228,7 @@ get_innermost_coefficient(const Polynomial_d& p, Exponent_vector ev);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `innermost_leading_coefficient` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::InnermostLeadingCoefficient`.
@ -251,7 +251,7 @@ innermost_leading_coefficient(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `integral_division_up_to_constant_factor` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Integral_division_up_to_constant_factor`.
@ -273,7 +273,7 @@ integral_division_up_to_constant_factor(const Polynomial_d& p, const Polynomial_
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `invert` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Invert`.
@ -295,7 +295,7 @@ invert(const Polynomial_d& p, int index = Polynomial_traits_d<Polynomial_d>::d-1
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `is_square_free` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Is_square_free`.
@ -317,7 +317,7 @@ is_square_free(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `is_zero_at_homogeneous` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Is_zero_at_homogeneous`.
@ -340,7 +340,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `is_zero_at` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Is_zero_at`.
@ -363,7 +363,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `leading_coefficient` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Leading_coefficient`.
@ -385,7 +385,7 @@ leading_coefficient(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `make_square_free` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Make_square_free`.
@ -407,7 +407,7 @@ make_square_free(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `move` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Move`.
@ -429,7 +429,7 @@ move(const Polynomial_d& p, int i, int j);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `multivariate_content` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Multivariate_content`.
@ -451,7 +451,7 @@ multivariate_content(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `negate` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Negate`.
@ -577,7 +577,7 @@ int number_of_real_roots(InputIterator start,InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `permute` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Permute`.
@ -601,7 +601,7 @@ computes the polynomial subresultants of \f$ p\f$ and \f$ q\f$,
with respect to the outermost variable. Each element is of type
`Polynomial_d`.
For a given `Polynomial_d` the function `polynomial_subresultants` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
For more details see the concept
@ -628,7 +628,7 @@ the cofactors for \f$ P\f$, `coP_out` and \f$ Q\f$, `coQ_out`.
The elements of each output range are of type
`Polynomial_d`.
For a given `Polynomial_d` the function `polynomial_subresultants_with_cofactors` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
For more details see the concept
@ -658,7 +658,7 @@ computes the principal Sturm-Habicht coefficients of \f$ f\f$
with respect to the outermost variable. Each element is of type
`Polynomial_traits_d::Coefficient_type`b.
For a given `Polynomial_d` the function `principal_sturm_habicht_sequence` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
For more details see the concept
@ -683,7 +683,7 @@ computes the principal subresultants of \f$ p\f$ and \f$ q\f$,
with respect to the outermost variable. Each element is of type
`Polynomial_traits_d::Coefficient_type`.
For a given `Polynomial_d` the function `principal_subresultants` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
For more details see the concept
@ -704,7 +704,7 @@ OutputIterator out);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `pseudo_division` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Pseudo_division`.
@ -726,7 +726,7 @@ Polynomial_d& q, Polynomial_d& r, Polynomial_traits_d<Polynomial_d>::Coefficient
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `pseudo_division_quotient` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Pseudo_division_quotient`.
@ -749,7 +749,7 @@ pseudo_division_quotient(const Polynomial_d& p, const Polynomial_d& q);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `pseudo_division_remainder` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Pseudo_division_remainder`.
@ -770,7 +770,7 @@ pseudo_division_remainder(const Polynomial_d& p, const Polynomial_d& q);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `resultant` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Resultant`.
@ -791,7 +791,7 @@ resultant(const Polynomial_d& p, const Polynomial_d& q);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `scale_homogeneous` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Scale_homogeneous`.
@ -816,7 +816,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `scale` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Scale`.
@ -840,7 +840,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `shift` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Shift`.
@ -860,7 +860,7 @@ shift(const Polynomial_d& p, int i, int index = Polynomial_traits_d<Polynomial_d
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `sign_at_homogeneous` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Sign_at_homogeneous`.
@ -883,7 +883,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `sign_at` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Sign_at`.
@ -906,7 +906,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `square_free_factorize` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Square_free_factorize`.
@ -930,7 +930,7 @@ Polynomial_traits_d<Polynomial>::Innermost_coefficient& a);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `square_free_factorize` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Square_free_factorize`.
@ -952,7 +952,7 @@ square_free_factorize(const Polynomial_d& p, OutputIterator it);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `square_free_factorize_up_to_constant_factor` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Square_free_factorize_up_to_constant_factor`.
@ -978,7 +978,7 @@ computes the Sturm-Habicht-sequence of \f$ f\f$
with respect to the outermost variable. Each element is of type
`Polynomial_d`.
For a given `Polynomial_d` the function `sturm_habicht_sequence` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
For more details see the concept
@ -1003,7 +1003,7 @@ the cofactors for \f$ f\f$, `cof_out` and \f$ f'\f$, `cofx_out`.
The elements of each output range are of type
`Polynomial_d`.
For a given `Polynomial_d` the function `sturm_habicht_sequence_with_cofactors` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
For more details see the concept
@ -1028,7 +1028,7 @@ OutputIterator3 cofx_out);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `substitute_homogeneous` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Substitute_homogeneous`.
@ -1053,7 +1053,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `substitute` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Substitute`.
@ -1079,7 +1079,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `swap` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Swap`.
@ -1101,7 +1101,7 @@ swap(const Polynomial_d& p, int i, int j);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `total_degree` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Total_degree`.
@ -1123,7 +1123,7 @@ total_degree(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `translate_homogeneous` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Translate_homogeneous`.
@ -1149,7 +1149,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `translate` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Translate`.
@ -1174,7 +1174,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `univariate_content` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::UnivariateContent`.
@ -1196,7 +1196,7 @@ univariate_content(const Polynomial_d& p);
/*!
\ingroup PkgPolynomialFunctions
For a given `Polynomial_d` the function `univariate_content_up_to_constant_factor` adapts the
For a given `Polynomial_d`, adapts the
according functor in `Polynomial_traits_d<Polynomial_d>`.
Adapts `Polynomial_traits_d::Univariate_content_up_to_constant_factor`.

View File

@ -5,7 +5,7 @@
The concept `AllFurthestNeighborsTraits_2` defines types and operations
needed to compute all furthest neighbors for the vertices of a
convex polygon using the function `all_furthest_neighbors_2`.
convex polygon using the function `all_furthest_neighbors_2()`.
\cgalHasModel `CGAL::Cartesian<FieldNumberType>`
\cgalHasModel `CGAL::Homogeneous<RingNumberType>`

View File

@ -4,7 +4,7 @@ namespace CGAL {
\addtogroup PkgPrincipalComponentAnalysisDBary
The function `barycenter` computes the barycenter (weighted center of
The function `barycenter()` computes the barycenter (weighted center of
mass) of a set of 2D or 3D weighted points. The weight associated to
each point is specified using a `std::pair` storing the point and its
weight.

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgPrincipalComponentAnalysisDbb
The function `bounding_box` computes the axis-aligned bounding box of
The function `bounding_box()` computes the axis-aligned bounding box of
a set of 2D or 3D points. The bounding box is returned either as an
iso rectangle in 2D or as an iso cuboid in 3D, the type being deduced
automatically from the value type of the iterator range.

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\addtogroup PkgPrincipalComponentAnalysisDCentroid
The function `centroid` computes the (uniform) center of mass of a set
The function `centroid()` computes the (uniform) center of mass of a set
of 2D or 3D bounded objects. In 2D these objects include points,
segments, triangles, iso rectangles, circles and disks. In 3D these
objects include points, segments, triangles, iso cuboids, spheres,

View File

@ -5,7 +5,7 @@ namespace CGAL {
\brief computes the best fitting 2D line of a 2D object set in the range [`first`,`beyond`). The value returned is a fitting quality between \f$ 0\f$ and \f$ 1\f$, where \f$ 0\f$ means that the variance is the same along any line (a horizontal line going through the centroid is output by default), and \f$ 1\f$ means that the variance is null orthogonally to the best fitting line (hence the fit is perfect).
The function `linear_least_squares_fitting_2` computes the 2D best fitting line (in the least squares sense) of a set of 2D objects such as points, segments, triangles, iso rectangles, circles or disks.
It computes the 2D best fitting line (in the least squares sense) of a set of 2D objects such as points, segments, triangles, iso rectangles, circles or disks.
The best fitting line minimizes the sum of squared distances from all points comprising these objects to their orthogonal projections onto the line. It can be shown that this line goes through the centroid of the set. This problem is equivalent to search for the linear sub-space which maximizes the variance of projected points (sum of squared distances to the centroid). Internally we solve this problem by eigen decomposition of the covariance matrix of the whole set. Note that the \f$ 2 \times 2\f$ covariance matrix is computed internally in closed form and not by point sampling the objects. Eigenvectors corresponding to large eigenvalues are the directions in which the data has strong component, or equivalently large variance. If one eigenvalue is null the fit is perfect as the sum of squared distance from all points to their projection onto the best line is null. If the two eigenvalues are the same there is no preferable sub-space and all lines going through the centroid share the same fitting property.

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgPrincipalComponentAnalysisDLLSF3
The function `linear_least_squares_fitting_3` computes the best
The function `linear_least_squares_fitting_3()` computes the best
fitting 3D line or plane (in the least squares sense) of a set of 3D
objects such as points, segments, triangles, spheres, balls, iso cuboids
or tetrahedra.

View File

@ -117,7 +117,7 @@ public:
--------------
The following example demonstrates the typical usage of makers
with the simpler function `make_nonnegative_linear_program_from_iterators`.
with the simpler function `make_nonnegative_linear_program_from_iterators()`.
`QP_solver/solve_convex_hull_containment_lp2.h`
@ -202,7 +202,7 @@ make_nonnegative_linear_program_from_iterators (
--------------
The following example demonstrates the typical usage of makers
with the simpler function `make_nonnegative_linear_program_from_iterators`.
with the simpler function `make_nonnegative_linear_program_from_iterators()`.
`QP_solver/solve_convex_hull_containment_lp2.h`
@ -244,7 +244,7 @@ make_nonnegative_quadratic_program_from_iterators (
--------------
The following example demonstrates the typical usage of makers
with the simpler function `make_nonnegative_linear_program_from_iterators`.
with the simpler function `make_nonnegative_linear_program_from_iterators()`.
`QP_solver/solve_convex_hull_containment_lp2.h`

View File

@ -396,7 +396,7 @@ The main class is
Its construction requires the mesh and the property maps defining the
differential quantities for principal curvatures \f$ k_1\f$ and \f$ k_2\f$, and
the principal directions of curvature \f$ d_1\f$ and \f$ d_2\f$. The member
function `compute` (or the global function `compute_umbilics`)
function `compute()` (or the global function `compute_umbilics()`)
has a parameter to define the size of the neighborhood of the umbilic.
Umbilics are stored in `Umbilic` objects, they come with their

View File

@ -15,7 +15,7 @@ to make copies and assignments, so that you can put them in lists
or arrays. Note that `Object` is NOT a common base class for the
elementary classes. Therefore, there is no
automatic conversion from these classes to `Object`. Rather
this is done with the global function `make_object`. This
this is done with the global function `make_object()`. This
encapsulation mechanism requires the use of `assign` or
`object_cast` to use the functionality of the encapsulated class.
@ -96,7 +96,7 @@ class Object {
public:
/// \name Creation
/// Objects of type `Object` are normally created using the global function `make_object`.
/// Objects of type `Object` are normally created using the global function `make_object()`.
/// @{
/*!
introduces an empty object.

View File

@ -10,7 +10,7 @@ namespace CGAL {
\deprecated This function is deprecated, CGAL::cpp11::copy_n should be
used instead.
The function `copy_n` copies the first `n` items from `first` to `result`.
Copies the first `n` items from `first` to `result`.
\returns the value of `result` after inserting the `n` items.
@ -34,7 +34,7 @@ namespace CGAL {
\ingroup STLAlgos
The function `min_max_element` computes the minimal and the
Computes the minimal and the
maximal element of a range. It is modeled after the STL functions
`std::min_element` and `std::max_element`. The advantage of
`min_max_element` compared to calling both STL functions is that
@ -63,7 +63,7 @@ first, ForwardIterator last);
/*!
\ingroup STLAlgos
The function `min_max_element` computes the minimal and the
Computes the minimal and the
maximal element of a range. It is modeled after the STL functions
`std::min_element` and `std::max_element`. The advantage of
`min_max_element` compared to calling both STL functions is that
@ -94,7 +94,7 @@ namespace CGAL {
\deprecated This function is deprecated. `CGAL::cpp11::prev` should be used
instead.
The function `predecessor` returns the previous iterator,
Returns the previous iterator,
i.e.\ the result of `operator--` on a bidirectional iterator.
\sa `CGAL::successor()`
@ -115,7 +115,7 @@ namespace CGAL {
instead.
The function `successor` returns the next iterator, i.e.
Returns the next iterator, i.e.
the result of `operator++` on a forward iterator.
@ -171,7 +171,7 @@ Iterator prev(BidirectionalIterator it);
/*!
\ingroup STLAlgos
The function `copy_n` copies `n` items from an
Copies `n` items from an
input iterator to an output iterator. Its exact behaviour is defined
in Paragraph 25.3.1 of the C++ standard draft
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf">N3242</a>.

View File

@ -119,7 +119,7 @@ namespace CGAL {
\ingroup projectionobjects
The function `compare_to_less` is used to change a functor
Changes a functor
returning a `Comparison_result` to one which returns a bool.
The returned functor will return `true` iff the original one
returns `SMALLER`.

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgStraightSkeleton2Functions
The function `convert_straight_skeleton_2` converts a straight skeleton instantiated using certain traits into another straight skeleton instantiated using a different traits.
Converts a straight skeleton instantiated using certain traits into another straight skeleton instantiated using a different traits.
\sa `StraightSkeletonItemsConverter_2`
\sa `Straight_skeleton_items_converter_2<SrcSs,TgtSs,NTConverter>`

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgStraightSkeleton2Functions
The function `compute_outer_frame_margin` computes the separation required between a polygon and the outer frame used to obtain an exterior skeleton suitable for the computation of outer offset polygons at a given distance.
Computes the separation required between a polygon and the outer frame used to obtain an exterior skeleton suitable for the computation of outer offset polygons at a given distance.
Given a non-degenerate strictly-simple 2D polygon whose vertices are passed
in the range [`first`,`beyond`), calculates the largest euclidean distance

View File

@ -224,7 +224,7 @@ template <class T> Output_rep<T> oformat( const T& t);
/*!
\ingroup PkgIOstreams
The definition of the function `iformat` is completely symmetric to `oformat()`.
The definition of this function is completely symmetric to `oformat()`.
*/
template <class T> Input_rep<T> iformat( const T& t);

View File

@ -706,7 +706,7 @@ The functions `insert` and
`remove` are overwritten to handle weighted points
and maintain the regular
property.
The function `move` is not
The function `move()` is not
overwritten and thus does not preserve the regular property.
The vertices of the regular triangulation
of a set of weighted points \f$ {PW}\f$ correspond only to a subset
@ -864,7 +864,7 @@ overrides the insertion and removal of a point to take care of the
information about constrained edges. The class also allows inline
insertion of a new constraint, given by its two endpoints
or the removal of a constraint.
In current version, function `move` is not
In current version, function `move()` is not
overwritten and thus does not take care of the constraints.
\subsection Triangulation_2TheGeometricTraits_1 The Geometric Traits