mirror of https://github.com/CGAL/cgal
function documentation fixes
remove the repetition of the name of the function in its brief description add parenthesis for function matching "function\s+`[a-z0-9_]`"
This commit is contained in:
parent
04a0d963c8
commit
e8975dbac7
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgArrangement2PointLocation
|
||||
|
||||
The function `locate` performs a batched point-location operation on a
|
||||
Performs a batched point-location operation on a
|
||||
given arrangement. It accepts a range of query points, and locates each
|
||||
point in the arrangement. The query results are returned through the output
|
||||
iterator. Each query result is given as a pair of the query point and an
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
\defgroup PkgArrangement2Read CGAL::read()
|
||||
\ingroup PkgArrangement2IO
|
||||
|
||||
The function `read` reads a given arrangement from a given input stream
|
||||
Reads a given arrangement from a given input stream
|
||||
using a specific input format.
|
||||
|
||||
\cgalHeading{Requirements}
|
||||
|
|
@ -40,7 +40,7 @@ std::istream& read (Arrangement_2<Traits,Dcel>& arr,
|
|||
\defgroup PkgArrangement2Write CGAL::write()
|
||||
\ingroup PkgArrangement2IO
|
||||
|
||||
The function `write` writes a given arrangement into a given output stream
|
||||
Writes a given arrangement into a given output stream
|
||||
using a specific output format.
|
||||
|
||||
\cgalHeading{Requirements}
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
the output arrangement `res` to represent the overlaid arrangement.
|
||||
|
||||
\details
|
||||
The function `overlay` computes the overlay of two input arrangement
|
||||
Computes the overlay of two input arrangement
|
||||
objects, and returns the overlaid arrangement. All three arrangements
|
||||
can be instantiated with different geometric traits classes and different
|
||||
<span class="textsc">Dcel</span> classes (encapsulated in the various topology-traits classes).
|
||||
|
|
@ -42,7 +42,7 @@ represent the overlaid arrangement. The function also constructs a
|
|||
consolidated set of curves that induce `res`.
|
||||
|
||||
\details
|
||||
The function `overlay` computes the overlay of two input arrangement
|
||||
Computes the overlay of two input arrangement
|
||||
objects, and returns the overlaid arrangement. All three arrangements
|
||||
can be instantiated with different geometric traits classes and different
|
||||
<span class="textsc">Dcel</span> classes (encapsulated in the various topology-traits classes).
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `decompose` produces the symbolic vertical decomposition of a
|
||||
Produces the symbolic vertical decomposition of a
|
||||
given arrangement, performing a batched vertical ray-shooting query from
|
||||
all arrangement vertices, such that every vertex is associated with a pair
|
||||
of objects, one corresponds to the arrangement feature that lies below it,
|
||||
|
|
|
|||
|
|
@ -1045,7 +1045,7 @@ void insert (Arrangement_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `do_intersect` checks if a given curve or \f$ x\f$-monotone
|
||||
Checks if a given curve or \f$ x\f$-monotone
|
||||
curve intersects an existing arrangement's edges or vertices.
|
||||
|
||||
If the give curve is not an \f$ x\f$-monotone curve then the function
|
||||
|
|
@ -1091,7 +1091,7 @@ bool do_intersect (
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `insert_non_intersecting_curve` inserts a given \f$ x\f$-monotone curve into a given
|
||||
Inserts a given \f$ x\f$-monotone curve into a given
|
||||
arrangement, where the interior of the given curve is disjoint from all
|
||||
existing arrangement vertices and edges. Under this assumption, it is
|
||||
possible to locate the endpoints of the given curve in the arrangement,
|
||||
|
|
@ -1129,7 +1129,7 @@ insert_non_intersecting_curve (Arrangement_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `insert_non_intersecting_curves` inserts a set of \f$ x\f$-monotone curves in a given
|
||||
Inserts a set of \f$ x\f$-monotone curves in a given
|
||||
range into a given arrangement. The insertion is performed in an aggregated
|
||||
manner, using the sweep-line algorithm. The input curves should be pairwise
|
||||
disjoint in their interior and pairwise interior-disjoint from all existing
|
||||
|
|
@ -1152,7 +1152,7 @@ void insert_non_intersecting_curves(Arrangement_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `insert_point` inserts a given point into a given arrangement.
|
||||
Inserts a given point into a given arrangement.
|
||||
It uses a given point-location object to locate the given
|
||||
point in the given arrangement. If the point conincides with an existing
|
||||
vertex, there is nothing left to do; if it lies on an edge, the edge is
|
||||
|
|
@ -1190,7 +1190,7 @@ insert_point (Arrangement_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `is_valid` checks the validity of a given arrangement.
|
||||
Checks the validity of a given arrangement.
|
||||
|
||||
Invokes the member function `arr.is_valid()` to verify the
|
||||
topological correctness of the arrangement. Then it performs additional
|
||||
|
|
@ -1214,7 +1214,7 @@ bool is_valid (const Arrangement_2<Traits, Dcel>& arr);
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `remove_edge` removes an edge given by one of the twin halfedges
|
||||
Removes an edge given by one of the twin halfedges
|
||||
that forms it, from a given arrangement. Once the edge is removed, if the
|
||||
vertices associated with its endpoints become isolated, they are removed as
|
||||
well. The call `remove_edge(arr, e)` is equivalent to the call
|
||||
|
|
@ -1246,7 +1246,7 @@ remove_edge (Arrangement_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `remove_vertex` attempts to removed a given vertex from a given
|
||||
Attempts to removed a given vertex from a given
|
||||
arrangement. The vertex can be removed if it is either an isolated vertex,
|
||||
(and has no incident edge,) or if it is a <I>redundant</I> vertex. That
|
||||
is, it has exactly two incident edges, whose associated curves can be
|
||||
|
|
@ -1271,7 +1271,7 @@ bool remove_vertex (Arrangement_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `zone` compute the zone of the given \f$ x\f$-monotone
|
||||
Compute the zone of the given \f$ x\f$-monotone
|
||||
curve in the existing arrangement. Meaning, it output the
|
||||
arrangement's vertices, edges and faces that the \f$ x\f$-monotone curve
|
||||
intersects. The order of the objects is the order that they are
|
||||
|
|
|
|||
|
|
@ -310,9 +310,9 @@ void insert(Arrangement_with_history_2<Traits,Dcel>& arr,
|
|||
/*!
|
||||
\ingroup PkgArrangement2Funcs
|
||||
|
||||
The function `remove_curve` removes a given curve from a given arrangement.
|
||||
Removes a given curve from a given arrangement.
|
||||
|
||||
`remove_curve` removes a curve, specified by its handle `ch`, from
|
||||
The curve is specified by its handle `ch`, from
|
||||
the arrangement `arr`, by deleting all the edges it induces. The
|
||||
function returns the number of deleted edges.
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
|
||||
The class `Rectangular_p_center_default_traits_2` defines types and operations
|
||||
needed to compute rectilinear \f$ p\f$-centers of a planar point set
|
||||
using the function `rectangular_p_center_2`.
|
||||
using the function `rectangular_p_center_2()`.
|
||||
|
||||
|
||||
\tparam K must be a model for `Kernel`.
|
||||
|
|
@ -196,7 +196,7 @@ construct_iso_rectangle_2_above_right_point_2_object() const;
|
|||
/*!
|
||||
\ingroup PkgBoundingVolumes
|
||||
|
||||
The function `rectangular_p_center_2` computes rectilinear
|
||||
Computes rectilinear
|
||||
\f$ p\f$-centers of a planar point set, i.e.\ a set of \f$ p\f$ points such
|
||||
that the maximum minimal \f$ L_{\infty}\f$-distance between both sets is
|
||||
minimized.
|
||||
|
|
|
|||
|
|
@ -22,10 +22,10 @@ Point type.
|
|||
typedef unspecified_type Point;
|
||||
|
||||
/*!
|
||||
Distance type. The function `squared_radius` (see below)
|
||||
Distance type. The function `squared_radius()` (see below)
|
||||
returns an object of this type.
|
||||
|
||||
\note Only needed, if the member function `is_valid`
|
||||
\note Only needed, if the member function `is_valid()`
|
||||
of `Min_circle_2` is used.
|
||||
|
||||
*/
|
||||
|
|
@ -128,7 +128,7 @@ bool is_degenerate( ) const;
|
|||
|
||||
returns `true`, iff `circle` and `circle2` are equal.
|
||||
|
||||
\note Only needed, if the member function `is_valid` of `Min_circle_2` is used.
|
||||
\note Only needed, if the member function `is_valid()` of `Min_circle_2` is used.
|
||||
*/
|
||||
bool operator == ( const Circle& circle2) const;
|
||||
|
||||
|
|
@ -136,7 +136,7 @@ bool operator == ( const Circle& circle2) const;
|
|||
/*!
|
||||
returns the center of `circle`.
|
||||
|
||||
\note Only needed, if the member function `is_valid` of `Min_circle_2` is used.
|
||||
\note Only needed, if the member function `is_valid()` of `Min_circle_2` is used.
|
||||
*/
|
||||
Point center( ) const;
|
||||
|
||||
|
|
@ -145,7 +145,7 @@ Point center( ) const;
|
|||
|
||||
returns the squared radius of `circle`.
|
||||
|
||||
\note Only needed, if the member function `is_valid` of `Min_circle_2` is used.
|
||||
\note Only needed, if the member function `is_valid()` of `Min_circle_2` is used.
|
||||
*/
|
||||
Distance squared_radius( ) const;
|
||||
|
||||
|
|
|
|||
|
|
@ -259,7 +259,7 @@ CGAL::box_self_intersection_d( ptr.begin(), ptr.end(), report_inters);
|
|||
|
||||
\endcode
|
||||
|
||||
In addition, the callback function `report_inters` needs to be
|
||||
In addition, the callback function `report_inters()` needs to be
|
||||
changed to work with pointers to boxes. The full example program looks
|
||||
as follows:
|
||||
|
||||
|
|
@ -314,7 +314,7 @@ box at the center and the box from the upper-right corner of the grid.
|
|||
We write a more involved callback function object `Report` that
|
||||
stores an output iterator and writes the `id`-number of the
|
||||
box in the first argument to the output iterator. We also provide a
|
||||
small helper function `report` that simplifies the use of the function
|
||||
small helper function `report()` that simplifies the use of the function
|
||||
object.
|
||||
|
||||
We call the box intersection algorithm twice; once for the default
|
||||
|
|
|
|||
|
|
@ -315,7 +315,7 @@ circulator category for iterators, i.e.\ one of
|
|||
|
||||
\cgalHeading{Example}
|
||||
|
||||
A generic function `bar` that distinguishes between a call with a
|
||||
A generic function `bar()` that distinguishes between a call with a
|
||||
circulator range and a call with an iterator range:
|
||||
|
||||
\code{.cpp}
|
||||
|
|
@ -545,7 +545,7 @@ In order to write algorithms that work with iterator ranges as well as
|
|||
with circulator ranges we have to consider the difference of
|
||||
representing an empty range. For iterators this is the range `[i,i)`,
|
||||
while for circulators it would be `c == NULL`, the empty sequence test.
|
||||
The function `is_empty_range` provides the necessary generic test
|
||||
The function `is_empty_range()` provides the necessary generic test
|
||||
which accepts an iterator range or a circulator range and says whether
|
||||
the range is empty or not.
|
||||
|
||||
|
|
@ -553,7 +553,7 @@ the range is empty or not.
|
|||
|
||||
\cgalHeading{Example}
|
||||
|
||||
The following function `process_all` accepts a range `[i, j)` of an iterator or circulator `IC` and processes each
|
||||
The following function `process_all()` accepts a range `[i, j)` of an iterator or circulator `IC` and processes each
|
||||
element in this range:
|
||||
|
||||
\code{.cpp}
|
||||
|
|
@ -642,12 +642,12 @@ In order to write algorithms that work with iterator ranges as well as
|
|||
with circulator ranges we have to consider the difference of
|
||||
representing an empty range. For iterators this is the range `[i,i)`,
|
||||
while for circulators it would be `c == NULL`, the empty sequence test.
|
||||
The function `is_empty_range` provides the necessary generic test
|
||||
The function `is_empty_range()` provides the necessary generic test
|
||||
which accepts an iterator range or a circulator range and says whether
|
||||
the range is empty or not.
|
||||
|
||||
A macro `CGAL_For_all( i, j)` simplifies the writing of such simple
|
||||
loops as the one in the example of the function `is_empty_range`.
|
||||
loops as the one in the example of the function `is_empty_range()`.
|
||||
`i` and `j` can be either iterators or circulators. The macro
|
||||
loops through the range `[i, j)`. It increments `i` until it
|
||||
reaches `j`. The implementation looks like:
|
||||
|
|
|
|||
|
|
@ -60,7 +60,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgConvexHull2Subsequence
|
||||
|
||||
The function `ch_jarvis_march` generates the counterclockwise sequence of extreme
|
||||
Generates the counterclockwise sequence of extreme
|
||||
points from a given set of input points that line between two input points.
|
||||
|
||||
The default traits class `Default_traits` is the kernel in which the
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ counterclockwise) to `result`. The polygon generated will have a number
|
|||
of vertices equal to the number of unique points in the first \f$ n\f$ points
|
||||
generated by `pg`.
|
||||
|
||||
The function `random_polygon_2` constructs a random simple polygon
|
||||
Constructs a random simple polygon
|
||||
from points that are drawn from a specific domain.
|
||||
Though each simple polygon defined on this set of
|
||||
points has a non-zero probability of being constructed, some polygons may
|
||||
|
|
|
|||
|
|
@ -113,7 +113,7 @@ Orientation_2 orientation_2_object();
|
|||
The class `Extremal_polygon_perimeter_traits_2` provides the
|
||||
types and operations needed to compute a maximum perimeter \f$
|
||||
k\f$-gon \f$ P_k\f$ that can be inscribed into a given convex polygon
|
||||
\f$ P\f$ using the function `extremal_polygon_2`.
|
||||
\f$ P\f$ using the function `extremal_polygon_2()`.
|
||||
\cgalAdvancedEnd
|
||||
|
||||
\tparam K must be a model of `Kernel`.
|
||||
|
|
|
|||
|
|
@ -58,7 +58,7 @@ vertices to `o` and returns the past-the-end iterator of this
|
|||
sequence.
|
||||
|
||||
|
||||
The function `maximum_area_inscribed_k_gon_2` computes a maximum area
|
||||
Computes a maximum area
|
||||
`k`-gon \f$ P_k\f$ that can be inscribed into a given convex polygon \f$ P\f$.
|
||||
Note that
|
||||
<UL>
|
||||
|
|
|
|||
|
|
@ -336,7 +336,7 @@ classes for halfspaces. Halfspaces are supposed to be represented by
|
|||
oriented hyperplanes. All kernel objects are equality comparable via
|
||||
`operator==` and `operator!=`. For those oriented objects
|
||||
whose orientation can be reversed (segments, lines, hyperplanes,
|
||||
spheres) there is also a global function `weak_equality` that
|
||||
spheres) there is also a global function `weak_equality()` that
|
||||
allows to test for point set equality disregarding the orientation.
|
||||
|
||||
\subsection Kernel_dOrientationandRelativePosition Orientation and Relative Position
|
||||
|
|
|
|||
|
|
@ -137,7 +137,7 @@ Seeds_const_iterator seeds_end () const;
|
|||
|
||||
/*!
|
||||
\name Meshing methods
|
||||
The function `set_criteria` scans all faces to recalculate the list of
|
||||
The function `set_criteria()` scans all faces to recalculate the list of
|
||||
<I>bad faces</I>, that are faces not conforming to the meshing criteria.
|
||||
This function actually has an optional argument that permits to prevent
|
||||
this recalculation. The filling of the list of bad faces can then be done
|
||||
|
|
@ -177,7 +177,7 @@ void set_criteria(Criteria criteria);
|
|||
/*!
|
||||
Assigns `criteria` to the criteria traits object. If
|
||||
`recalculate_bad_faces` is `false`, the list of bad faces is
|
||||
let empty and the function `set_bad_faces` should be called before
|
||||
let empty and the function `set_bad_faces()` should be called before
|
||||
`refine_mesh`.
|
||||
*/
|
||||
void set_criteria(Criteria criteria, bool
|
||||
|
|
|
|||
|
|
@ -57,7 +57,7 @@ The general idea is that firstly the gcd is computed with respect
|
|||
to one prime only. If this modular gcd is constant we can (in most cases)
|
||||
conclude that the actual gcd is constant as well.
|
||||
|
||||
For this purpose the example introduces the function `may_have_common_factor`.
|
||||
For this purpose the example introduces the function `may_have_common_factor()`.
|
||||
Note that there are two versions of this function, namely for the case
|
||||
that the coefficient type is `Modularizable` and that it is not.
|
||||
If the type is not `Modularizable` the filter is just not applied and the
|
||||
|
|
|
|||
|
|
@ -266,7 +266,7 @@ public:
|
|||
\image html snc.png
|
||||
\image latex snc.png
|
||||
|
||||
The member function `twin` returns the opposite halffacet, `incident_volume`
|
||||
The member function `twin()` returns the opposite halffacet, `incident_volume`
|
||||
returns the incident volume. A Halffacet cycle either consists of consecutive
|
||||
shalfedges along the border (or a hole) of the halffacet, or of a single
|
||||
shalfloop on the sphere map of a vertex isolated on the halffacet. The
|
||||
|
|
|
|||
|
|
@ -460,7 +460,7 @@ standard kernel.
|
|||
|
||||
\subsection Nef_3ExploringaSphereMap Exploring a Sphere Map
|
||||
|
||||
A sphere map is explored by using the function `get_sphere_map`, which
|
||||
A sphere map is explored by using the function `get_sphere_map()`, which
|
||||
returns the sphere map of the specified vertex as a `Nef_polyhedron_S2`.
|
||||
`Nef_polyhedron_S2` provides the functionality necessary for the
|
||||
exploration.
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
computes the rational number with the smallest denominator in the
|
||||
interval `[d1,d2]`.
|
||||
|
||||
The function `simplest_rational_in_interval` computes the simplest rational number in an
|
||||
Computes the simplest rational number in an
|
||||
interval of two `double` values.
|
||||
|
||||
\cgalHeading{Implementation}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
|
||||
computes the rational number that equals `d`.
|
||||
|
||||
The function `to_rational` computes the rational number representing a
|
||||
Computes the rational number representing a
|
||||
given double precision floating point number.
|
||||
|
||||
\sa `CGAL::simplest_rational_in_interval()`
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ namespace CGAL {
|
|||
\ingroup nt_util
|
||||
|
||||
Not all values of a type need to be valid.
|
||||
The function `is_valid` returns whether the argument is valid.
|
||||
Returns whether the argument is valid.
|
||||
|
||||
\sa `CGAL::Is_valid`
|
||||
|
||||
|
|
@ -19,7 +19,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup nt_util
|
||||
|
||||
The function `max` returns the larger of two values.
|
||||
Returns the larger of two values.
|
||||
|
||||
\sa `CGAL::Max`
|
||||
|
||||
|
|
@ -34,7 +34,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup nt_util
|
||||
|
||||
The function `min` returns the smaller of two values.
|
||||
Returns the smaller of two values.
|
||||
|
||||
\sa `CGAL::Min`
|
||||
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@ public:
|
|||
|
||||
/*!
|
||||
`Traits` satisfies the
|
||||
requirements of the function `is_convex_2`
|
||||
requirements of the function `is_convex_2()`
|
||||
*/
|
||||
Is_convex_2(const Traits& t);
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\cgalConcept
|
||||
|
||||
Requirements of a traits class to be
|
||||
used with the function `is_y_monotone_2` that tests whether a sequence of
|
||||
used with the function `is_y_monotone_2()` that tests whether a sequence of
|
||||
2D points defines a \f$ y\f$-monotone polygon or not.
|
||||
|
||||
\cgalHasModel `CGAL::Partition_traits_2<R>`
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\cgalConcept
|
||||
|
||||
Requirements of a traits class to be
|
||||
used with the function `optimal_convex_partition_2` that computes
|
||||
used with the function `optimal_convex_partition_2()` that computes
|
||||
an optimal convex partition of a polygon.
|
||||
|
||||
\cgalRefines `PartitionTraits_2`
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ same as a polygon represented by a given sequence of points. Note that the
|
|||
traits class for `partition_is_valid_2` may have to satisfy additional
|
||||
requirements if each partition polygon is to be tested for having a
|
||||
particular property; see, for example, the descriptions of the
|
||||
function `is_convex_2`
|
||||
function `is_convex_2()`
|
||||
and the concept `YMonotonePartitionTraits_2` for the additional requirements
|
||||
for testing for convexity and \f$ y\f$-monotonicity, respectively.
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\cgalConcept
|
||||
|
||||
Requirements of a traits class to be
|
||||
used with the function `y_monotone_partition_2`.
|
||||
used with the function `y_monotone_partition_2()`.
|
||||
|
||||
\cgalRefines `PartitionTraits_2`
|
||||
|
||||
|
|
|
|||
|
|
@ -142,7 +142,7 @@ Requirements of `Pred`:
|
|||
</UL>
|
||||
The `operator()` is used for testing the current point in the search operation.
|
||||
If this operator returns `true` and `return_if_succeded` is `true`, the range search will stop.
|
||||
Otherwise the range search operation will continue. Member function `set_result` can be used to
|
||||
Otherwise the range search operation will continue. Member function `set_result()` can be used to
|
||||
store the result of the range search in the function object. The result will be `true` if the last
|
||||
call to the `operator()` of the predicate returned `true`, `false` otherwise.
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `canonicalize` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Canonicalize`.
|
||||
|
|
@ -25,7 +25,7 @@ canonicalize(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `compare` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Compare`.
|
||||
|
|
@ -44,7 +44,7 @@ compare(const Polynomial_d& p, const Polynomial_d& q);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `degree` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Degree`.
|
||||
|
|
@ -67,7 +67,7 @@ index = Polynomial_traits_d<Polynomial_d>::d-1);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `degree_vector` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::DegreeVector`.
|
||||
|
|
@ -89,7 +89,7 @@ degree_vector(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `differentiate` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Differentiate`.
|
||||
|
|
@ -112,7 +112,7 @@ index = Polynomial_traits_d<Polynomial_d>::d-1 );
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `evaluate_homogeneous` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Evaluate_homogeneous`.
|
||||
|
|
@ -137,7 +137,7 @@ Polynomial_traits_d<Polynomial_d>::Coefficient_type v);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `evaluate` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Evaluate`.
|
||||
|
|
@ -160,7 +160,7 @@ Polynomial_traits_d<Polynomial_d>::Coefficient_type x);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `gcd_up_to_constant_factor` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Gcd_up_to_constant_factor`.
|
||||
|
|
@ -182,7 +182,7 @@ gcd_up_to_constant_factor(const Polynomial_d& p, const Polynomial_d& q);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `get_coefficient` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::GetCoefficient`.
|
||||
|
|
@ -205,7 +205,7 @@ get_coefficient(const Polynomial_d& p, int i);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `get_innermost_coefficient` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::GetInnermostCoefficient`.
|
||||
|
|
@ -228,7 +228,7 @@ get_innermost_coefficient(const Polynomial_d& p, Exponent_vector ev);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `innermost_leading_coefficient` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::InnermostLeadingCoefficient`.
|
||||
|
|
@ -251,7 +251,7 @@ innermost_leading_coefficient(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `integral_division_up_to_constant_factor` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Integral_division_up_to_constant_factor`.
|
||||
|
|
@ -273,7 +273,7 @@ integral_division_up_to_constant_factor(const Polynomial_d& p, const Polynomial_
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `invert` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Invert`.
|
||||
|
|
@ -295,7 +295,7 @@ invert(const Polynomial_d& p, int index = Polynomial_traits_d<Polynomial_d>::d-1
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `is_square_free` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Is_square_free`.
|
||||
|
|
@ -317,7 +317,7 @@ is_square_free(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `is_zero_at_homogeneous` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Is_zero_at_homogeneous`.
|
||||
|
|
@ -340,7 +340,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `is_zero_at` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Is_zero_at`.
|
||||
|
|
@ -363,7 +363,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `leading_coefficient` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Leading_coefficient`.
|
||||
|
|
@ -385,7 +385,7 @@ leading_coefficient(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `make_square_free` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Make_square_free`.
|
||||
|
|
@ -407,7 +407,7 @@ make_square_free(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `move` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Move`.
|
||||
|
|
@ -429,7 +429,7 @@ move(const Polynomial_d& p, int i, int j);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `multivariate_content` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Multivariate_content`.
|
||||
|
|
@ -451,7 +451,7 @@ multivariate_content(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `negate` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Negate`.
|
||||
|
|
@ -577,7 +577,7 @@ int number_of_real_roots(InputIterator start,InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `permute` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Permute`.
|
||||
|
|
@ -601,7 +601,7 @@ computes the polynomial subresultants of \f$ p\f$ and \f$ q\f$,
|
|||
with respect to the outermost variable. Each element is of type
|
||||
`Polynomial_d`.
|
||||
|
||||
For a given `Polynomial_d` the function `polynomial_subresultants` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
For more details see the concept
|
||||
|
|
@ -628,7 +628,7 @@ the cofactors for \f$ P\f$, `coP_out` and \f$ Q\f$, `coQ_out`.
|
|||
The elements of each output range are of type
|
||||
`Polynomial_d`.
|
||||
|
||||
For a given `Polynomial_d` the function `polynomial_subresultants_with_cofactors` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
For more details see the concept
|
||||
|
|
@ -658,7 +658,7 @@ computes the principal Sturm-Habicht coefficients of \f$ f\f$
|
|||
with respect to the outermost variable. Each element is of type
|
||||
`Polynomial_traits_d::Coefficient_type`b.
|
||||
|
||||
For a given `Polynomial_d` the function `principal_sturm_habicht_sequence` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
For more details see the concept
|
||||
|
|
@ -683,7 +683,7 @@ computes the principal subresultants of \f$ p\f$ and \f$ q\f$,
|
|||
with respect to the outermost variable. Each element is of type
|
||||
`Polynomial_traits_d::Coefficient_type`.
|
||||
|
||||
For a given `Polynomial_d` the function `principal_subresultants` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
For more details see the concept
|
||||
|
|
@ -704,7 +704,7 @@ OutputIterator out);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `pseudo_division` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Pseudo_division`.
|
||||
|
|
@ -726,7 +726,7 @@ Polynomial_d& q, Polynomial_d& r, Polynomial_traits_d<Polynomial_d>::Coefficient
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `pseudo_division_quotient` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Pseudo_division_quotient`.
|
||||
|
|
@ -749,7 +749,7 @@ pseudo_division_quotient(const Polynomial_d& p, const Polynomial_d& q);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `pseudo_division_remainder` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Pseudo_division_remainder`.
|
||||
|
|
@ -770,7 +770,7 @@ pseudo_division_remainder(const Polynomial_d& p, const Polynomial_d& q);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `resultant` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Resultant`.
|
||||
|
|
@ -791,7 +791,7 @@ resultant(const Polynomial_d& p, const Polynomial_d& q);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `scale_homogeneous` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Scale_homogeneous`.
|
||||
|
|
@ -816,7 +816,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `scale` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Scale`.
|
||||
|
|
@ -840,7 +840,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `shift` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Shift`.
|
||||
|
|
@ -860,7 +860,7 @@ shift(const Polynomial_d& p, int i, int index = Polynomial_traits_d<Polynomial_d
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `sign_at_homogeneous` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Sign_at_homogeneous`.
|
||||
|
|
@ -883,7 +883,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `sign_at` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Sign_at`.
|
||||
|
|
@ -906,7 +906,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `square_free_factorize` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Square_free_factorize`.
|
||||
|
|
@ -930,7 +930,7 @@ Polynomial_traits_d<Polynomial>::Innermost_coefficient& a);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `square_free_factorize` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Square_free_factorize`.
|
||||
|
|
@ -952,7 +952,7 @@ square_free_factorize(const Polynomial_d& p, OutputIterator it);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `square_free_factorize_up_to_constant_factor` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Square_free_factorize_up_to_constant_factor`.
|
||||
|
|
@ -978,7 +978,7 @@ computes the Sturm-Habicht-sequence of \f$ f\f$
|
|||
with respect to the outermost variable. Each element is of type
|
||||
`Polynomial_d`.
|
||||
|
||||
For a given `Polynomial_d` the function `sturm_habicht_sequence` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
For more details see the concept
|
||||
|
|
@ -1003,7 +1003,7 @@ the cofactors for \f$ f\f$, `cof_out` and \f$ f'\f$, `cofx_out`.
|
|||
The elements of each output range are of type
|
||||
`Polynomial_d`.
|
||||
|
||||
For a given `Polynomial_d` the function `sturm_habicht_sequence_with_cofactors` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
For more details see the concept
|
||||
|
|
@ -1028,7 +1028,7 @@ OutputIterator3 cofx_out);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `substitute_homogeneous` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Substitute_homogeneous`.
|
||||
|
|
@ -1053,7 +1053,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `substitute` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Substitute`.
|
||||
|
|
@ -1079,7 +1079,7 @@ const Polynomial_d& p, InputIterator begin, InputIterator end);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `swap` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Swap`.
|
||||
|
|
@ -1101,7 +1101,7 @@ swap(const Polynomial_d& p, int i, int j);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `total_degree` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Total_degree`.
|
||||
|
|
@ -1123,7 +1123,7 @@ total_degree(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `translate_homogeneous` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Translate_homogeneous`.
|
||||
|
|
@ -1149,7 +1149,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `translate` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Translate`.
|
||||
|
|
@ -1174,7 +1174,7 @@ int index = Polynomial_traits_d<Polynomial_d>::d-1);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `univariate_content` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::UnivariateContent`.
|
||||
|
|
@ -1196,7 +1196,7 @@ univariate_content(const Polynomial_d& p);
|
|||
/*!
|
||||
\ingroup PkgPolynomialFunctions
|
||||
|
||||
For a given `Polynomial_d` the function `univariate_content_up_to_constant_factor` adapts the
|
||||
For a given `Polynomial_d`, adapts the
|
||||
according functor in `Polynomial_traits_d<Polynomial_d>`.
|
||||
|
||||
Adapts `Polynomial_traits_d::Univariate_content_up_to_constant_factor`.
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
|
||||
The concept `AllFurthestNeighborsTraits_2` defines types and operations
|
||||
needed to compute all furthest neighbors for the vertices of a
|
||||
convex polygon using the function `all_furthest_neighbors_2`.
|
||||
convex polygon using the function `all_furthest_neighbors_2()`.
|
||||
|
||||
\cgalHasModel `CGAL::Cartesian<FieldNumberType>`
|
||||
\cgalHasModel `CGAL::Homogeneous<RingNumberType>`
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ namespace CGAL {
|
|||
\addtogroup PkgPrincipalComponentAnalysisDBary
|
||||
|
||||
|
||||
The function `barycenter` computes the barycenter (weighted center of
|
||||
The function `barycenter()` computes the barycenter (weighted center of
|
||||
mass) of a set of 2D or 3D weighted points. The weight associated to
|
||||
each point is specified using a `std::pair` storing the point and its
|
||||
weight.
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgPrincipalComponentAnalysisDbb
|
||||
|
||||
The function `bounding_box` computes the axis-aligned bounding box of
|
||||
The function `bounding_box()` computes the axis-aligned bounding box of
|
||||
a set of 2D or 3D points. The bounding box is returned either as an
|
||||
iso rectangle in 2D or as an iso cuboid in 3D, the type being deduced
|
||||
automatically from the value type of the iterator range.
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\addtogroup PkgPrincipalComponentAnalysisDCentroid
|
||||
|
||||
The function `centroid` computes the (uniform) center of mass of a set
|
||||
The function `centroid()` computes the (uniform) center of mass of a set
|
||||
of 2D or 3D bounded objects. In 2D these objects include points,
|
||||
segments, triangles, iso rectangles, circles and disks. In 3D these
|
||||
objects include points, segments, triangles, iso cuboids, spheres,
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
|
||||
\brief computes the best fitting 2D line of a 2D object set in the range [`first`,`beyond`). The value returned is a fitting quality between \f$ 0\f$ and \f$ 1\f$, where \f$ 0\f$ means that the variance is the same along any line (a horizontal line going through the centroid is output by default), and \f$ 1\f$ means that the variance is null orthogonally to the best fitting line (hence the fit is perfect).
|
||||
|
||||
The function `linear_least_squares_fitting_2` computes the 2D best fitting line (in the least squares sense) of a set of 2D objects such as points, segments, triangles, iso rectangles, circles or disks.
|
||||
It computes the 2D best fitting line (in the least squares sense) of a set of 2D objects such as points, segments, triangles, iso rectangles, circles or disks.
|
||||
|
||||
The best fitting line minimizes the sum of squared distances from all points comprising these objects to their orthogonal projections onto the line. It can be shown that this line goes through the centroid of the set. This problem is equivalent to search for the linear sub-space which maximizes the variance of projected points (sum of squared distances to the centroid). Internally we solve this problem by eigen decomposition of the covariance matrix of the whole set. Note that the \f$ 2 \times 2\f$ covariance matrix is computed internally in closed form and not by point sampling the objects. Eigenvectors corresponding to large eigenvalues are the directions in which the data has strong component, or equivalently large variance. If one eigenvalue is null the fit is perfect as the sum of squared distance from all points to their projection onto the best line is null. If the two eigenvalues are the same there is no preferable sub-space and all lines going through the centroid share the same fitting property.
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgPrincipalComponentAnalysisDLLSF3
|
||||
|
||||
The function `linear_least_squares_fitting_3` computes the best
|
||||
The function `linear_least_squares_fitting_3()` computes the best
|
||||
fitting 3D line or plane (in the least squares sense) of a set of 3D
|
||||
objects such as points, segments, triangles, spheres, balls, iso cuboids
|
||||
or tetrahedra.
|
||||
|
|
|
|||
|
|
@ -117,7 +117,7 @@ public:
|
|||
--------------
|
||||
|
||||
The following example demonstrates the typical usage of makers
|
||||
with the simpler function `make_nonnegative_linear_program_from_iterators`.
|
||||
with the simpler function `make_nonnegative_linear_program_from_iterators()`.
|
||||
|
||||
`QP_solver/solve_convex_hull_containment_lp2.h`
|
||||
|
||||
|
|
@ -202,7 +202,7 @@ make_nonnegative_linear_program_from_iterators (
|
|||
--------------
|
||||
|
||||
The following example demonstrates the typical usage of makers
|
||||
with the simpler function `make_nonnegative_linear_program_from_iterators`.
|
||||
with the simpler function `make_nonnegative_linear_program_from_iterators()`.
|
||||
|
||||
`QP_solver/solve_convex_hull_containment_lp2.h`
|
||||
|
||||
|
|
@ -244,7 +244,7 @@ make_nonnegative_quadratic_program_from_iterators (
|
|||
--------------
|
||||
|
||||
The following example demonstrates the typical usage of makers
|
||||
with the simpler function `make_nonnegative_linear_program_from_iterators`.
|
||||
with the simpler function `make_nonnegative_linear_program_from_iterators()`.
|
||||
|
||||
`QP_solver/solve_convex_hull_containment_lp2.h`
|
||||
|
||||
|
|
|
|||
|
|
@ -396,7 +396,7 @@ The main class is
|
|||
Its construction requires the mesh and the property maps defining the
|
||||
differential quantities for principal curvatures \f$ k_1\f$ and \f$ k_2\f$, and
|
||||
the principal directions of curvature \f$ d_1\f$ and \f$ d_2\f$. The member
|
||||
function `compute` (or the global function `compute_umbilics`)
|
||||
function `compute()` (or the global function `compute_umbilics()`)
|
||||
has a parameter to define the size of the neighborhood of the umbilic.
|
||||
|
||||
Umbilics are stored in `Umbilic` objects, they come with their
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ to make copies and assignments, so that you can put them in lists
|
|||
or arrays. Note that `Object` is NOT a common base class for the
|
||||
elementary classes. Therefore, there is no
|
||||
automatic conversion from these classes to `Object`. Rather
|
||||
this is done with the global function `make_object`. This
|
||||
this is done with the global function `make_object()`. This
|
||||
encapsulation mechanism requires the use of `assign` or
|
||||
`object_cast` to use the functionality of the encapsulated class.
|
||||
|
||||
|
|
@ -96,7 +96,7 @@ class Object {
|
|||
public:
|
||||
|
||||
/// \name Creation
|
||||
/// Objects of type `Object` are normally created using the global function `make_object`.
|
||||
/// Objects of type `Object` are normally created using the global function `make_object()`.
|
||||
/// @{
|
||||
/*!
|
||||
introduces an empty object.
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ namespace CGAL {
|
|||
\deprecated This function is deprecated, CGAL::cpp11::copy_n should be
|
||||
used instead.
|
||||
|
||||
The function `copy_n` copies the first `n` items from `first` to `result`.
|
||||
Copies the first `n` items from `first` to `result`.
|
||||
|
||||
\returns the value of `result` after inserting the `n` items.
|
||||
|
||||
|
|
@ -34,7 +34,7 @@ namespace CGAL {
|
|||
\ingroup STLAlgos
|
||||
|
||||
|
||||
The function `min_max_element` computes the minimal and the
|
||||
Computes the minimal and the
|
||||
maximal element of a range. It is modeled after the STL functions
|
||||
`std::min_element` and `std::max_element`. The advantage of
|
||||
`min_max_element` compared to calling both STL functions is that
|
||||
|
|
@ -63,7 +63,7 @@ first, ForwardIterator last);
|
|||
/*!
|
||||
\ingroup STLAlgos
|
||||
|
||||
The function `min_max_element` computes the minimal and the
|
||||
Computes the minimal and the
|
||||
maximal element of a range. It is modeled after the STL functions
|
||||
`std::min_element` and `std::max_element`. The advantage of
|
||||
`min_max_element` compared to calling both STL functions is that
|
||||
|
|
@ -94,7 +94,7 @@ namespace CGAL {
|
|||
\deprecated This function is deprecated. `CGAL::cpp11::prev` should be used
|
||||
instead.
|
||||
|
||||
The function `predecessor` returns the previous iterator,
|
||||
Returns the previous iterator,
|
||||
i.e.\ the result of `operator--` on a bidirectional iterator.
|
||||
|
||||
\sa `CGAL::successor()`
|
||||
|
|
@ -115,7 +115,7 @@ namespace CGAL {
|
|||
instead.
|
||||
|
||||
|
||||
The function `successor` returns the next iterator, i.e.
|
||||
Returns the next iterator, i.e.
|
||||
the result of `operator++` on a forward iterator.
|
||||
|
||||
|
||||
|
|
@ -171,7 +171,7 @@ Iterator prev(BidirectionalIterator it);
|
|||
/*!
|
||||
\ingroup STLAlgos
|
||||
|
||||
The function `copy_n` copies `n` items from an
|
||||
Copies `n` items from an
|
||||
input iterator to an output iterator. Its exact behaviour is defined
|
||||
in Paragraph 25.3.1 of the C++ standard draft
|
||||
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf">N3242</a>.
|
||||
|
|
|
|||
|
|
@ -119,7 +119,7 @@ namespace CGAL {
|
|||
\ingroup projectionobjects
|
||||
|
||||
|
||||
The function `compare_to_less` is used to change a functor
|
||||
Changes a functor
|
||||
returning a `Comparison_result` to one which returns a bool.
|
||||
The returned functor will return `true` iff the original one
|
||||
returns `SMALLER`.
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgStraightSkeleton2Functions
|
||||
|
||||
The function `convert_straight_skeleton_2` converts a straight skeleton instantiated using certain traits into another straight skeleton instantiated using a different traits.
|
||||
Converts a straight skeleton instantiated using certain traits into another straight skeleton instantiated using a different traits.
|
||||
|
||||
\sa `StraightSkeletonItemsConverter_2`
|
||||
\sa `Straight_skeleton_items_converter_2<SrcSs,TgtSs,NTConverter>`
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgStraightSkeleton2Functions
|
||||
|
||||
The function `compute_outer_frame_margin` computes the separation required between a polygon and the outer frame used to obtain an exterior skeleton suitable for the computation of outer offset polygons at a given distance.
|
||||
Computes the separation required between a polygon and the outer frame used to obtain an exterior skeleton suitable for the computation of outer offset polygons at a given distance.
|
||||
|
||||
Given a non-degenerate strictly-simple 2D polygon whose vertices are passed
|
||||
in the range [`first`,`beyond`), calculates the largest euclidean distance
|
||||
|
|
|
|||
|
|
@ -224,7 +224,7 @@ template <class T> Output_rep<T> oformat( const T& t);
|
|||
/*!
|
||||
\ingroup PkgIOstreams
|
||||
|
||||
The definition of the function `iformat` is completely symmetric to `oformat()`.
|
||||
The definition of this function is completely symmetric to `oformat()`.
|
||||
*/
|
||||
template <class T> Input_rep<T> iformat( const T& t);
|
||||
|
||||
|
|
|
|||
|
|
@ -706,7 +706,7 @@ The functions `insert` and
|
|||
`remove` are overwritten to handle weighted points
|
||||
and maintain the regular
|
||||
property.
|
||||
The function `move` is not
|
||||
The function `move()` is not
|
||||
overwritten and thus does not preserve the regular property.
|
||||
The vertices of the regular triangulation
|
||||
of a set of weighted points \f$ {PW}\f$ correspond only to a subset
|
||||
|
|
@ -864,7 +864,7 @@ overrides the insertion and removal of a point to take care of the
|
|||
information about constrained edges. The class also allows inline
|
||||
insertion of a new constraint, given by its two endpoints
|
||||
or the removal of a constraint.
|
||||
In current version, function `move` is not
|
||||
In current version, function `move()` is not
|
||||
overwritten and thus does not take care of the constraints.
|
||||
|
||||
\subsection Triangulation_2TheGeometricTraits_1 The Geometric Traits
|
||||
|
|
|
|||
Loading…
Reference in New Issue