mirror of https://github.com/CGAL/cgal
Merge branch 'Point_set_shape_detection_3-Plane_regularization-GF-old' into Point_set_shape_detection_3-Plane_regularization-GF
This commit is contained in:
commit
e8be5fe3ca
|
|
@ -1941,6 +1941,15 @@ location = {Salt Lake City, Utah, USA}
|
|||
,update = "98.01 kettner"
|
||||
}
|
||||
|
||||
|
||||
@techreport{cgal:vla-lod-15,
|
||||
title={LOD Generation for Urban Scenes},
|
||||
author={Verdie, Yannick and Lafarge, Florent and Alliez, Pierre},
|
||||
year={2015},
|
||||
institution={Association for Computing Machinery}
|
||||
}
|
||||
|
||||
|
||||
@book{ cgal:vj-ctcg-03
|
||||
,author = "David Vandevoorde and Nicolai M. Josuttis"
|
||||
,title = "{C}++ Templates: The Complete Guide"
|
||||
|
|
|
|||
|
|
@ -47,5 +47,8 @@
|
|||
- `CGAL::Shape_detection_3::Cylinder<Traits>`
|
||||
- `CGAL::Shape_detection_3::Cone<Traits>`
|
||||
- `CGAL::Shape_detection_3::Torus<Traits>`
|
||||
|
||||
## Regularization Classes ##
|
||||
- `CGAL::Plane_regularization<Traits>`
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -105,6 +105,14 @@ which is used by the example \ref Point_set_shape_detection_3/efficient_RANSAC_
|
|||
|
||||
\cgalExample{Point_set_shape_detection_3/efficient_RANSAC_custom_shape.h}
|
||||
|
||||
\section Point_set_shape_detection_3Plane_regularization Plane Regularization
|
||||
|
||||
Shape detection is very suited for man-made shapes such as urban scenes or scans of mechanical pieces. In such input data, shapes often come with specific relationships between them: parallelism, coplanarity or orthogonality, for example. \cgal provides a tool to regularize planes detected on a point set.
|
||||
|
||||
The class `CGAL::Plane_regularization<Traits>` can be used to postprocess the planes detected by `CGAL::Shape_detection_3<Traits>` (other primitives are left unchanged).
|
||||
|
||||
|
||||
|
||||
\section Point_set_shape_detection_3Performance Performance
|
||||
|
||||
The running time and detection performance depend on the chosen parameters. A selective error tolerance parameter leads to higher running times and smaller shapes, as many shape candidates are generated to find the largest shape. We plot the detection performance against the epsilon error tolerance parameter for detecting planes in a complex scene with 5M points, see \cgalFigureRef{Point_set_shape_detection_3_performace_epsilon}. The probability parameter controls the endurance when searching for the largest candidate at each iteration. It barely impacts the number of detected shapes, has a moderate impact on the size of the detected shapes and increases the running times. We plot the performance against the probability parameter, see \cgalFigureRef{Point_set_shape_detection_3_performace_probability}.
|
||||
|
|
|
|||
|
|
@ -0,0 +1,772 @@
|
|||
// Copyright (c) 2015 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
// You can redistribute it and/or modify it under the terms of the GNU
|
||||
// General Public License as published by the Free Software Foundation,
|
||||
// either version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
//
|
||||
// Author(s) :
|
||||
//
|
||||
|
||||
/**
|
||||
* \ingroup PkgPointSetShapeDetection3
|
||||
* \file CGAL/Plane_regularization.h
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#ifndef CGAL_PLANE_REGULARIZATION_H
|
||||
#define CGAL_PLANE_REGULARIZATION_H
|
||||
|
||||
#include <CGAL/Shape_detection_3.h>
|
||||
#include <CGAL/centroid.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
|
||||
/*!
|
||||
\ingroup PkgPointSetShapeDetection3
|
||||
\brief A plane regularization algorithm applied as a post-processing
|
||||
to a shape detection algorithm.
|
||||
|
||||
Given a set of detected planes with their respective inlier sets, this
|
||||
class enables to regularize the planes: planes almost parallel are
|
||||
made exactly parallel. In addition, some additional regularization can
|
||||
be performed:
|
||||
|
||||
- Plane clusters that are almost orthogonal can be made exactly
|
||||
orthogonal.
|
||||
|
||||
- Planes that are parallel and almost coplanar can be made exactly
|
||||
coplanar.
|
||||
|
||||
- Planes that are almost symmetrical with a user-defined axis can be
|
||||
made exactly symmetrical.
|
||||
|
||||
Planes are directly modified. Points are left unaltered, as well as
|
||||
their relationships to planes (no transfer of point from a primitive
|
||||
plane to another).
|
||||
|
||||
The implementation follows \cgalCite{cgal:vla-lod-15}.
|
||||
|
||||
\tparam Traits a model of `EfficientRANSACTraits`
|
||||
|
||||
*/
|
||||
template <typename Traits>
|
||||
class Plane_regularization
|
||||
{
|
||||
public:
|
||||
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
typedef Plane_regularization<Traits> Self;
|
||||
/// \endcond
|
||||
|
||||
/// \name Types
|
||||
/// @{
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
typedef typename Traits::FT FT;
|
||||
typedef typename Traits::Point_3 Point;
|
||||
typedef typename Traits::Vector_3 Vector;
|
||||
typedef typename Traits::Line_3 Line;
|
||||
|
||||
/// \endcond
|
||||
typedef typename Traits::Plane_3 Plane; ///< Raw plane type
|
||||
|
||||
typedef typename Traits::Point_map Point_map;
|
||||
///< property map to access the location of an input point.
|
||||
typedef typename Traits::Normal_map Normal_map;
|
||||
///< property map to access the unoriented normal of an input point
|
||||
typedef typename Traits::Input_range Input_range;
|
||||
///< Model of the concept `Range` with random access iterators, providing input points and normals
|
||||
/// through the following two property maps.
|
||||
|
||||
typedef typename Input_range::iterator Input_iterator; ///< Iterator on input data
|
||||
|
||||
typedef Shape_detection_3::Shape_base<Traits> Shape; ///< Shape type.
|
||||
typedef Shape_detection_3::Plane<Traits> Plane_shape; ///< Plane type.
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
||||
struct Plane_cluster
|
||||
{
|
||||
bool is_free;
|
||||
std::vector<std::size_t> planes;
|
||||
std::vector<std::size_t> coplanar_group;
|
||||
std::vector<std::size_t> orthogonal_clusters;
|
||||
Vector normal;
|
||||
FT cosangle_symmetry;
|
||||
FT area;
|
||||
FT cosangle_centroid;
|
||||
};
|
||||
|
||||
Traits m_traits;
|
||||
|
||||
Input_iterator m_input_begin;
|
||||
Input_iterator m_input_end;
|
||||
Point_map m_point_pmap;
|
||||
Normal_map m_normal_pmap;
|
||||
|
||||
std::vector<boost::shared_ptr<Plane_shape> > m_planes;
|
||||
std::vector<Point> m_centroids;
|
||||
std::vector<FT> m_areas;
|
||||
|
||||
public:
|
||||
|
||||
/// \name Initialization
|
||||
/// @{
|
||||
/*!
|
||||
Constructs an empty plane regularization engine.
|
||||
*/
|
||||
Plane_regularization (Traits t = Traits ())
|
||||
: m_traits (t)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
Constructs a plane regularization engine base on an input range
|
||||
of points with its related shape detection engine.
|
||||
|
||||
\param input_range Range of input data.
|
||||
|
||||
\param shape_detection Shape detection engine used to detect
|
||||
shapes from the input data. This engine may handle any types of
|
||||
primitive shapes but only planes will be regularized.
|
||||
|
||||
\warning The `shape_detection` parameter must have already
|
||||
detected shapes and must have been using `input_range` as input.
|
||||
|
||||
*/
|
||||
Plane_regularization (Input_range& input_range,
|
||||
const Shape_detection_3::Efficient_RANSAC<Traits>& shape_detection)
|
||||
: m_traits (shape_detection.traits())
|
||||
{
|
||||
m_input_begin = input_range.begin ();
|
||||
m_input_end = input_range.end ();
|
||||
|
||||
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes())
|
||||
{
|
||||
boost::shared_ptr<Plane_shape> pshape
|
||||
= boost::dynamic_pointer_cast<Plane_shape>(shape);
|
||||
|
||||
// Ignore all shapes other than plane
|
||||
if (pshape == boost::shared_ptr<Plane_shape>())
|
||||
continue;
|
||||
m_planes.push_back (pshape);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
Releases all memory allocated by this instance.
|
||||
*/
|
||||
virtual ~Plane_regularization ()
|
||||
{
|
||||
clear ();
|
||||
}
|
||||
/// @}
|
||||
|
||||
/// \name Memory Management
|
||||
/// @{
|
||||
/*!
|
||||
Clear all internal structures.
|
||||
*/
|
||||
void clear ()
|
||||
{
|
||||
std::vector<boost::shared_ptr<Plane_shape> > ().swap (m_planes);
|
||||
std::vector<Point> ().swap (m_centroids);
|
||||
std::vector<FT> ().swap (m_areas);
|
||||
}
|
||||
/// @}
|
||||
|
||||
/// \name Regularization
|
||||
/// @{
|
||||
/*!
|
||||
|
||||
Performs the plane regularization. Planes are directly modified.
|
||||
|
||||
\param tolerance_angle Tolerance of deviation between normal
|
||||
vectors of planes so that they are considered parallel (in
|
||||
degrees).
|
||||
|
||||
\param tolerance_coplanarity Maximal distance between two
|
||||
parallel planes such that they are considered coplanar. The
|
||||
default value is 0, meaning that coplanarity is not taken into
|
||||
account for regularization.
|
||||
|
||||
\param regularize_orthogonality Make almost orthogonal clusters
|
||||
of plane exactly orthogonal.
|
||||
|
||||
\param symmetry_direction Make clusters that are almost
|
||||
symmetrical in the symmetry direction exactly symmetrical. This
|
||||
parameter is ignored if it is equal to `CGAL::NULL_VECTOR`
|
||||
(default value).
|
||||
|
||||
\return The number of clusters of parallel planes found.
|
||||
*/
|
||||
|
||||
std::size_t run (FT tolerance_angle = 25.0,
|
||||
FT tolerance_coplanarity = 0.0,
|
||||
bool regularize_orthogonality = true,
|
||||
Vector symmetry_direction = CGAL::NULL_VECTOR)
|
||||
{
|
||||
compute_centroids_and_areas ();
|
||||
|
||||
FT tolerance_cosangle = 1. - std::cos (tolerance_angle);
|
||||
|
||||
// clustering the parallel primitives and store them in clusters
|
||||
// & compute the normal, size and cos angle to the symmetry
|
||||
// direction of each cluster
|
||||
std::vector<Plane_cluster> clusters;
|
||||
compute_parallel_clusters (clusters, tolerance_cosangle, symmetry_direction);
|
||||
|
||||
if (regularize_orthogonality)
|
||||
{
|
||||
//discovery orthogonal relationship between clusters
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
{
|
||||
for (std::size_t j = i + 1; j < clusters.size(); ++ j)
|
||||
{
|
||||
|
||||
if (std::fabs (clusters[i].normal * clusters[j].normal) < tolerance_cosangle)
|
||||
{
|
||||
clusters[i].orthogonal_clusters.push_back (j);
|
||||
clusters[j].orthogonal_clusters.push_back (i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//clustering the symmetry cosangle and store their centroids in
|
||||
//cosangle_centroids and the centroid index of each cluster in
|
||||
//list_cluster_index
|
||||
if (symmetry_direction != CGAL::NULL_VECTOR)
|
||||
cluster_symmetric_cosangles (clusters, tolerance_cosangle);
|
||||
|
||||
//find subgraphs of mutually orthogonal clusters (store index of
|
||||
//clusters in subgraph_clusters), and select the cluster of
|
||||
//largest area
|
||||
if (regularize_orthogonality)
|
||||
subgraph_mutually_orthogonal_clusters (clusters, symmetry_direction);
|
||||
|
||||
//recompute optimal plane for each primitive after normal regularization
|
||||
for (std::size_t i=0; i < clusters.size(); ++ i)
|
||||
{
|
||||
|
||||
Vector vec_reg = clusters[i].normal;
|
||||
|
||||
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
|
||||
{
|
||||
int index_prim = clusters[i].planes[j];
|
||||
Point pt_reg = m_planes[index_prim]->projection (m_centroids[index_prim]);
|
||||
if( m_planes[index_prim]->plane_normal () * vec_reg < 0)
|
||||
vec_reg=-vec_reg;
|
||||
Plane plane_reg(pt_reg,vec_reg);
|
||||
|
||||
if( std::fabs(m_planes[index_prim]->plane_normal () * plane_reg.orthogonal_vector ()) > 1. - tolerance_cosangle)
|
||||
m_planes[index_prim]->update (plane_reg);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//detecting co-planarity and store in list_coplanar_prim
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
{
|
||||
Vector vec_reg = clusters[i].normal;
|
||||
|
||||
for (std::size_t ip = 0; ip < clusters[i].planes.size(); ++ ip)
|
||||
clusters[i].coplanar_group.push_back (-1);
|
||||
|
||||
int cop_index=0;
|
||||
|
||||
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
|
||||
{
|
||||
int index_prim = clusters[i].planes[j];
|
||||
|
||||
if (clusters[i].coplanar_group[j] == static_cast<std::size_t>(-1))
|
||||
{
|
||||
clusters[i].coplanar_group[j] = cop_index;
|
||||
|
||||
Point pt_reg = m_planes[index_prim]->projection(m_centroids[index_prim]);
|
||||
Plane plan_reg(pt_reg,vec_reg);
|
||||
|
||||
for (std::size_t k = j + 1; k < clusters[i].planes.size(); ++ k)
|
||||
{
|
||||
if (clusters[i].coplanar_group[k] == static_cast<std::size_t>(-1))
|
||||
{
|
||||
int index_prim_next = clusters[i].planes[k];
|
||||
Point pt_reg_next = m_planes[index_prim_next]->projection(m_centroids[index_prim_next]);
|
||||
Point pt_proj=plan_reg.projection(pt_reg_next);
|
||||
double distance=distance_Point(pt_reg_next,pt_proj);
|
||||
|
||||
if (distance < tolerance_coplanarity)
|
||||
clusters[i].coplanar_group[k] = cop_index;
|
||||
}
|
||||
}
|
||||
cop_index++;
|
||||
}
|
||||
}
|
||||
|
||||
//regularize primitive position by computing barycenter of cplanar planes
|
||||
std::vector<Point> pt_bary (cop_index, Point (0., 0., 0.));
|
||||
std::vector<double> area (cop_index, 0.);
|
||||
|
||||
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
|
||||
{
|
||||
std::size_t index_prim = clusters[i].planes[j];
|
||||
std::size_t group = clusters[i].coplanar_group[j];
|
||||
|
||||
Point pt_reg = m_planes[index_prim]->projection(m_centroids[index_prim]);
|
||||
|
||||
pt_bary[group] = CGAL::barycenter (pt_bary[group], area[group], pt_reg, m_areas[index_prim]);
|
||||
area[group] += m_areas[index_prim];
|
||||
}
|
||||
|
||||
|
||||
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
|
||||
{
|
||||
std::size_t index_prim = clusters[i].planes[j];
|
||||
std::size_t group = clusters[i].coplanar_group[j];
|
||||
|
||||
Plane plane_reg (pt_bary[group], vec_reg);
|
||||
|
||||
if (m_planes[index_prim]->plane_normal ()
|
||||
* plane_reg.orthogonal_vector() < 0)
|
||||
m_planes[index_prim]->update (plane_reg.opposite());
|
||||
else
|
||||
m_planes[index_prim]->update (plane_reg);
|
||||
}
|
||||
}
|
||||
|
||||
return clusters.size ();
|
||||
}
|
||||
/// @}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
void compute_centroids_and_areas ()
|
||||
{
|
||||
for (std::size_t i = 0; i < m_planes.size (); ++ i)
|
||||
{
|
||||
std::vector < Point > listp;
|
||||
for (std::size_t j = 0; j < m_planes[i]->indices_of_assigned_points ().size (); ++ j)
|
||||
{
|
||||
int yy = m_planes[i]->indices_of_assigned_points()[j];
|
||||
Point pt = get (m_point_pmap, *(m_input_begin + yy));
|
||||
listp.push_back(pt);
|
||||
}
|
||||
m_centroids.push_back (CGAL::centroid (listp.begin (), listp.end ()));
|
||||
m_areas.push_back ((double)(m_planes[i]->indices_of_assigned_points().size()) / 100.);
|
||||
}
|
||||
}
|
||||
|
||||
void compute_parallel_clusters (std::vector<Plane_cluster>& clusters, double tolerance_cosangle,
|
||||
const Vector& symmetry_direction)
|
||||
{
|
||||
// find pairs of epsilon-parallel primitives and store them in parallel_planes
|
||||
std::vector<std::vector<std::size_t> > parallel_planes (m_planes.size ());
|
||||
for (std::size_t i = 0; i < m_planes.size (); ++ i)
|
||||
{
|
||||
Vector v1 = m_planes[i]->plane_normal ();
|
||||
|
||||
for (std::size_t j = 0; j < m_planes.size(); ++ j)
|
||||
{
|
||||
if (i == j)
|
||||
continue;
|
||||
|
||||
Vector v2 = m_planes[i]->plane_normal ();
|
||||
|
||||
if (std::fabs (v1 * v2) > 1. - tolerance_cosangle)
|
||||
parallel_planes[i].push_back (j);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
std::vector<bool> is_available (m_planes.size (), true);
|
||||
|
||||
for (std::size_t i = 0; i < m_planes.size(); ++ i)
|
||||
{
|
||||
|
||||
if(is_available[i])
|
||||
{
|
||||
is_available[i] = false;
|
||||
|
||||
clusters.push_back (Plane_cluster());
|
||||
Plane_cluster& clu = clusters.back ();
|
||||
|
||||
//initialization containers
|
||||
clu.planes.push_back (i);
|
||||
|
||||
std::vector<std::size_t> index_container_former_ring_parallel;
|
||||
index_container_former_ring_parallel.push_back(i);
|
||||
|
||||
std::list<std::size_t> index_container_current_ring_parallel;
|
||||
|
||||
//propagation over the pairs of epsilon-parallel primitives
|
||||
bool propagation=true;
|
||||
clu.normal = m_planes[i]->plane_normal ();
|
||||
clu.area = m_areas[i];
|
||||
|
||||
do
|
||||
{
|
||||
propagation = false;
|
||||
|
||||
for (std::size_t k = 0; k < index_container_former_ring_parallel.size(); ++ k)
|
||||
{
|
||||
|
||||
std::size_t plane_index = index_container_former_ring_parallel[k];
|
||||
|
||||
for (std::size_t l = 0; l < parallel_planes[plane_index].size(); ++ l)
|
||||
{
|
||||
std::size_t it = parallel_planes[plane_index][l];
|
||||
|
||||
Vector normal_it = m_planes[it]->plane_normal ();
|
||||
|
||||
if(is_available[it]
|
||||
&& std::fabs (normal_it*clu.normal) > 1. - tolerance_cosangle )
|
||||
{
|
||||
propagation = true;
|
||||
index_container_current_ring_parallel.push_back(it);
|
||||
is_available[it]=false;
|
||||
|
||||
if(clu.normal * normal_it <0)
|
||||
normal_it = -normal_it;
|
||||
|
||||
clu.normal = (FT)clu.area * clu.normal
|
||||
+ (FT)m_areas[it] * normal_it;
|
||||
FT norm = 1. / std::sqrt (clu.normal.squared_length());
|
||||
clu.normal = norm * clu.normal;
|
||||
clu.area += m_areas[it];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//update containers
|
||||
index_container_former_ring_parallel.clear();
|
||||
for (std::list<std::size_t>::iterator it = index_container_current_ring_parallel.begin();
|
||||
it != index_container_current_ring_parallel.end(); ++it)
|
||||
{
|
||||
index_container_former_ring_parallel.push_back(*it);
|
||||
clu.planes.push_back(*it);
|
||||
}
|
||||
index_container_current_ring_parallel.clear();
|
||||
|
||||
}
|
||||
while(propagation);
|
||||
|
||||
if (symmetry_direction != CGAL::NULL_VECTOR)
|
||||
clu.cosangle_symmetry = std::fabs(symmetry_direction * clu.normal);
|
||||
}
|
||||
}
|
||||
is_available.clear();
|
||||
}
|
||||
|
||||
void cluster_symmetric_cosangles (std::vector<Plane_cluster>& clusters, double tolerance_cosangle)
|
||||
{
|
||||
std::vector < double > cosangle_centroids;
|
||||
std::vector < int > list_cluster_index;
|
||||
for( std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
list_cluster_index.push_back(-1);
|
||||
|
||||
int mean_index = 0;
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
{
|
||||
if(list_cluster_index[i]<0)
|
||||
{
|
||||
list_cluster_index[i] = mean_index;
|
||||
double mean = clusters[i].area * clusters[i].cosangle_symmetry;
|
||||
double mean_area = clusters[i].area;
|
||||
|
||||
for (std::size_t j = i+1; j < clusters.size(); ++ j)
|
||||
{
|
||||
if (list_cluster_index[j] < 0 && std::fabs (clusters[j].cosangle_symmetry -
|
||||
mean / mean_area) < tolerance_cosangle)
|
||||
{
|
||||
list_cluster_index[j] = mean_index;
|
||||
mean_area += clusters[j].area;
|
||||
mean += clusters[j].area * clusters[j].cosangle_symmetry;
|
||||
}
|
||||
}
|
||||
++ mean_index;
|
||||
mean /= mean_area;
|
||||
cosangle_centroids.push_back (mean);
|
||||
}
|
||||
}
|
||||
|
||||
for (std::size_t i = 0; i < cosangle_centroids.size(); ++ i)
|
||||
{
|
||||
if (cosangle_centroids[i] < tolerance_cosangle)
|
||||
cosangle_centroids[i] = 0;
|
||||
else if (cosangle_centroids[i] > 1. - tolerance_cosangle)
|
||||
cosangle_centroids[i] = 1;
|
||||
}
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
clusters[i].cosangle_symmetry = cosangle_centroids[list_cluster_index[i]];
|
||||
}
|
||||
|
||||
void subgraph_mutually_orthogonal_clusters (std::vector<Plane_cluster>& clusters,
|
||||
const Vector& symmetry_direction)
|
||||
{
|
||||
std::vector < std::vector < int > > subgraph_clusters;
|
||||
std::vector < int > subgraph_clusters_max_area_index;
|
||||
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
clusters[i].is_free = true;
|
||||
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
{
|
||||
if(clusters[i].is_free)
|
||||
{
|
||||
clusters[i].is_free = false;
|
||||
double max_area = clusters[i].area;
|
||||
int index_max_area = i;
|
||||
|
||||
//initialization containers
|
||||
std::vector < int > index_container;
|
||||
index_container.push_back(i);
|
||||
std::vector < int > index_container_former_ring;
|
||||
index_container_former_ring.push_back(i);
|
||||
std::list < int > index_container_current_ring;
|
||||
|
||||
//propagation
|
||||
bool propagation=true;
|
||||
do
|
||||
{
|
||||
propagation=false;
|
||||
|
||||
//neighbors
|
||||
for (std::size_t k=0;k<index_container_former_ring.size();k++)
|
||||
{
|
||||
|
||||
int cluster_index=index_container_former_ring[k];
|
||||
|
||||
for (std::size_t j = 0; j < clusters[cluster_index].orthogonal_clusters.size(); ++ j)
|
||||
{
|
||||
if(clusters[j].is_free)
|
||||
{
|
||||
propagation = true;
|
||||
index_container_current_ring.push_back(j);
|
||||
clusters[j].is_free = false;
|
||||
|
||||
if(max_area < clusters[j].area)
|
||||
{
|
||||
max_area = clusters[j].area;
|
||||
index_max_area = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//update containers
|
||||
index_container_former_ring.clear();
|
||||
for(std::list < int >::iterator it = index_container_current_ring.begin();
|
||||
it != index_container_current_ring.end(); ++it)
|
||||
{
|
||||
index_container_former_ring.push_back(*it);
|
||||
index_container.push_back(*it);
|
||||
}
|
||||
index_container_current_ring.clear();
|
||||
|
||||
}
|
||||
while(propagation);
|
||||
subgraph_clusters.push_back(index_container);
|
||||
subgraph_clusters_max_area_index.push_back(index_max_area);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//create subgraphs of mutually orthogonal clusters in which the
|
||||
//largest cluster is excluded and store in
|
||||
//subgraph_clusters_prop
|
||||
std::vector < std::vector < int > > subgraph_clusters_prop;
|
||||
for (std::size_t i=0;i<subgraph_clusters.size(); i++)
|
||||
{
|
||||
int index=subgraph_clusters_max_area_index[i];
|
||||
std::vector < int > subgraph_clusters_prop_temp;
|
||||
for (std::size_t j=0;j<subgraph_clusters[i].size(); j++)
|
||||
if(subgraph_clusters[i][j]!=index)
|
||||
subgraph_clusters_prop_temp.push_back(subgraph_clusters[i][j]);
|
||||
|
||||
subgraph_clusters_prop.push_back(subgraph_clusters_prop_temp);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//regularization of cluster normals : in eachsubgraph, we start
|
||||
//from the largest area cluster and we propage over the subgraph
|
||||
//by regularizing the normals of the clusters accorting to
|
||||
//orthogonality and cosangle to symmetry direction
|
||||
|
||||
for (std::size_t i = 0; i < clusters.size(); ++ i)
|
||||
clusters[i].is_free = true;
|
||||
|
||||
for (std::size_t i = 0; i < subgraph_clusters_prop.size(); ++ i)
|
||||
{
|
||||
|
||||
int index_current=subgraph_clusters_max_area_index[i];
|
||||
Vector vec_current=regularize_normal(clusters[index_current].normal,
|
||||
symmetry_direction,
|
||||
clusters[index_current].cosangle_symmetry);
|
||||
clusters[index_current].normal = vec_current;
|
||||
clusters[index_current].is_free = false;
|
||||
|
||||
//initialization containers
|
||||
std::vector < int > index_container;
|
||||
index_container.push_back(index_current);
|
||||
std::vector < int > index_container_former_ring;
|
||||
index_container_former_ring.push_back(index_current);
|
||||
std::list < int > index_container_current_ring;
|
||||
|
||||
//propagation
|
||||
bool propagation=true;
|
||||
do
|
||||
{
|
||||
propagation=false;
|
||||
|
||||
//neighbors
|
||||
for (std::size_t k=0;k<index_container_former_ring.size();k++)
|
||||
{
|
||||
|
||||
int cluster_index=index_container_former_ring[k];
|
||||
|
||||
for (std::size_t j = 0; j < clusters[cluster_index].orthogonal_clusters.size(); ++ j)
|
||||
{
|
||||
|
||||
if(clusters[j].is_free)
|
||||
{
|
||||
|
||||
propagation = true;
|
||||
index_container_current_ring.push_back(j);
|
||||
clusters[j].is_free = false;
|
||||
|
||||
Vector new_vect=regularize_normals_from_prior(clusters[cluster_index].normal,
|
||||
clusters[j].normal,
|
||||
symmetry_direction,
|
||||
clusters[j].cosangle_symmetry);
|
||||
clusters[j].normal = new_vect;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//update containers
|
||||
index_container_former_ring.clear();
|
||||
for(std::list < int >::iterator it = index_container_current_ring.begin();
|
||||
it != index_container_current_ring.end(); ++it)
|
||||
{
|
||||
index_container_former_ring.push_back(*it);
|
||||
index_container.push_back(*it);
|
||||
}
|
||||
index_container_current_ring.clear();
|
||||
}while(propagation);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
FT distance_Point (const Point& a, const Point& b)
|
||||
{
|
||||
return std::sqrt (CGAL::squared_distance (a, b));
|
||||
}
|
||||
|
||||
Vector regularize_normal (const Vector& n, const Vector& symmetry_direction,
|
||||
FT cos_symmetry)
|
||||
{
|
||||
if (symmetry_direction == CGAL::NULL_VECTOR)
|
||||
return n;
|
||||
|
||||
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
|
||||
|
||||
Plane plane_symmetry (pt_symmetry, symmetry_direction);
|
||||
Point pt_normal = CGAL::ORIGIN + n;
|
||||
|
||||
if (n != symmetry_direction || n != -symmetry_direction)
|
||||
{
|
||||
Plane plane_cut (CGAL::ORIGIN, pt_normal, CGAL::ORIGIN + symmetry_direction);
|
||||
Line line;
|
||||
CGAL::Object ob_1 = CGAL::intersection(plane_cut, plane_symmetry);
|
||||
if (!assign(line, ob_1))
|
||||
return n;
|
||||
|
||||
double delta = std::sqrt (1 - cos_symmetry * cos_symmetry);
|
||||
|
||||
Point projected_origin = line.projection (CGAL::ORIGIN);
|
||||
Vector line_vector (line);
|
||||
line_vector = line_vector / std::sqrt (line_vector * line_vector);
|
||||
Point pt1 = projected_origin + delta * line_vector;
|
||||
Point pt2 = projected_origin - delta * line_vector;
|
||||
|
||||
if (CGAL::squared_distance (pt_normal, pt1) <= CGAL::squared_distance (pt_normal, pt2))
|
||||
return Vector (CGAL::ORIGIN, pt1);
|
||||
else
|
||||
return Vector (CGAL::ORIGIN, pt2);
|
||||
|
||||
}
|
||||
else
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
Vector regularize_normals_from_prior (const Vector& np,
|
||||
const Vector& n,
|
||||
const Vector& symmetry_direction,
|
||||
FT cos_symmetry)
|
||||
{
|
||||
if (symmetry_direction == CGAL::NULL_VECTOR)
|
||||
return n;
|
||||
|
||||
Plane plane_orthogonality (CGAL::ORIGIN, np);
|
||||
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
|
||||
|
||||
Plane plane_symmetry (pt_symmetry, symmetry_direction);
|
||||
|
||||
Line line;
|
||||
CGAL::Object ob_1 = CGAL::intersection (plane_orthogonality, plane_symmetry);
|
||||
if (!assign(line, ob_1))
|
||||
return regularize_normal (n, symmetry_direction, cos_symmetry);
|
||||
|
||||
Point projected_origin = line.projection (CGAL::ORIGIN);
|
||||
FT R = CGAL::squared_distance (Point (CGAL::ORIGIN), projected_origin);
|
||||
|
||||
if (R <= 1) // 2 (or 1) possible points intersecting the unit sphere and line
|
||||
{
|
||||
double delta = std::sqrt (1 - R);
|
||||
Vector line_vector(line);
|
||||
line_vector = line_vector / std::sqrt (line_vector * line_vector);
|
||||
Point pt1 = projected_origin + delta * line_vector;
|
||||
Point pt2 = projected_origin - delta * line_vector;
|
||||
|
||||
Point pt_n = CGAL::ORIGIN + n;
|
||||
if (CGAL::squared_distance (pt_n, pt1) <= CGAL::squared_distance (pt_n, pt2))
|
||||
return Vector (CGAL::ORIGIN, pt1);
|
||||
else
|
||||
return Vector (CGAL::ORIGIN, pt2);
|
||||
}
|
||||
else //no point intersecting the unit sphere and line
|
||||
return regularize_normal (n,symmetry_direction, cos_symmetry);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
}; // namespace CGAL
|
||||
|
||||
#endif // CGAL_PLANE_REGULARIZATION_H
|
||||
|
|
@ -46,6 +46,7 @@ namespace CGAL {
|
|||
///< property map to access the unoriented normal of an input point.
|
||||
typedef typename Traits::FT FT; ///< number type.
|
||||
typedef typename Traits::Point_3 Point_3; ///< point type.
|
||||
typedef typename Traits::Point_2 Point_2; ///< point 2D type.
|
||||
typedef typename Traits::Vector_3 Vector_3;
|
||||
/// \endcond
|
||||
|
||||
|
|
@ -85,7 +86,36 @@ namespace CGAL {
|
|||
return d * d;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
Computes the orthogonal projection of a query point on the shape.
|
||||
*/
|
||||
Point_3 projection (const Point_3& p) const {
|
||||
return to_3d (to_2d (p));
|
||||
}
|
||||
|
||||
Point_2 to_2d (const Point_3& p) const {
|
||||
Vector_3 v (m_point_on_primitive, p);
|
||||
return Point_2 (v * m_base1, v * m_base2);
|
||||
}
|
||||
|
||||
Point_3 to_3d (const Point_2& p) const {
|
||||
return m_point_on_primitive + p.x () * m_base1 + p.y () * m_base2;
|
||||
}
|
||||
|
||||
/*!
|
||||
Replaces the plane by p
|
||||
*/
|
||||
void update (const Plane_3& p) {
|
||||
m_base1 = p.base1 () / std::sqrt (p.base1() * p.base1 ());
|
||||
m_base2 = p.base2 () / std::sqrt (p.base2() * p.base2 ());
|
||||
m_normal = p.orthogonal_vector () / std::sqrt (p.orthogonal_vector () * p.orthogonal_vector ());
|
||||
|
||||
m_d = -(this->get_x(m_point_on_primitive) * this->get_x(m_normal)
|
||||
+ this->get_y(m_point_on_primitive) * this->get_y(m_normal)
|
||||
+ this->get_z(m_point_on_primitive) * this->get_z(m_normal));
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
Helper function to write the plane equation and
|
||||
number of assigned points into a string.
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@
|
|||
#include <CGAL/Random.h>
|
||||
|
||||
#include <CGAL/Shape_detection_3.h>
|
||||
#include <CGAL/Plane_regularization.h>
|
||||
#include <CGAL/Delaunay_triangulation_2.h>
|
||||
#include <CGAL/Alpha_shape_2.h>
|
||||
|
||||
|
|
@ -38,6 +39,14 @@ class Polyhedron_demo_point_set_shape_detection_plugin :
|
|||
Q_PLUGIN_METADATA(IID "com.geometryfactory.PolyhedronDemo.PluginInterface/1.0")
|
||||
QAction* actionDetect;
|
||||
|
||||
typedef CGAL::Identity_property_map<Point_set::Point_with_normal> PointPMap;
|
||||
typedef CGAL::Normal_of_point_with_normal_pmap<Point_set::Geom_traits> NormalPMap;
|
||||
|
||||
typedef CGAL::Shape_detection_3::Efficient_RANSAC_traits<Epic_kernel, Point_set, PointPMap, NormalPMap> Traits;
|
||||
typedef CGAL::Shape_detection_3::Efficient_RANSAC<Traits> Shape_detection;
|
||||
typedef CGAL::Plane_regularization<Traits> Regularization;
|
||||
|
||||
|
||||
public:
|
||||
void init(QMainWindow* mainWindow, CGAL::Three::Scene_interface* scene_interface) {
|
||||
actionDetect = new QAction(tr("Point set shape detection"), mainWindow);
|
||||
|
|
@ -65,7 +74,7 @@ private:
|
|||
|
||||
typedef Kernel::Plane_3 Plane_3;
|
||||
|
||||
void build_alpha_shape (Point_set& points, const Plane_3& plane,
|
||||
void build_alpha_shape (Point_set& points, boost::shared_ptr<CGAL::Shape_detection_3::Plane<Traits> > plane,
|
||||
Scene_polyhedron_item* item, double epsilon);
|
||||
|
||||
}; // end Polyhedron_demo_point_set_shape_detection_plugin
|
||||
|
|
@ -93,6 +102,7 @@ public:
|
|||
bool detect_cone() const { return coneCB->isChecked(); }
|
||||
bool generate_alpha() const { return m_generate_alpha->isChecked(); }
|
||||
bool generate_subset() const { return !(m_do_not_generate_subset->isChecked()); }
|
||||
bool regularize() const { return m_regularize->isChecked(); }
|
||||
};
|
||||
|
||||
void Polyhedron_demo_point_set_shape_detection_plugin::on_actionDetect_triggered() {
|
||||
|
|
@ -123,12 +133,7 @@ void Polyhedron_demo_point_set_shape_detection_plugin::on_actionDetect_triggered
|
|||
|
||||
QApplication::setOverrideCursor(Qt::WaitCursor);
|
||||
|
||||
typedef CGAL::Identity_property_map<Point_set::Point_with_normal> PointPMap;
|
||||
typedef CGAL::Normal_of_point_with_normal_pmap<Point_set::Geom_traits> NormalPMap;
|
||||
|
||||
typedef CGAL::Shape_detection_3::Efficient_RANSAC_traits<Epic_kernel, Point_set, PointPMap, NormalPMap> Traits;
|
||||
typedef CGAL::Shape_detection_3::Efficient_RANSAC<Traits> Shape_detection;
|
||||
|
||||
|
||||
Shape_detection shape_detection;
|
||||
shape_detection.set_input(*points);
|
||||
|
||||
|
|
@ -161,6 +166,19 @@ void Polyhedron_demo_point_set_shape_detection_plugin::on_actionDetect_triggered
|
|||
shape_detection.detect(op);
|
||||
|
||||
std::cout << shape_detection.shapes().size() << " shapes found" << std::endl;
|
||||
|
||||
if (dialog.regularize ())
|
||||
{
|
||||
std::cerr << "Regularization of planes... " << std::endl;
|
||||
Regularization regularization (*points, shape_detection);
|
||||
|
||||
regularization.run (180 * std::acos (op.normal_threshold) / M_PI, op.epsilon);
|
||||
|
||||
std::cerr << "done" << std::endl;
|
||||
}
|
||||
|
||||
std::map<Kernel::Point_3, QColor> color_map;
|
||||
|
||||
//print_message(QString("%1 shapes found.").arg(shape_detection.number_of_shapes()));
|
||||
int index = 0;
|
||||
BOOST_FOREACH(boost::shared_ptr<Shape_detection::Shape> shape, shape_detection.shapes())
|
||||
|
|
@ -178,9 +196,11 @@ void Polyhedron_demo_point_set_shape_detection_plugin::on_actionDetect_triggered
|
|||
point_item->point_set()->push_back((*points)[i]);
|
||||
|
||||
unsigned char r, g, b;
|
||||
|
||||
r = static_cast<unsigned char>(64 + rand.get_int(0, 192));
|
||||
g = static_cast<unsigned char>(64 + rand.get_int(0, 192));
|
||||
b = static_cast<unsigned char>(64 + rand.get_int(0, 192));
|
||||
|
||||
point_item->setRbgColor(r, g, b);
|
||||
|
||||
// Providing a useful name consisting of the order of detection, name of type and number of inliers
|
||||
|
|
@ -194,16 +214,33 @@ void Polyhedron_demo_point_set_shape_detection_plugin::on_actionDetect_triggered
|
|||
{
|
||||
ss << item->name().toStdString() << "_plane_";
|
||||
|
||||
boost::shared_ptr<CGAL::Shape_detection_3::Plane<Traits> > pshape
|
||||
= boost::dynamic_pointer_cast<CGAL::Shape_detection_3::Plane<Traits> > (shape);
|
||||
|
||||
Kernel::Point_3 ref = CGAL::ORIGIN + pshape->plane_normal ();
|
||||
|
||||
if (color_map.find (ref) == color_map.end ())
|
||||
{
|
||||
ref = CGAL::ORIGIN + (-1.) * pshape->plane_normal ();
|
||||
if (color_map.find (ref) == color_map.end ())
|
||||
color_map[ref] = point_item->color ();
|
||||
else
|
||||
point_item->setColor (color_map[ref]);
|
||||
}
|
||||
else
|
||||
point_item->setColor (color_map[ref]);
|
||||
|
||||
ss << "(" << ref << ")_";
|
||||
|
||||
if (dialog.generate_alpha ())
|
||||
{
|
||||
// If plane, build alpha shape
|
||||
Scene_polyhedron_item* poly_item = new Scene_polyhedron_item;
|
||||
|
||||
Plane_3 plane = (Plane_3)(*(dynamic_cast<CGAL::Shape_detection_3::Plane<Traits>*>(shape.get ())));
|
||||
build_alpha_shape (*(point_item->point_set()), plane,
|
||||
build_alpha_shape (*(point_item->point_set()), pshape,
|
||||
poly_item, dialog.cluster_epsilon());
|
||||
|
||||
poly_item->setRbgColor(r-32, g-32, b-32);
|
||||
poly_item->setColor(point_item->color ());
|
||||
poly_item->setName(QString("%1%2_alpha_shape").arg(QString::fromStdString(ss.str()))
|
||||
.arg (QString::number (shape->indices_of_assigned_points().size())));
|
||||
poly_item->setRenderingMode (Flat);
|
||||
|
|
@ -250,7 +287,8 @@ void Polyhedron_demo_point_set_shape_detection_plugin::on_actionDetect_triggered
|
|||
}
|
||||
|
||||
void Polyhedron_demo_point_set_shape_detection_plugin::build_alpha_shape
|
||||
(Point_set& points, const Plane_3& plane, Scene_polyhedron_item* item, double epsilon)
|
||||
(Point_set& points, boost::shared_ptr<CGAL::Shape_detection_3::Plane<Traits> > plane,
|
||||
Scene_polyhedron_item* item, double epsilon)
|
||||
{
|
||||
typedef Kernel::Point_2 Point_2;
|
||||
typedef CGAL::Alpha_shape_vertex_base_2<Kernel> Vb;
|
||||
|
|
@ -264,7 +302,7 @@ void Polyhedron_demo_point_set_shape_detection_plugin::build_alpha_shape
|
|||
projections.reserve (points.size ());
|
||||
|
||||
for (std::size_t i = 0; i < points.size (); ++ i)
|
||||
projections.push_back (plane.to_2d (points[i]));
|
||||
projections.push_back (plane->to_2d (points[i]));
|
||||
|
||||
Alpha_shape_2 ashape (projections.begin (), projections.end (), epsilon);
|
||||
|
||||
|
|
@ -286,7 +324,7 @@ void Polyhedron_demo_point_set_shape_detection_plugin::build_alpha_shape
|
|||
if (map_v2i.find (it->vertex (i)) == map_v2i.end ())
|
||||
{
|
||||
map_v2i.insert (std::make_pair (it->vertex (i), current_index ++));
|
||||
Point p = plane.to_3d (it->vertex (i)->point ());
|
||||
Point p = plane->to_3d (it->vertex (i)->point ());
|
||||
soup_item->new_vertex (p.x (), p.y (), p.z ());
|
||||
}
|
||||
}
|
||||
|
|
@ -297,6 +335,14 @@ void Polyhedron_demo_point_set_shape_detection_plugin::build_alpha_shape
|
|||
|
||||
soup_item->orient();
|
||||
soup_item->exportAsPolyhedron (item->polyhedron());
|
||||
|
||||
if (soup_item->isEmpty ())
|
||||
{
|
||||
std::cerr << "POLYGON SOUP EMPTY" << std::endl;
|
||||
for (std::size_t i = 0; i < projections.size (); ++ i)
|
||||
std::cerr << projections[i] << std::endl;
|
||||
|
||||
}
|
||||
|
||||
delete soup_item;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -211,6 +211,16 @@
|
|||
</property>
|
||||
</widget>
|
||||
</item>
|
||||
<item>
|
||||
<widget class="QCheckBox" name="m_regularize">
|
||||
<property name="text">
|
||||
<string>Regularize planes</string>
|
||||
</property>
|
||||
<property name="checked">
|
||||
<bool>true</bool>
|
||||
</property>
|
||||
</widget>
|
||||
</item>
|
||||
<item>
|
||||
<widget class="QDialogButtonBox" name="buttonBox">
|
||||
<property name="orientation">
|
||||
|
|
|
|||
Loading…
Reference in New Issue