Removed old traits class (moved to branch INRIA/Periodic_2g_hyperbolic_triangulation_2-IIordanov)

This commit is contained in:
Iordan Iordanov 2019-01-02 14:01:38 +01:00
parent 71327aad01
commit e9abcec1df
1 changed files with 0 additions and 470 deletions

View File

@ -1,470 +0,0 @@
// Copyright (c) 2010-2018 INRIA Sophia Antipolis, INRIA Nancy (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Mikhail Bogdanov
// Monique Teillaud <Monique.Teillaud@inria.fr>
#ifndef CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_OLD_TRAITS_2_H
#define CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_OLD_TRAITS_2_H
#include <CGAL/license/Hyperbolic_triangulation_2.h>
//#include <CGAL/Regular_triangulation_filtered_traits_2.h>
#include <CGAL/predicates_on_points_2.h>
#include <CGAL/basic_constructions_2.h>
#include <CGAL/distance_predicates_2.h>
#include <CGAL/determinant.h>
#include "boost/tuple/tuple.hpp"
#include "boost/variant.hpp"
namespace CGAL {
template < class R >
class Hyperbolic_Delaunay_triangulation_old_traits_2
: public R
{
public:
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef Point_2 Hyperbolic_point_2;
typedef Hyperbolic_point_2 Hyperbolic_Voronoi_point_2;
typedef typename R::Circle_2 Circle_2;
typedef typename R::Triangle_2 Hyperbolic_triangle_2;
typedef boost::tuple<Circle_2, Point_2, Point_2> Arc_2;
typedef typename R::Segment_2 Euclidean_segment_2; //only used internally here
typedef boost::variant<Arc_2, Euclidean_segment_2> Hyperbolic_segment_2;
typedef typename R::Compare_x_2 Compare_x_2;
typedef typename R::Compare_y_2 Compare_y_2;
typedef typename R::Orientation_2 Orientation_2;
typedef typename R::Side_of_oriented_circle_2 Side_of_oriented_circle_2;
// only kept for demo to please T2graphicsitems
typedef Euclidean_segment_2 Line_segment_2;
typedef Hyperbolic_segment_2 Segment_2;
// the following types are only used internally in this traits class,
// so they need not be documented, and they don't need _object()
typedef typename R::Collinear_2 Euclidean_collinear_2;
typedef typename R::Construct_bisector_2 Construct_Euclidean_bisector_2;
typedef typename R::Construct_midpoint_2 Construct_Euclidean_midpoint_2;
typedef typename R::Compute_squared_distance_2 Compute_squared_Euclidean_distance_2;
typedef typename R::Line_2 Euclidean_line_2;
typedef typename R::Vector_2 Vector_2;
// used by Is_hyperbolic
typedef typename R::Vector_3 Vector_3;
typedef typename R::Point_3 Point_3;
// MT useless?
// typedef Hyperbolic_Delaunay_triangulation_traits_2<R> Self;
// typedef typename R::RT RT;
// typedef R Kernel;
// typedef R Rep;
// typedef typename R::Triangle_2 Triangle_2;
// typedef typename R::Line_2 Line_2;
// typedef typename R::Ray_2 Ray_2; // why would we need Eucldean rays??
// typedef typename R::Iso_rectangle_2 Iso_rectangle_2;
// typedef typename R::Angle_2 Angle_2;
// typedef typename R::Less_x_2 Less_x_2;
// typedef typename R::Less_y_2 Less_y_2;
// typedef typename R::Compare_distance_2 Compare_distance_2;
// typedef typename R::Construct_triangle_2 Construct_triangle_2;
// typedef typename R::Construct_direction_2 Construct_direction_2;
public:
class Side_of_oriented_hyperbolic_segment_2 {};
class Construct_hyperbolic_segment_2
{
//typedef typename CGAL::Regular_triangulation_filtered_traits_2<R> Regular_geometric_traits_2;
typedef R Regular_geometric_traits_2;
typedef typename Regular_geometric_traits_2::Construct_weighted_circumcenter_2 Construct_weighted_circumcenter_2;
typedef typename Regular_geometric_traits_2::Weighted_point_2 Weighted_point_2;
typedef typename Regular_geometric_traits_2::Bare_point Bare_point;
public:
Construct_hyperbolic_segment_2()
{
}
Hyperbolic_segment_2 operator()(const Point_2& p, const Point_2& q) const
{
Origin o;
if(Euclidean_collinear_2()(p, q, Point_2(o))){
return Euclidean_segment_2(p, q);
}
Weighted_point_2 wp(p);
Weighted_point_2 wq(q);
Weighted_point_2 wo(Point_2(o), FT(1)); // Poincaré circle
Bare_point center = Construct_weighted_circumcenter_2()(wp, wo, wq);
FT radius = Compute_squared_Euclidean_distance_2()(p, center);
Circle_2 circle( center, radius);
// uncomment!!!
//assert(circle.has_on_boundary(p) && circle.has_on_boundary(q));
if(Orientation_2()(p, q, center) == LEFT_TURN) {
return Arc_2(circle, p, q);
}
return Arc_2(circle, q, p);
}
};
Construct_hyperbolic_segment_2
construct_hyperbolic_segment_2_object() const
{ return Construct_hyperbolic_segment_2(); }
// wrong names kept for demo
typedef Construct_hyperbolic_segment_2 Construct_segment_2;
Construct_segment_2
construct_segment_2_object() const
{ return Construct_hyperbolic_segment_2(); }
class Construct_circumcenter_2
{
public:
// TODO: improve this function
Point_2 operator()(Point_2 p, Point_2 q, Point_2 r)
{
CGAL_triangulation_assertion_code(Origin oo; Point_2 poo(oo); Circle_2 co(poo,FT(1)));
CGAL_triangulation_assertion(co.bounded_side(p) == ON_BOUNDED_SIDE);
CGAL_triangulation_assertion(co.bounded_side(q) == ON_BOUNDED_SIDE);
CGAL_triangulation_assertion(co.bounded_side(r) == ON_BOUNDED_SIDE);
Circle_2 circle(p, q, r);
// circle must be inside the unit one
CGAL_triangulation_assertion(do_intersect(co, circle) == false);
Origin o;
Point_2 po = Point_2(o);
if(circle.center() == po)
{ return po; }
FT x0 = circle.center().x(), y0 = circle.center().y();
// a*alphaˆ2 + b*alpha + c = 0;
FT a = x0*x0 + y0*y0;
FT b = a - circle.squared_radius() + FT(1); // Poincare disc has radius 1
FT D = b*b - 4*a;
FT alpha = (b - CGAL::sqrt(to_double(D)))/(2*a);
Point_2 center(x0*alpha, y0*alpha);
if(!circle.has_on_bounded_side(center))
{ std::cout << "Center does not belong to the pencil of spheres!!!" << std::endl;} ;
return center;
}
};
Construct_circumcenter_2
construct_circumcenter_2_object()
{ return Construct_circumcenter_2(); }
Hyperbolic_Delaunay_triangulation_old_traits_2()
{}
Hyperbolic_Delaunay_triangulation_old_traits_2(const Hyperbolic_Delaunay_triangulation_old_traits_2 & other)
{}
Hyperbolic_Delaunay_triangulation_old_traits_2 &operator=
(const Hyperbolic_Delaunay_triangulation_old_traits_2 &)
{
return *this;
}
Compare_x_2
compare_x_2_object() const
{ return Compare_x_2();}
Compare_y_2
compare_y_2_object() const
{ return Compare_y_2();}
Orientation_2
orientation_2_object() const
{ return Orientation_2();}
Side_of_oriented_circle_2
side_of_oriented_circle_2_object() const
{ return Side_of_oriented_circle_2(); }
Construct_circumcenter_2
construct_circumcenter_2_object() const
{ return Construct_circumcenter_2(); }
class Construct_hyperbolic_bisector_2
{
public:
Construct_hyperbolic_bisector_2()
{}
Hyperbolic_segment_2 operator()(Point_2 p, Point_2 q) const
{
// If two points are almost of the same distance to the origin, then
// the bisector is supported by the circle of huge radius etc.
// This circle is computed inexactly.
// At present time, in this case the bisector is supported by the line.
Compute_squared_Euclidean_distance_2 dist = Compute_squared_Euclidean_distance_2();
Origin o;
Point_2 po = Point_2(o);
FT dif = dist(po, p) - dist(po, q);
FT eps = 0.0000000001;
// Bisector is straight in euclidean sense
if(dif > -eps && dif < eps){
// ideally
//if(Compare_distance_2()(origin, p, q) == EQUAL){
// TODO: calling R::Construct_bisector
Euclidean_line_2 l = Construct_Euclidean_bisector_2()(p, q);
// compute the ending points
std::pair<Point_2, Point_2> points = find_intersection(l);
// TODO: improve
Vector_2 v(points.first, points.second);
if(v*l.to_vector() > 0){
return Euclidean_segment_2(points.first, points.second);
}
return Euclidean_segment_2(points.second, points.first);
}
Circle_2 c = construct_supporting_circle_of_bisector(p, q);
// compute the ending points
std::pair<Point_2, Point_2> points = find_intersection(c);
if(Orientation_2()(points.first, points.second, c.center()) == LEFT_TURN) {
return Arc_2(c, points.first, points.second);
}
return Arc_2(c, points.second, points.first);
}
private:
// The cirle belongs to the pencil with limit points p and q
Circle_2 construct_supporting_circle_of_bisector(Point_2 p, Point_2 q) const
{
// p, q are zero-circles
// (x, y, xˆ2 + yˆ2 - rˆ2) = alpha*(xp, yp, xpˆ2 + ypˆ2) + (1-alpha)*(xq, yq, xqˆ2 + yqˆ2)
// xˆ2 + yˆ2 - rˆ2 = Rˆ2, where R - is a radius of the given unit circle
FT op = p.x()*p.x() + p.y()*p.y();
FT oq = q.x()*q.x() + q.y()*q.y();
FT alpha = (FT(1) - oq) / (op - oq); // Poincare disc has radius 1
FT x = alpha*p.x() + (1-alpha)*q.x();
FT y = alpha*p.y() + (1-alpha)*q.y();
FT radius = x*x + y*y - FT(1);
//improve
Euclidean_line_2 l = Construct_Euclidean_bisector_2()(p, q);
Point_2 middle = Construct_Euclidean_midpoint_2()(p, q);
Point_2 temp = middle + l.to_vector();
if(Orientation_2()(middle, temp, Point_2(x, y)) == ON_POSITIVE_SIDE){
return Circle_2(Point_2(x, y), radius, CLOCKWISE);
}
return Circle_2(Point_2(x, y), radius, COUNTERCLOCKWISE);
}
// Find intersection of an input circle orthogonal to the Poincare disk
// and the circle representing this disk
// TODO: sqrt(to_double()?)
std::pair<Point_2, Point_2> find_intersection(Circle_2& circle) const
{
FT x = circle.center().x(), y = circle.center().y();
// axˆ2 + 2bˆx + c = 0;
FT a = x*x + y*y;
/* FT b = -_unit_circle.squared_radius() * x; */
/* FT c = _unit_circle.squared_radius()*_unit_circle.squared_radius() - _unit_circle.squared_radius()*y*y; */
FT b = -x;
FT c = 1-y*y;
assert(b*b - a*c > 0);
FT D = CGAL::sqrt(to_double(b*b - a*c));
FT x1 = (-b - D)/a;
FT x2 = (-b + D)/a;
FT y1 = (FT(1) - x1*x)/y;
FT y2 = (FT(1) - x2*x)/y;
return std::make_pair(Point_2(x1, y1), Point_2(x2, y2));
}
// Find intersection of an input line orthogonal to the Poincare disk
// and the circle representing this disk
// TODO: sqrt(to_double()?)
std::pair<Point_2, Point_2> find_intersection(Euclidean_line_2& l) const
{
typedef typename R::Vector_2 Vector_2;
Vector_2 v = l.to_vector();
// normalize the vector
FT squared_coeff = FT(1)/v.squared_length();
FT coeff = CGAL::sqrt(to_double(squared_coeff));
Point_2 p1(coeff*v.x(), coeff*v.y());
Point_2 p2(-p1.x(), -p1.y());
return std::make_pair(p1, p2);
}
};
Construct_hyperbolic_bisector_2
construct_hyperbolic_bisector_2_object() const
{ return Construct_hyperbolic_bisector_2(); }
Construct_Euclidean_bisector_2
construct_Euclidean_bisector_2_object() const
{ return Construct_Euclidean_bisector_2(); }
class Construct_ray_2
{
public:
Construct_ray_2()
{}
Hyperbolic_segment_2 operator()(Point_2 p, Hyperbolic_segment_2 l) const
{
if(Euclidean_segment_2* s = boost::get<Euclidean_segment_2>(&l)){
return operator()(p, *s);
}
if(Arc_2* arc = boost::get<Arc_2>(&l)){
if(get<0>(*arc).orientation() == CLOCKWISE){
get<1>(*arc) = p;
return *arc;
}
get<2>(*arc) = p;
return *arc;
}
assert(false);
return Hyperbolic_segment_2();
}
Hyperbolic_segment_2 operator()(Point_2 p, Euclidean_segment_2 s) const
{
return Euclidean_segment_2(p, s.target());
}
};
Construct_ray_2
construct_ray_2_object() const
{ return Construct_ray_2(); }
// For details see the JoCG paper (5:56-85, 2014)
class Is_Delaunay_hyperbolic
{
public:
bool operator() (const Point_2& p0, const Point_2& p1, const Point_2& p2) const
{
Vector_3 v0 = Vector_3(p0.x()*p0.x() + p0.y()*p0.y(),
p1.x()*p1.x() + p1.y()*p1.y(),
p2.x()*p2.x() + p2.y()*p2.y());
Vector_3 v1 = Vector_3(p0.x(), p1.x(), p2.x());
Vector_3 v2 = Vector_3(p0.y(), p1.y(), p2.y());
Vector_3 v3 = Vector_3(FT(1), FT(1), FT(1));
FT dt0 = determinant(v0, v1, v3);
FT dt1 = determinant(v0, v2, v3);
FT dt2 = determinant(v0 - v3, v1, v2);
return dt0*dt0 + dt1*dt1 - dt2*dt2 < 0;
}
bool operator() (const Point_2& p0, const Point_2& p1, const Point_2& p2, int& ind) const
{
if(this->operator()(p0, p1, p2) == false) {
ind = find_non_hyperbolic_edge(p0, p1, p2);
return false;
}
return true;
}
private:
// assume the face (p0, p1, p2) is non-hyperbolic
int find_non_hyperbolic_edge(const Point_2& p0, const Point_2& p1, const Point_2& p2) const
{
typedef typename R::Direction_2 Direction_2;
Vector_3 v0 = Vector_3(p0.x()*p0.x() + p0.y()*p0.y(),
p1.x()*p1.x() + p1.y()*p1.y(),
p2.x()*p2.x() + p2.y()*p2.y());
Vector_3 v1 = Vector_3(p0.x(), p1.x(), p2.x());
Vector_3 v2 = Vector_3(p0.y(), p1.y(), p2.y());
Vector_3 v3 = Vector_3(FT(1), FT(1), FT(1));
FT dt0 = determinant(v0, 2*v2, -v3);
FT dt1 = determinant(2*v1, v0, -v3);
FT dt2 = determinant(2*v1, 2*v2, -v3);
Direction_2 d0(p0.x()*dt2 - dt0, p0.y()*dt2 - dt1);
Direction_2 d1(p1.x()*dt2 - dt0, p1.y()*dt2 - dt1);
Direction_2 d2(p2.x()*dt2 - dt0, p2.y()*dt2 - dt1);
Direction_2 d(dt0, dt1);
if(d.counterclockwise_in_between(d0, d1)) {
return 2;
}
if(d.counterclockwise_in_between(d1, d2)) {
return 0;
}
return 1;
}
};
Is_Delaunay_hyperbolic
Is_Delaunay_hyperbolic_object() const
{ return Is_Delaunay_hyperbolic(); }
};
// Take out the code below to some separate file
#ifdef CGAL_EXACT_PREDICATES_EXACT_CONSTRUCTIONS_KERNEL_H
template <>
struct Triangulation_structural_filtering_traits< Hyperbolic_Delaunay_triangulation_old_traits_2<Epeck> > {
typedef Tag_true Use_structural_filtering_tag;
};
#endif // CGAL_EXACT_PREDICATES_EXACT_CONSTRUCTIONS_KERNEL_H
#ifdef CGAL_EXACT_PREDICATES_INEXACT_CONSTRUCTIONS_KERNEL_H
template <>
struct Triangulation_structural_filtering_traits< Hyperbolic_Delaunay_triangulation_old_traits_2<Epick> > {
typedef Tag_true Use_structural_filtering_tag;
};
#endif // CGAL_EXACT_PREDICATES_INEXACT_CONSTRUCTIONS_KERNEL_H
} //namespace CGAL
#endif // CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_TRAITS_2_H