mirror of https://github.com/CGAL/cgal
renaming tds
This commit is contained in:
parent
f08a6933de
commit
ea41eb3b27
|
|
@ -28,14 +28,12 @@ code
|
|||
/Simplex/Full_cell/
|
||||
/simplex/full_cell/
|
||||
/number_of_simplices/number_of_full_cells/
|
||||
/is_simplex/is_full_cell/
|
||||
/gather_simplices/gather_full_cells/
|
||||
/gather_incident_simplices/incident_full_cells/
|
||||
/gather_adjacent_simplices/compute_star/
|
||||
/gather_incident_simplices/incident_simplices/
|
||||
/contract_face/collapse_face/
|
||||
/insert_in_simplex/insert_in_full_cell/
|
||||
|
||||
/index_of/index/
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,96 +1,101 @@
|
|||
\begin{ccRefConcept}{PureComplexDSSimplex}
|
||||
\begin{ccRefConcept}{TriangulationDSFullCell}
|
||||
|
||||
\ccDefinition
|
||||
|
||||
The concept \ccRefName\ describes what a simplex is in a model of the concept
|
||||
\ccc{PureComplexDataStructure}. It sets requirements of combinatorial nature
|
||||
The concept \ccRefName\ describes what a full cell is in a model of the concept
|
||||
\ccc{TriangulationDataStructure}. It sets requirements of combinatorial nature
|
||||
only, as geometry is not concerned here.
|
||||
In the context of triangulation, the term cell refer to a face of
|
||||
maximal dimension that we often emphasize with the term {\em full cell}.
|
||||
|
||||
A \ccRefName\ is responsible for storing handles to the vertices of a simplex
|
||||
A \ccRefName\ is responsible for storing handles to the vertices of a
|
||||
full cell
|
||||
as well as handles to its neighbors.
|
||||
|
||||
This concept is a \emph{sub-concept} of the \ccc{PureComplexDataStructure}
|
||||
This concept is a \emph{sub-concept} of the \ccc{TriangulationDataStructure}
|
||||
concept.
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{Pure_complex_ds_simplex<PCDS, PCDSSimplexStoragePolicy>}
|
||||
\ccc{Triangulation_ds_full_cell<TDS, TDSFullCellStoragePolicy>}
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccNestedType{Vertex_handle}{}
|
||||
\ccGlue\ccNestedType{Vertex_const_handle}{A handle to a vertex.}
|
||||
\ccNestedType{Vertex_handle}%{}
|
||||
%\ccGlue\ccNestedType{Vertex_const_handle}
|
||||
{A handle to a vertex.}
|
||||
|
||||
\ccNestedType{Vertex_handle_const_iterator}{An iterator over the handles to
|
||||
the vertices of the simplex.}
|
||||
\ccNestedType{Vertex_handle_iterator}{An iterator over the handles to
|
||||
the vertices of the cell.}
|
||||
|
||||
\ccNestedType{Simplex_handle}{}
|
||||
\ccGlue\ccNestedType{Simplex_const_handle}{A handle to a simplex.}
|
||||
\ccNestedType{Full_cell_handle}%{}
|
||||
%\ccGlue\ccNestedType{Full_cell_const_handle}
|
||||
{A handle to a full cell.}
|
||||
|
||||
\ccNestedType{template<typename PC2> Rebind_PCDS}{This nested template
|
||||
class must define a nested type \ccc{Other} which is the rebound simplex
|
||||
class template, that is: \ccc{Other == PureComplexDSSimplex<PC2>}.}
|
||||
\ccNestedType{template<typename PC2> Rebind_TDS}{This nested template
|
||||
class must define a nested type \ccc{Other} which is the rebound cell
|
||||
class template, that is: \ccc{Other == TriangulationDSFullCell<PC2>}.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{s}
|
||||
\ccCreationVariable{c}
|
||||
|
||||
\ccConstructor{PureComplexDSSimplex(int dmax);}{Sets the maximum possible
|
||||
dimension of the simplex.}
|
||||
\ccConstructor{TriangulationDSFullCell(int dmax);}{Sets the maximum possible
|
||||
dimension of the cell.}
|
||||
|
||||
\ccConstructor{PureComplexDSSimplex(const PureComplexDSSimplex & c);}%
|
||||
\ccConstructor{TriangulationDSFullCell(const TriangulationDSFullCell & fc);}%
|
||||
{Copy constructor.}
|
||||
|
||||
If you want to create a simplex as part of a \ccc{PureComplexDataStructure},
|
||||
you would rather want to call the \ccc{new_simplex()} from the latter concept,
|
||||
as it is not possible to incorporate an existing external simplex into a pure
|
||||
complex.
|
||||
If you want to create a cell as part of a \ccc{TriangulationDataStructure},
|
||||
you would rather want to call the \ccc{new_full_cell()} from the latter concept,
|
||||
as it is not possible to incorporate an existing external cell into
|
||||
a triangulation.
|
||||
|
||||
\ccHeading{Access functions}
|
||||
|
||||
\ccMethod{int ambient_dimension() const;}{Returns one less than the maximum
|
||||
number of vertices that the simplex can store. This does \textbf{not} return
|
||||
the dimension of the actual simplex stored in \ccVar.}
|
||||
number of vertices that the full cell can store. This does \textbf{not} return
|
||||
the dimension of the actual full cell stored in \ccVar.}
|
||||
|
||||
\ccMethod{Vertex_handle_const_iterator vertices_begin() const;}
|
||||
\ccMethod{Vertex_handle_iterator vertices_begin() const;}
|
||||
{Returns an iterator to the first \ccc{Vertex_handle} stored in the
|
||||
simplex.}
|
||||
|
||||
\ccMethod{Vertex_handle_const_iterator vertices_end() const;}
|
||||
\ccMethod{Vertex_handle_iterator vertices_end() const;}
|
||||
{Returns an iterator pointing beyond the last \ccc{Vertex_handle} stored in
|
||||
the simplex.}
|
||||
|
||||
\ccMethod{Vertex_handle vertex(const int i) const;}{Returns the \ccc{i}-th vertex
|
||||
of the simplex. \ccPrecond \ccc{0 <= i <= ambient_dimension()}.}
|
||||
of the cell. \ccPrecond \ccc{0 <= i <= ambient_dimension()}.}
|
||||
|
||||
\ccGlue\ccMethod{Simplex_handle neighbor(const int i) const;}{Returns the
|
||||
simplex opposite to the \ccc{i}-th vertex of the simplex \ccVar. \ccPrecond \ccc{0
|
||||
\ccGlue\ccMethod{Full_cell_handle neighbor(const int i) const;}{Returns the
|
||||
cell opposite to the \ccc{i}-th vertex of the cell \ccVar. \ccPrecond \ccc{0
|
||||
<= i <= ambient_dimension()}.}
|
||||
|
||||
\ccMethod{int mirror_index(const int i) const;}{Returns the index \ccc{j} of
|
||||
the simplex \ccc{s} as a neighbor in the simplex \ccc{s.neighbor(i);}. If the
|
||||
the cell \ccc{s} as a neighbor in the cell \ccc{s.neighbor(i);}. If the
|
||||
returned integer is not negative, it holds that \ccVar.%
|
||||
\ccc{neighbor(i)->neighbor(j) == }\ccVar. Returns
|
||||
\ccc{-1} if \ccc{s} has no neighboring simplex of index \ccc{i}. \ccPrecond \ccc{0 <=
|
||||
\ccc{-1} if \ccc{s} has no neighboring cell of index \ccc{i}. \ccPrecond \ccc{0 <=
|
||||
i <= ambient_dimension()}.}
|
||||
|
||||
\ccMethod{int index_of(Simplex_const_handle n) const;}{Returns the index \ccc{i}
|
||||
\ccMethod{int index(Full_cell_handle n) const;}{Returns the index \ccc{i}
|
||||
of the neighbor \ccc{n} such that \ccc{s.neighbor(i)==n}. \ccPrecond \ccc{n}
|
||||
must be a neighbor of \ccc{s}.}
|
||||
\ccGlue
|
||||
\ccMethod{int index_of(Vertex_const_handle v) const;}{Returns the index \ccc{i} of
|
||||
\ccMethod{int index(Vertex_handle v) const;}{Returns the index \ccc{i} of
|
||||
the vertex \ccc{v} such that \ccc{s.vertex(i)==v}. \ccPrecond \ccc{v} must be
|
||||
a vertex of the \ccc{s}.}
|
||||
|
||||
\ccMethod{unsigned int get_flags() const;}{Returns an \ccc{unsigned int}.
|
||||
Typically used to mark the simplex as \emph{visited} during operations on a
|
||||
\ccc{PureComplexDataStructure}.}
|
||||
Typically used to mark the cell as \emph{visited} during operations on a
|
||||
\ccc{TriangulationDataStructure}.}
|
||||
|
||||
\begin{ccAdvanced}
|
||||
\ccMethod{Vertex_handle mirror_vertex(const int i, const int cur_dim) const;}
|
||||
{Returns a handle to the mirror vertex of the \ccc{i}-th vertex of simplex
|
||||
{Returns a handle to the mirror vertex of the \ccc{i}-th vertex of cell
|
||||
\ccVar. This function works even if the neighbor information stored in the
|
||||
simplex is corrupted -- useful when temporary corruption is necessary during
|
||||
surgical operation on a pure complex. \ccPrecond \ccc{0 <= i <=
|
||||
cell is corrupted -- useful when temporary corruption is necessary during
|
||||
surgical operation on a triangulation. \ccPrecond \ccc{0 <= i <=
|
||||
ambient_dimension()} and \ccc{0 <= cur_dim <= ambient_dimension()}.}
|
||||
\end{ccAdvanced}
|
||||
|
||||
|
|
@ -98,22 +103,22 @@ ambient_dimension()} and \ccc{0 <= cur_dim <= ambient_dimension()}.}
|
|||
\ccHeading{Update functions} % - - - - - - - - - - - - - - - - - UPDATES
|
||||
|
||||
\ccMethod{void set_vertex(const int i, Vertex_handle v);}{Sets the $i$-th
|
||||
vertex of the simplex. \ccPrecond \ccc{0 <= i <= ambient_dimension()}.}
|
||||
vertex of the cell. \ccPrecond \ccc{0 <= i <= ambient_dimension()}.}
|
||||
|
||||
\ccMethod{void set_neighbor(const int i, Simplex_handle n);} {Sets the
|
||||
\ccc{i}-th neighboring simplex of \ccVar\ to \ccc{n}. Simplex \ccc{n} is
|
||||
\ccMethod{void set_neighbor(const int i, Full_cell_handle n);} {Sets the
|
||||
\ccc{i}-th neighboring cell of \ccVar\ to \ccc{n}. Full cell \ccc{n} is
|
||||
opposite to the $i$-th vertex of \ccVar. \ccPrecond \ccc{0 <= i <=
|
||||
ambient_dimension()}.}
|
||||
|
||||
\ccMethod{void set_mirror_index(const int i, const int index);} {Sets the
|
||||
mirror index of the $i$-th vertex of \ccVar\ to \ccc{index}. This corresponds
|
||||
to the index, in \ccc{s->neighbor(i)}, of the simplex \ccc{s}.\\
|
||||
to the index, in \ccVar\ccc{->neighbor(i)}, of the cell \ccVar.\\
|
||||
Note: an implementation of the concept \ccVar\ may choose not to store mirror
|
||||
indices, in which case this function should do nothing.
|
||||
\ccPrecond \ccc{0 <= i <= ambient_dimension()}.}
|
||||
|
||||
\ccMethod{void swap_vertices(int d1, int d2);}{Switches the orientation of the
|
||||
simplex \ccVar\ by swapping its vertices with index \ccc{d1} and \ccc{d2}.
|
||||
cell \ccVar\ by swapping its vertices with index \ccc{d1} and \ccc{d2}.
|
||||
\ccPrecond \ccc{0 <= d1 <= ambient_dimension()} and \ccc{0 <= d2 <=
|
||||
ambient_dimension()}.}
|
||||
|
||||
|
|
@ -122,56 +127,56 @@ flags variable.}
|
|||
|
||||
\ccHeading{Queries}
|
||||
|
||||
\ccMethod{bool has_vertex(Vertex_const_handle v) const;}{Returns \ccc{true}
|
||||
if the vertex \ccc{v} is a vertex of the simplex \ccVar. Returns \ccc{false}
|
||||
\ccMethod{bool has_vertex(Vertex_handle v) const;}{Returns \ccc{true}
|
||||
if the vertex \ccc{v} is a vertex of the cell \ccVar. Returns \ccc{false}
|
||||
otherwise.}
|
||||
|
||||
\ccMethod{bool has_vertex(Vertex_const_handle v, int & ret) const;}%
|
||||
\ccMethod{bool has_vertex(Vertex_handle v, int & ret) const;}%
|
||||
{Returns \ccc{true} and sets the value of \ccc{ret} to the index of \ccc{v} in
|
||||
\ccVar\ if the vertex \ccc{v} is a vertex of the simplex \ccVar. Returns
|
||||
\ccVar\ if the vertex \ccc{v} is a vertex of the cell \ccVar. Returns
|
||||
\ccc{false} otherwise.}
|
||||
|
||||
\ccMethod{bool has_neighbor(Simplex_const_handle n) const;}{Returns \ccc{true}
|
||||
if the simplex \ccc{n} is a neighbor of the simplex \ccVar. Returns
|
||||
\ccMethod{bool has_neighbor(Full_cell_handle n) const;}{Returns \ccc{true}
|
||||
if the cell \ccc{n} is a neighbor of the cell \ccVar. Returns
|
||||
\ccc{false} otherwise.}
|
||||
|
||||
\ccMethod{bool has_neighbor(Simplex_const_handle n, int & ret) const;}%
|
||||
\ccMethod{bool has_neighbor(Full_cell_handle n, int & ret) const;}%
|
||||
{Returns \ccc{true} and sets the value of \ccc{ret} to the index of \ccc{n} as
|
||||
a neighbor of \ccVar\ if the simplex \ccc{n} is a neighbor of the simplex
|
||||
a neighbor of \ccVar\ if the cell \ccc{n} is a neighbor of the cell
|
||||
\ccVar. Returns \ccc{false} otherwise.}
|
||||
|
||||
\ccHeading{Validity check}
|
||||
|
||||
\ccMethod{bool is_valid(bool verbose=false, int level=0) const;}{Performs any
|
||||
desired test on a simplex. \emph{E.g.}, checks that for each existing vertex,
|
||||
desired test on a cell. \emph{E.g.}, checks that for each existing vertex,
|
||||
there is an existing neighbor.}
|
||||
|
||||
\ccHeading{Memory management}
|
||||
% \ccHeading{Memory management}
|
||||
|
||||
\ccMethod{void* for_compact_container() const;}{}
|
||||
\ccGlue\ccMethod{void* & for_compact_container();}{}
|
||||
% \ccMethod{void* for_compact_container() const;}{}
|
||||
% \ccGlue\ccMethod{void* & for_compact_container();}{}
|
||||
|
||||
These member functions are required by the classes
|
||||
\ccc{Pure_complex_data_structure<Dimensionality, PCDSVertex, PCDSSimplex>} and
|
||||
\ccc{Pure_complex<PCTraits, PCDS>} (and its derived classes) because they use
|
||||
\ccc{Compact_container} to store their vertices and simplices. See the
|
||||
documentation of \ccc{Compact_container} for the exact requirements.
|
||||
% These member functions are required by the classes
|
||||
% \ccc{Pure_complex_data_structure<Dimensionality, TDSVertex, TDSFullCell>} and
|
||||
% \ccc{Pure_complex<PCTraits, TDS>} (and its derived classes) because they use
|
||||
% \ccc{Compact_container} to store their vertices and simplices. See the
|
||||
% documentation of \ccc{Compact_container} for the exact requirements.
|
||||
|
||||
\ccHeading{Input/Output}
|
||||
|
||||
\ccFunction{template<class PCDS> istream& operator>>(istream & is,
|
||||
Pure_complex_ds_simplex<PCDS> & s);}
|
||||
{Reads (possible) non-combinatorial information about a simplex from the stream \ccc{is}
|
||||
\ccFunction{template<class TDS> istream& operator>>(istream & is,
|
||||
Pure_complex_ds_full_cell<TDS> & s);}
|
||||
{Reads (possible) non-combinatorial information about a cell from the stream \ccc{is}
|
||||
into \ccc{s}.}
|
||||
|
||||
\ccFunction{template<class PCDS> ostream& operator<<(ostream & os, const
|
||||
Pure_complex_ds_simplex<PCDS> & s);}
|
||||
{Writes (possible) non-combinatorial information about simplex \ccc{v} to the stream
|
||||
\ccFunction{template<class TDS> ostream& operator<<(ostream & os, const
|
||||
Pure_complex_ds_full_cell<TDS> & s);}
|
||||
{Writes (possible) non-combinatorial information about cell \ccc{v} to the stream
|
||||
\ccc{os}.}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
\ccc{PureComplexDSVertex}\\
|
||||
\ccc{PureComplexDataStructure}
|
||||
\ccc{TriangulationDSVertex}\\
|
||||
\ccc{TriangulationDataStructure}
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
|
|
|||
|
|
@ -1,81 +1,81 @@
|
|||
\begin{ccRefConcept}{PureComplexDSVertex}
|
||||
\begin{ccRefConcept}{TriangulationDSVertex}
|
||||
|
||||
\ccDefinition
|
||||
|
||||
The concept \ccRefName\ describes what a vertex is in a model of the concept
|
||||
\ccc{PureComplexDataStructure}. It sets requirements of combinatorial nature
|
||||
\ccc{TriangulationDataStructure}. It sets requirements of combinatorial nature
|
||||
only, as geometry is not concerned here. In particular, we only require that
|
||||
the vertex hold a handle to a simplex adjacent to it in the complex.
|
||||
the vertex hold a handle to a full cell incident to it in the triangulation.
|
||||
|
||||
This concept is a \emph{sub-concept} of the \ccc{PureComplexDataStructure}
|
||||
This concept is a \emph{sub-concept} of the \ccc{TriangulationDataStructure}
|
||||
concept.
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{Pure_complex_ds_vertex<PCDS>}
|
||||
\ccc{Triangulation_ds_vertex<TDS>}
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccNestedType{Simplex_handle}{A handle to a Simplex.}
|
||||
\ccNestedType{Full_cell_handle}{A handle to a cell.}
|
||||
|
||||
\ccNestedType{template<typename PC2> Rebind_PCDS}{This nested template
|
||||
\ccNestedType{template<typename PC2> Rebind_TDS}{This nested template
|
||||
class must define a nested type \ccc{Other} which is the rebound vertex
|
||||
class template, that is: \ccc{Other == PureComplexDSVertex<PC2>}.}
|
||||
class template, that is: \ccc{Other == TriangulationDSVertex<PC2>}.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{v}
|
||||
|
||||
\ccConstructor{PureComplexDSVertex();}{The default constructor (no adjacent
|
||||
simplex is set).}
|
||||
\ccConstructor{TriangulationDSVertex();}{The default constructor (no adjacent
|
||||
cell is set).}
|
||||
\ccGlue
|
||||
\ccConstructor{PureComplexDSVertex(Simplex_handle s);}{Sets the incident
|
||||
simplex to \ccc{s}. \ccPrecond \ccc{s} must not be the default-constructed
|
||||
\ccc{Simplex_handle}.}
|
||||
\ccConstructor{TriangulationDSVertex(Full_cell_handle s);}{Sets the incident
|
||||
cell to \ccc{s}. \ccPrecond \ccc{s} must not be the default-constructed
|
||||
\ccc{Full_cell_handle}.}
|
||||
|
||||
\ccOperations
|
||||
|
||||
\ccMethod{void set_simplex(Simplex_handle s);}{Set \ccc{s} as the vertex's
|
||||
adjacent simplex. \ccPrecond \ccc{s} must not be the default-constructed
|
||||
\ccc{Simplex_handle}.}
|
||||
\ccMethod{void set_full_cell(Full_cell_handle c);}{Set \ccc{c} as the vertex's
|
||||
incident cell. \ccPrecond \ccc{c} must not be the default-constructed
|
||||
\ccc{Full_cell_handle}.}
|
||||
|
||||
\ccMethod{Simplex_handle simplex() const;}{Returns a handle to a simplex
|
||||
adjacent to the vertex.}
|
||||
\ccMethod{Full_cell_handle full_cell() const;}{Returns a handle to a
|
||||
full cell incident to the vertex.}
|
||||
|
||||
\ccHeading{Validity check}
|
||||
|
||||
\ccMethod{bool is_valid(bool verbose=false, int level=0) const;}{Performs any
|
||||
desired test on a vertex. Al least, checks that the pointer to an incident
|
||||
simplex is not the default constructed handle (\emph{i.e.}, is not
|
||||
cell is not the default constructed handle (\emph{i.e.}, is not
|
||||
\ccc{NULL}). The parameter \ccc{level} is not used, but can be used in derived
|
||||
classes.}
|
||||
|
||||
\ccHeading{Memory management}
|
||||
% \ccHeading{Memory management}
|
||||
|
||||
\ccMethod{void* for_compact_container() const;}{}
|
||||
\ccGlue\ccMethod{void* & for_compact_container();}{}
|
||||
% \ccMethod{void* for_compact_container() const;}{}
|
||||
% \ccGlue\ccMethod{void* & for_compact_container();}{}
|
||||
|
||||
These member functions are required by the classes
|
||||
\ccc{Pure_complex_data_structure<Dimensionality, PCDSVertex, PCDSSimplex>} and
|
||||
\ccc{Pure_complex<PCTraits, PCDS>} (and its derived classes) because they use
|
||||
the \cgal\ container class \ccc{Compact_container} to store their vertices and
|
||||
simplices. See the documentation of \ccc{Compact_container} for the exact
|
||||
requirements.
|
||||
% These member functions are required by the classes
|
||||
% \ccc{Triangulation_data_structure<Dimensionality, TDSVertex, TDSSimplex>} and
|
||||
% \ccc{Triangulation<TrTraits, TDS>} (and its derived classes) because they use
|
||||
% the \cgal\ container class \ccc{Compact_container} to store their vertices and
|
||||
% simplices. See the documentation of \ccc{Compact_container} for the exact
|
||||
% requirements.
|
||||
|
||||
\ccHeading{Input/Output}
|
||||
|
||||
\ccFunction{template<class PCDS> istream& operator>>(istream & is,
|
||||
Pure_complex_ds_vertex<PCDS> & v);}
|
||||
\ccFunction{template<class TDS> istream& operator>>(istream & is,
|
||||
Triangulation_ds_vertex<TDS> & v);}
|
||||
{Reads (possible) non-combinatorial information about a vertex from the stream \ccc{is}
|
||||
into \ccc{v}.}
|
||||
|
||||
\ccFunction{template<class PCDS> ostream& operator<<(ostream & os, const
|
||||
Pure_complex_ds_vertex<PCDS> & v);}
|
||||
\ccFunction{template<class TDS> ostream& operator<<(ostream & os, const
|
||||
Triangulation_ds_vertex<TDS> & v);}
|
||||
{Writes (possible) non-combinatorial information about vertex \ccc{v} to the stream
|
||||
\ccc{os}.}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
\ccc{PureComplexDSSimplex}\\
|
||||
\ccc{PureComplexDataStructure}
|
||||
\ccc{TriangulationDSSimplex}\\
|
||||
\ccc{TriangulationDataStructure}
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
|
|
|||
Loading…
Reference in New Issue