mirror of https://github.com/CGAL/cgal
use mpfr for exact sign computation instead of mpq
This change applies only when the coefficient type is Gmpz and the bound type is Gmpfr.
This commit is contained in:
parent
68f368020d
commit
ea670a3a63
|
|
@ -0,0 +1,438 @@
|
|||
// Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; either version 3 of the License,
|
||||
// or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
// Author: Luis Peñaranda <luis.penaranda@gmx.com>
|
||||
|
||||
#ifndef CGAL_RS_DYADIC_H
|
||||
#define CGAL_RS_DYADIC_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <gmp.h>
|
||||
#include <mpfr.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
// for c++, compile with -lgmpxx
|
||||
#ifdef __cplusplus
|
||||
#include <iostream>
|
||||
#endif
|
||||
|
||||
#define CGALRS_dyadic_struct __mpfr_struct
|
||||
#define CGALRS_dyadic_t mpfr_t
|
||||
#define CGALRS_dyadic_ptr mpfr_ptr
|
||||
#define CGALRS_dyadic_srcptr mpfr_srcptr
|
||||
|
||||
// some auxiliary defines
|
||||
#define CGALRS_dyadic_set_prec(D,P) \
|
||||
( mpfr_set_prec( (D), (P)>MPFR_PREC_MIN?(P):MPFR_PREC_MIN) )
|
||||
|
||||
#define CGALRS_dyadic_prec_round(D,P) \
|
||||
( mpfr_prec_round( (D), (P)>MPFR_PREC_MIN?(P):MPFR_PREC_MIN, GMP_RNDN) )
|
||||
|
||||
#define CGALRS_dyadic_set_exp(D,E) \
|
||||
( CGAL_assertion( (E) <= mpfr_get_emax() && \
|
||||
(E) >= mpfr_get_emin() ) ,\
|
||||
mpfr_set_exp(D,E) )
|
||||
|
||||
// init functions
|
||||
#define CGALRS_dyadic_init(D) mpfr_init2(D,MPFR_PREC_MIN)
|
||||
#define CGALRS_dyadic_init2(D,P) mpfr_init2(D,P)
|
||||
#define CGALRS_dyadic_clear(D) mpfr_clear(D)
|
||||
|
||||
inline void CGALRS_dyadic_set(CGALRS_dyadic_ptr rop,CGALRS_dyadic_srcptr op){
|
||||
if(rop!=op){
|
||||
CGALRS_dyadic_set_prec(rop,mpfr_get_prec(op));
|
||||
mpfr_set(rop,op,GMP_RNDN);
|
||||
}
|
||||
CGAL_assertion(mpfr_equal_p(rop,op)!=0);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_set_z(CGALRS_dyadic_ptr rop,mpz_srcptr z){
|
||||
size_t prec;
|
||||
prec=mpz_sizeinbase(z,2)-(mpz_tstbit(z,0)?0:mpz_scan1(z,0));
|
||||
CGALRS_dyadic_set_prec(rop,prec);
|
||||
mpfr_set_z(rop,z,GMP_RNDN);
|
||||
CGAL_assertion(!mpfr_cmp_z(rop,z));
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_set_si(CGALRS_dyadic_ptr rop,long s){
|
||||
CGALRS_dyadic_set_prec(rop,sizeof(long));
|
||||
mpfr_set_si(rop,s,GMP_RNDN);
|
||||
CGAL_assertion(!mpfr_cmp_si(rop,s));
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_set_ui(CGALRS_dyadic_ptr rop,unsigned long u){
|
||||
CGALRS_dyadic_set_prec(rop,sizeof(unsigned long));
|
||||
mpfr_set_ui(rop,u,GMP_RNDN);
|
||||
CGAL_assertion(!mpfr_cmp_ui(rop,u));
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_set_fr(CGALRS_dyadic_ptr rop,mpfr_srcptr op){
|
||||
if(rop!=op){
|
||||
CGALRS_dyadic_set_prec(rop,mpfr_get_prec(op));
|
||||
mpfr_set(rop,op,GMP_RNDN);
|
||||
CGAL_assertion(mpfr_equal_p(rop,op)!=0);
|
||||
}
|
||||
}
|
||||
|
||||
#define CGALRS_dyadic_init_set(R,D) \
|
||||
( CGALRS_dyadic_init(R), CGALRS_dyadic_set((R), (D)) )
|
||||
#define CGALRS_dyadic_init_set_z(R,Z) \
|
||||
( CGALRS_dyadic_init(R), CGALRS_dyadic_set_z((R), (Z)) )
|
||||
#define CGALRS_dyadic_init_set_si(R,I) \
|
||||
( CGALRS_dyadic_init(R), CGALRS_dyadic_set_si((R), (I)) )
|
||||
#define CGALRS_dyadic_init_set_ui(R,I) \
|
||||
( CGALRS_dyadic_init(R), CGALRS_dyadic_set_ui((R), (I)) )
|
||||
#define CGALRS_dyadic_init_set_fr(R,F) \
|
||||
( CGALRS_dyadic_init(R), CGALRS_dyadic_set_fr((R), (F)) )
|
||||
|
||||
#define CGALRS_dyadic_get_fr(M,D) mpfr_set(M,D,GMP_RNDN)
|
||||
#define CGALRS_dyadic_get_d(D,RM) mpfr_get_d(D,RM)
|
||||
inline void CGALRS_dyadic_get_exactfr(mpfr_ptr rop,CGALRS_dyadic_srcptr op){
|
||||
if(rop!=op){
|
||||
CGALRS_dyadic_set_prec(rop,mpfr_get_prec(op));
|
||||
mpfr_set(rop,op,GMP_RNDN);
|
||||
CGAL_assertion(mpfr_equal_p(rop,op)!=0);
|
||||
}
|
||||
}
|
||||
|
||||
#define CGALRS_dyadic_canonicalize(D) ()
|
||||
|
||||
// comparison functions
|
||||
#define CGALRS_dyadic_sgn(D) mpfr_sgn(D)
|
||||
#define CGALRS_dyadic_zero(D) mpfr_zero_p(D)
|
||||
#define CGALRS_dyadic_cmp(D,E) mpfr_cmp(D,E)
|
||||
|
||||
// arithmetic functions
|
||||
#define CGALRS_dyadic_add(R,D,E) CGALRS_dyadic_ll_add(R,D,E,0)
|
||||
#define CGALRS_dyadic_sub(R,D,E) CGALRS_dyadic_ll_sub(R,D,E,0)
|
||||
#define CGALRS_dyadic_mul(R,D,E) CGALRS_dyadic_ll_mul(R,D,E,0)
|
||||
|
||||
inline void CGALRS_dyadic_neg(CGALRS_dyadic_ptr rop,CGALRS_dyadic_srcptr op){
|
||||
if(rop!=op)
|
||||
CGALRS_dyadic_set_prec(rop,mpfr_get_prec(op));
|
||||
mpfr_neg(rop,op,GMP_RNDN);
|
||||
CGAL_assertion(
|
||||
rop==op||
|
||||
(!mpfr_cmpabs(rop,op)&&
|
||||
((CGALRS_dyadic_zero(op)&&CGALRS_dyadic_zero(rop))||
|
||||
(CGALRS_dyadic_sgn(op)!=CGALRS_dyadic_sgn(rop)))));
|
||||
}
|
||||
|
||||
// low-level addition:
|
||||
// add op1 and op2 and reserve b bits for future lowlevel operations
|
||||
inline void CGALRS_dyadic_ll_add(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
CGALRS_dyadic_srcptr op2,
|
||||
mp_prec_t b){
|
||||
mp_exp_t l,r,temp1,temp2;
|
||||
mp_prec_t rop_prec;
|
||||
if(mpfr_zero_p(op1)){
|
||||
if(rop!=op2)
|
||||
CGALRS_dyadic_set(rop,op2);
|
||||
return;
|
||||
}
|
||||
if(mpfr_zero_p(op2)){
|
||||
if(rop!=op1)
|
||||
CGALRS_dyadic_set(rop,op1);
|
||||
return;
|
||||
}
|
||||
l=mpfr_get_exp(op1)>mpfr_get_exp(op2)?
|
||||
mpfr_get_exp(op1):
|
||||
mpfr_get_exp(op2);
|
||||
temp1=mpfr_get_exp(op1)-(mp_exp_t)mpfr_get_prec(op1);
|
||||
temp2=mpfr_get_exp(op2)-(mp_exp_t)mpfr_get_prec(op2);
|
||||
r=temp1>temp2?temp2:temp1;
|
||||
CGAL_assertion(l>r);
|
||||
|
||||
rop_prec=b+1+(mp_prec_t)(l-r);
|
||||
CGAL_assertion(rop_prec>=mpfr_get_prec(op1)&&
|
||||
rop_prec>=mpfr_get_prec(op2));
|
||||
if(rop==op1||rop==op2)
|
||||
CGALRS_dyadic_prec_round(rop,rop_prec);
|
||||
else
|
||||
CGALRS_dyadic_set_prec(rop,rop_prec);
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_add(rop,op1,op2,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_add_z(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
mpz_srcptr z){
|
||||
mp_exp_t l,r;
|
||||
mp_prec_t rop_prec;
|
||||
if(mpfr_zero_p(op1)){
|
||||
CGALRS_dyadic_set_z(rop,z);
|
||||
return;
|
||||
}
|
||||
if(!mpz_sgn(z)){
|
||||
if(rop!=op1)
|
||||
CGALRS_dyadic_set(rop,op1);
|
||||
return;
|
||||
}
|
||||
l=mpfr_get_exp(op1)>(mp_exp_t)mpz_sizeinbase(z,2)?
|
||||
mpfr_get_exp(op1):
|
||||
mpz_sizeinbase(z,2);
|
||||
r=mpfr_get_exp(op1)-(mp_exp_t)mpfr_get_prec(op1)<0?
|
||||
mpfr_get_exp(op1)-(mp_exp_t)mpfr_get_prec(op1):
|
||||
0;
|
||||
CGAL_assertion(l>r);
|
||||
|
||||
rop_prec=1+(mp_prec_t)(l-r);
|
||||
CGAL_assertion(rop_prec>=mpfr_get_prec(op1)&&
|
||||
rop_prec>=(mp_prec_t)mpz_sizeinbase(z,2));
|
||||
if(rop==op1)
|
||||
CGALRS_dyadic_prec_round(rop,rop_prec);
|
||||
else
|
||||
CGALRS_dyadic_set_prec(rop,rop_prec);
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_add_z(rop,op1,z,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
// low-level subtraction:
|
||||
// subtract op2 to op1 and reserve b bits for future lowlevel operations
|
||||
inline void CGALRS_dyadic_ll_sub(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
CGALRS_dyadic_srcptr op2,
|
||||
mp_prec_t b){
|
||||
mp_exp_t l,r,temp1,temp2;
|
||||
mp_prec_t rop_prec;
|
||||
if(mpfr_zero_p(op1)){
|
||||
CGALRS_dyadic_neg(rop,op2);
|
||||
return;
|
||||
}
|
||||
if(mpfr_zero_p(op2)){
|
||||
if(rop!=op1)
|
||||
CGALRS_dyadic_set(rop,op1);
|
||||
return;
|
||||
}
|
||||
l=mpfr_get_exp(op1)>mpfr_get_exp(op2)?
|
||||
mpfr_get_exp(op1):
|
||||
mpfr_get_exp(op2);
|
||||
temp1=mpfr_get_exp(op1)-(mp_exp_t)mpfr_get_prec(op1);
|
||||
temp2=mpfr_get_exp(op2)-(mp_exp_t)mpfr_get_prec(op2);
|
||||
r=temp1>temp2?temp2:temp1;
|
||||
CGAL_assertion(l>r);
|
||||
|
||||
rop_prec=b+1+(mp_prec_t)(l-r);
|
||||
CGAL_assertion(rop_prec>=mpfr_get_prec(op1)&&
|
||||
rop_prec>=mpfr_get_prec(op2));
|
||||
if(rop==op1||rop==op2)
|
||||
CGALRS_dyadic_prec_round(rop,rop_prec);
|
||||
else
|
||||
CGALRS_dyadic_set_prec(rop,rop_prec);
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_sub(rop,op1,op2,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
// low-level multiplication:
|
||||
// multiply op1 and op2 and reserve b bits for future lowlevel operations
|
||||
inline void CGALRS_dyadic_ll_mul(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
CGALRS_dyadic_srcptr op2,
|
||||
mp_prec_t b){
|
||||
if(rop==op1||rop==op2)
|
||||
CGALRS_dyadic_prec_round(rop,b+mpfr_get_prec(op1)+mpfr_get_prec(op2));
|
||||
else
|
||||
CGALRS_dyadic_set_prec(rop,b+mpfr_get_prec(op1)+mpfr_get_prec(op2));
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_mul(rop,op1,op2,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_mul_z(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
mpz_srcptr z){
|
||||
if(rop==op1)
|
||||
CGALRS_dyadic_prec_round(
|
||||
rop,
|
||||
mpfr_get_prec(op1)+mpz_sizeinbase(z,2));
|
||||
else
|
||||
CGALRS_dyadic_set_prec(
|
||||
rop,
|
||||
mpfr_get_prec(op1)+mpz_sizeinbase(z,2));
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_mul_z(rop,op1,z,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_mul_si(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
long s){
|
||||
if(rop==op1)
|
||||
CGALRS_dyadic_prec_round(rop,mpfr_get_prec(op1)+sizeof(long));
|
||||
else
|
||||
CGALRS_dyadic_set_prec(rop,mpfr_get_prec(op1)+sizeof(long));
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_mul_si(rop,op1,s,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_mul_ui(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
unsigned long u){
|
||||
if(rop==op1)
|
||||
CGALRS_dyadic_prec_round(
|
||||
rop,
|
||||
mpfr_get_prec(op1)+sizeof(unsigned long));
|
||||
else
|
||||
CGALRS_dyadic_set_prec(
|
||||
rop,
|
||||
mpfr_get_prec(op1)+sizeof(unsigned long));
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_mul_ui(rop,op1,u,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_pow_ui(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
unsigned long u){
|
||||
if(!u){
|
||||
CGAL_assertion_msg(!mpfr_zero_p(op1),"0^0");
|
||||
CGALRS_dyadic_set_ui(rop,1);
|
||||
return;
|
||||
}
|
||||
if(u==1){
|
||||
if(rop!=op1)
|
||||
CGALRS_dyadic_set(rop,op1);
|
||||
return;
|
||||
}
|
||||
if(mpfr_zero_p(op1)){
|
||||
CGAL_assertion_msg(u!=0,"0^0");
|
||||
CGALRS_dyadic_set_ui(rop,0);
|
||||
return;
|
||||
}
|
||||
if(!mpfr_cmp_ui(op1,1)){
|
||||
if(rop!=op1)
|
||||
CGALRS_dyadic_set(rop,op1);
|
||||
return;
|
||||
}
|
||||
if(rop==op1)
|
||||
CGALRS_dyadic_prec_round(rop,u*mpfr_get_prec(op1));
|
||||
else
|
||||
CGALRS_dyadic_set_prec(rop,u*mpfr_get_prec(op1));
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_pow_ui(rop,op1,u,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_addmul(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
CGALRS_dyadic_srcptr op2){
|
||||
CGALRS_dyadic_t temp;
|
||||
CGALRS_dyadic_init(temp);
|
||||
CGALRS_dyadic_mul(temp,op1,op2);
|
||||
CGALRS_dyadic_add(rop,rop,temp);
|
||||
CGALRS_dyadic_clear(temp);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_addmul_si(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
long op2){
|
||||
CGALRS_dyadic_t temp;
|
||||
CGALRS_dyadic_init(temp);
|
||||
CGALRS_dyadic_mul_si(temp,op1,op2);
|
||||
CGALRS_dyadic_add(rop,rop,temp);
|
||||
CGALRS_dyadic_clear(temp);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_addmul_ui(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
unsigned long u){
|
||||
//CGALRS_dyadic_t temp;
|
||||
//CGALRS_dyadic_init(temp);
|
||||
//CGALRS_dyadic_mul_ui(temp,op1,u);
|
||||
//CGALRS_dyadic_add(rop,rop,temp);
|
||||
//CGALRS_dyadic_clear(temp);
|
||||
CGALRS_dyadic_t temp;
|
||||
mp_exp_t l,r,temp1,temp2;
|
||||
mp_prec_t rop_prec;
|
||||
if(u==0||mpfr_zero_p(op1))
|
||||
return;
|
||||
if(u==1){
|
||||
CGALRS_dyadic_add(rop,rop,op1);
|
||||
return;
|
||||
}
|
||||
// TODO: if(op1==1)
|
||||
// calculate temp=op1*u
|
||||
mpfr_init2(temp,mpfr_get_prec(op1)+sizeof(unsigned int));
|
||||
CGAL_assertion_code(int round1=)
|
||||
mpfr_mul_ui(temp,op1,u,GMP_RNDN);
|
||||
CGAL_assertion(!round1);
|
||||
// calculate the precision needed for rop
|
||||
l=mpfr_get_exp(op1)>0?mpfr_get_exp(op1):0;
|
||||
temp1=mpfr_get_exp(op1)-(mp_exp_t)mpfr_get_prec(op1);
|
||||
temp2=sizeof(unsigned long);
|
||||
r=temp1>temp2?temp2:temp1;
|
||||
CGAL_assertion(l>r);
|
||||
rop_prec=sizeof(unsigned long)+1+(mp_prec_t)(l-r);
|
||||
CGAL_assertion(rop_prec>=mpfr_get_prec(op1)&&
|
||||
rop_prec>=mpfr_get_prec(rop));
|
||||
// set precision and add
|
||||
CGALRS_dyadic_prec_round(rop,rop_prec);
|
||||
CGAL_assertion_code(int round2=)
|
||||
mpfr_add(rop,rop,temp,GMP_RNDN);
|
||||
CGAL_assertion(!round2);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_mul_2exp(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
unsigned long ui){
|
||||
// mpfr_mul_2ui does change the mantissa!
|
||||
if(rop==op1)
|
||||
CGALRS_dyadic_prec_round(
|
||||
rop,
|
||||
sizeof(unsigned long)+mpfr_get_prec(op1));
|
||||
else
|
||||
CGALRS_dyadic_set_prec(
|
||||
rop,
|
||||
sizeof(unsigned long)+mpfr_get_prec(op1));
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_mul_2ui(rop,op1,ui,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
inline void CGALRS_dyadic_div_2exp(CGALRS_dyadic_ptr rop,
|
||||
CGALRS_dyadic_srcptr op1,
|
||||
unsigned long ui){
|
||||
// mpfr_div_2ui does not change the mantissa... am I sure?
|
||||
CGAL_assertion_code(int round=)
|
||||
mpfr_div_2ui(rop,op1,ui,GMP_RNDN);
|
||||
CGAL_assertion(!round);
|
||||
}
|
||||
|
||||
// miscelaneous functions
|
||||
#define CGALRS_dyadic_midpoint(R,D,E) \
|
||||
( CGALRS_dyadic_ll_add(R,D,E,1) , mpfr_div_2ui(R,R,1,GMP_RNDN) )
|
||||
#define CGALRS_dyadic_swap(D,E) mpfr_swap(D,E)
|
||||
|
||||
// I/O functions
|
||||
#define CGALRS_dyadic_out_str(F,D) mpfr_out_str(F,10,0,D,GMP_RNDN)
|
||||
#ifdef __cplusplus
|
||||
inline std::ostream& operator<<(std::ostream &s,CGALRS_dyadic_srcptr op){
|
||||
mp_exp_t exponent;
|
||||
mpz_t mantissa;
|
||||
mpz_init(mantissa);
|
||||
exponent=mpfr_get_z_exp(mantissa,op);
|
||||
s<<"["<<mantissa<<","<<exponent<<"]";
|
||||
return s;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // CGAL_RS_DYADIC_H
|
||||
|
|
@ -0,0 +1,60 @@
|
|||
// Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; version 2.1 of the License.
|
||||
// See the file LICENSE.LGPL distributed with CGAL.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
// Author: Luis Peñaranda <luis.penaranda@gmx.com>
|
||||
|
||||
#ifndef CGAL_RS_EXACT_SIGNAT_1_H
|
||||
#define CGAL_RS_EXACT_SIGNAT_1_H
|
||||
|
||||
#include <CGAL/Polynomial_traits_d.h>
|
||||
#include "dyadic.h"
|
||||
|
||||
namespace CGAL{
|
||||
namespace RS_AK1{
|
||||
|
||||
template <class Polynomial_,class Bound_>
|
||||
struct ExactSignat_1{
|
||||
typedef Polynomial_ Polynomial;
|
||||
typedef Bound_ Bound;
|
||||
typedef CGAL::Polynomial_traits_d<Polynomial> PT;
|
||||
typedef typename PT::Degree Degree;
|
||||
Polynomial pol;
|
||||
ExactSignat_1(const Polynomial &p):pol(p){};
|
||||
CGAL::Sign operator()(const Bound&)const;
|
||||
}; // struct ExactSignat_1
|
||||
|
||||
template <>
|
||||
inline CGAL::Sign
|
||||
ExactSignat_1<Polynomial<Gmpz>,Gmpfr>::operator()(const Gmpfr &x)const{
|
||||
int d=Degree()(pol);
|
||||
if(d==0)
|
||||
return pol[0].sign();
|
||||
// Construct a Gmpfr containing exactly the leading coefficient.
|
||||
Gmpfr h(pol[d],pol[d].bit_size());
|
||||
CGAL_assertion(h==pol[d]);
|
||||
// Horner's evaluation.
|
||||
for(int i=1;i<d;++i){
|
||||
CGALRS_dyadic_mul(h.fr(),h.fr(),x.fr());
|
||||
CGALRS_dyadic_add_z(h.fr(),h.fr(),pol[d-i].mpz());
|
||||
}
|
||||
// TODO: We can avoid doing the last addition.
|
||||
return h.sign();
|
||||
}
|
||||
|
||||
} // namespace RS_AK1
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_RS_EXACT_SIGNAT_1_H
|
||||
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#include <CGAL/Gmpfi.h>
|
||||
#include <CGAL/Polynomial_traits_d.h>
|
||||
#include "exact_signat_1.h"
|
||||
//#include <boost/mpl/assert.hpp>
|
||||
|
||||
namespace CGAL{
|
||||
|
|
@ -57,7 +58,8 @@ Signat_1<Polynomial_,Bound_>::operator()(const Bound_ &x)const{
|
|||
template <>
|
||||
inline CGAL::Sign
|
||||
Signat_1<Polynomial<Gmpz>,Gmpfr>::operator()(const Gmpfr &x)const{
|
||||
typedef Signat_1<Polynomial,Gmpq> Exact_sign;
|
||||
//typedef Signat_1<Polynomial,Gmpq> Exact_sign;
|
||||
typedef ExactSignat_1<Polynomial,Gmpfr> Exact_sign;
|
||||
// This seems to work faster for small polynomials:
|
||||
// return Exact_sign(pol)(x);
|
||||
int d=Degree()(pol);
|
||||
|
|
|
|||
Loading…
Reference in New Issue