mirror of https://github.com/CGAL/cgal
new manual
This commit is contained in:
parent
08d1f279b0
commit
eb1ea04d8c
|
|
@ -2736,6 +2736,13 @@ Minkowski_sum_2/test/Minkowski_sum_2/data/rooms_part1.dat -text
|
||||||
Minkowski_sum_2/test/Minkowski_sum_2/data/rooms_part2.dat -text
|
Minkowski_sum_2/test/Minkowski_sum_2/data/rooms_part2.dat -text
|
||||||
Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part1.dat -text
|
Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part1.dat -text
|
||||||
Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part2.dat -text
|
Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part2.dat -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/decomposition_method.eps -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/decomposition_method.pdf -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/glide.eps -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/spoon_star.ps -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/tight_passage.ps -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3/main.aux -text
|
||||||
|
Minkowski_sum_3/doc_tex/Minkowski_sum_3_ref/main.aux -text
|
||||||
Modifier/doc_tex/Modifier/idraw/modifier.eps -text svneol=unset#application/postscript
|
Modifier/doc_tex/Modifier/idraw/modifier.eps -text svneol=unset#application/postscript
|
||||||
Modifier/doc_tex/Modifier/idraw/modifier.pdf -text svneol=unset#application/pdf
|
Modifier/doc_tex/Modifier/idraw/modifier.pdf -text svneol=unset#application/pdf
|
||||||
Modifier/doc_tex/Modifier/modifier.gif -text svneol=unset#image/gif
|
Modifier/doc_tex/Modifier/modifier.gif -text svneol=unset#image/gif
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,351 @@
|
||||||
|
%!PS-Adobe-3.0 EPSF-3.0
|
||||||
|
%%Creator: Ipelib 60023 (Ipe 6.0 preview 23)
|
||||||
|
%%CreationDate: D:20080615141514
|
||||||
|
%%LanguageLevel: 2
|
||||||
|
%%BoundingBox: 3 671 361 825
|
||||||
|
%%HiResBoundingBox: 3.2 671.2 360.8 824.8
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
%%BeginResource: procset ipe 6.0 60023
|
||||||
|
/ipe 40 dict def ipe begin
|
||||||
|
/np { newpath } def
|
||||||
|
/m { moveto } def
|
||||||
|
/l { lineto } def
|
||||||
|
/c { curveto } def
|
||||||
|
/h { closepath } def
|
||||||
|
/re { 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
|
||||||
|
neg 0 rlineto closepath } def
|
||||||
|
/d { setdash } def
|
||||||
|
/w { setlinewidth } def
|
||||||
|
/J { setlinecap } def
|
||||||
|
/j { setlinejoin } def
|
||||||
|
/cm { [ 7 1 roll ] concat } def
|
||||||
|
/q { gsave } def
|
||||||
|
/Q { grestore } def
|
||||||
|
/g { setgray } def
|
||||||
|
/rg { setrgbcolor } def
|
||||||
|
/G { setgray } def
|
||||||
|
/RG { setrgbcolor } def
|
||||||
|
/S { stroke } def
|
||||||
|
/f* { eofill } def
|
||||||
|
/f { fill } def
|
||||||
|
/ipeMakeFont {
|
||||||
|
exch findfont
|
||||||
|
dup length dict begin
|
||||||
|
{ 1 index /FID ne { def } { pop pop } ifelse } forall
|
||||||
|
/Encoding exch def
|
||||||
|
currentdict
|
||||||
|
end
|
||||||
|
definefont pop
|
||||||
|
} def
|
||||||
|
/ipeFontSize 0 def
|
||||||
|
/Tf { dup /ipeFontSize exch store selectfont } def
|
||||||
|
/Td { translate } def
|
||||||
|
/BT { gsave } def
|
||||||
|
/ET { grestore } def
|
||||||
|
/TJ { 0 0 moveto { dup type /stringtype eq
|
||||||
|
{ show } { ipeFontSize mul -0.001 mul 0 rmoveto } ifelse
|
||||||
|
} forall } def
|
||||||
|
end
|
||||||
|
%%EndResource
|
||||||
|
%%EndProlog
|
||||||
|
%%BeginSetup
|
||||||
|
ipe begin
|
||||||
|
%%EndSetup
|
||||||
|
q np
|
||||||
|
28 704 m
|
||||||
|
36 704 l
|
||||||
|
36 680 l
|
||||||
|
4 680 l
|
||||||
|
4 688 l
|
||||||
|
h 1 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
44 728 m
|
||||||
|
60 744 l
|
||||||
|
68 744 l
|
||||||
|
84 728 l
|
||||||
|
84 688 l
|
||||||
|
68 672 l
|
||||||
|
60 672 l
|
||||||
|
44 688 l
|
||||||
|
h 1 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
92 736 m
|
||||||
|
124 736 l
|
||||||
|
124 728 l
|
||||||
|
100 712 l
|
||||||
|
92 712 l
|
||||||
|
h 1 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
92 704 m
|
||||||
|
92 680 l
|
||||||
|
124 680 l
|
||||||
|
124 688 l
|
||||||
|
100 704 l
|
||||||
|
h 1 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
188 744 m
|
||||||
|
180 744 l
|
||||||
|
164 728 l
|
||||||
|
140 728 l
|
||||||
|
140 720 l
|
||||||
|
160 708 l
|
||||||
|
140 696 l
|
||||||
|
140 688 l
|
||||||
|
164 688 l
|
||||||
|
180 672 l
|
||||||
|
188 672 l
|
||||||
|
204 688 l
|
||||||
|
228 688 l
|
||||||
|
228 696 l
|
||||||
|
208 708 l
|
||||||
|
228 720 l
|
||||||
|
228 728 l
|
||||||
|
204 728 l
|
||||||
|
h 1 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
4 736 m
|
||||||
|
4 728 l
|
||||||
|
28 712 l
|
||||||
|
36 712 l
|
||||||
|
36 736 l
|
||||||
|
h 1 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
64 824 m
|
||||||
|
48 808 l
|
||||||
|
24 808 l
|
||||||
|
48 792 l
|
||||||
|
48 792 l
|
||||||
|
48 792 l
|
||||||
|
24 776 l
|
||||||
|
48 776 l
|
||||||
|
64 760 l
|
||||||
|
80 776 l
|
||||||
|
104 776 l
|
||||||
|
80 792 l
|
||||||
|
104 808 l
|
||||||
|
80 808 l
|
||||||
|
80 808 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
184 824 m
|
||||||
|
168 808 l
|
||||||
|
144 808 l
|
||||||
|
168 792 l
|
||||||
|
168 792 l
|
||||||
|
168 792 l
|
||||||
|
144 776 l
|
||||||
|
168 776 l
|
||||||
|
184 760 l
|
||||||
|
200 776 l
|
||||||
|
224 776 l
|
||||||
|
200 792 l
|
||||||
|
224 808 l
|
||||||
|
200 808 l
|
||||||
|
200 808 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
168 808 m
|
||||||
|
168 776 l
|
||||||
|
0 0.333333 1 rg q f* Q [1 3] 0 d 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
200 808 m
|
||||||
|
200 776 l
|
||||||
|
[1 3] 0 d 0.8 w S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
288 808 m
|
||||||
|
288 776 l
|
||||||
|
304 760 l
|
||||||
|
320 776 l
|
||||||
|
320 808 l
|
||||||
|
304 824 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
336 816 m
|
||||||
|
336 800 l
|
||||||
|
360 816 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
272 816 m
|
||||||
|
272 800 l
|
||||||
|
248 816 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
272 784 m
|
||||||
|
248 768 l
|
||||||
|
272 768 l
|
||||||
|
272 768 l
|
||||||
|
272 768 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
336 784 m
|
||||||
|
336 768 l
|
||||||
|
360 768 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
48 724 m
|
||||||
|
48 692 l
|
||||||
|
64 676 l
|
||||||
|
80 692 l
|
||||||
|
80 724 l
|
||||||
|
64 740 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
96 732 m
|
||||||
|
96 716 l
|
||||||
|
120 732 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
32 732 m
|
||||||
|
32 716 l
|
||||||
|
8 732 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
32 700 m
|
||||||
|
8 684 l
|
||||||
|
32 684 l
|
||||||
|
32 684 l
|
||||||
|
32 684 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
96 700 m
|
||||||
|
96 684 l
|
||||||
|
120 684 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
184 740 m
|
||||||
|
168 724 l
|
||||||
|
144 724 l
|
||||||
|
168 708 l
|
||||||
|
168 708 l
|
||||||
|
168 708 l
|
||||||
|
144 692 l
|
||||||
|
168 692 l
|
||||||
|
184 676 l
|
||||||
|
200 692 l
|
||||||
|
224 692 l
|
||||||
|
200 708 l
|
||||||
|
224 724 l
|
||||||
|
200 724 l
|
||||||
|
200 724 l
|
||||||
|
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
308 744 m
|
||||||
|
300 744 l
|
||||||
|
284 728 l
|
||||||
|
260 728 l
|
||||||
|
260 720 l
|
||||||
|
280 708 l
|
||||||
|
260 696 l
|
||||||
|
260 688 l
|
||||||
|
284 688 l
|
||||||
|
300 672 l
|
||||||
|
308 672 l
|
||||||
|
324 688 l
|
||||||
|
348 688 l
|
||||||
|
348 696 l
|
||||||
|
328 708 l
|
||||||
|
348 720 l
|
||||||
|
348 728 l
|
||||||
|
324 728 l
|
||||||
|
h 0.333333 1 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
244 796 m
|
||||||
|
244 788 l
|
||||||
|
252 788 l
|
||||||
|
252 796 l
|
||||||
|
h 1 0 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
4 736 m
|
||||||
|
4 728 l
|
||||||
|
12 728 l
|
||||||
|
12 736 l
|
||||||
|
h 1 0 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
124 796 m
|
||||||
|
124 788 l
|
||||||
|
132 788 l
|
||||||
|
132 796 l
|
||||||
|
h 1 0 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
129 792 m
|
||||||
|
129 792.552 128.552 793 128 793 c
|
||||||
|
127.448 793 127 792.552 127 792 c
|
||||||
|
127 791.448 127.448 791 128 791 c
|
||||||
|
128.552 791 129 791.448 129 792 c
|
||||||
|
h q f* Q 0.4 w S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
9 732 m
|
||||||
|
9 732.552 8.55228 733 8 733 c
|
||||||
|
7.44772 733 7 732.552 7 732 c
|
||||||
|
7 731.448 7.44772 731 8 731 c
|
||||||
|
8.55228 731 9 731.448 9 732 c
|
||||||
|
h q f* Q 0.4 w S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
249 792 m
|
||||||
|
249 792.552 248.552 793 248 793 c
|
||||||
|
247.448 793 247 792.552 247 792 c
|
||||||
|
247 791.448 247.448 791 248 791 c
|
||||||
|
248.552 791 249 791.448 249 792 c
|
||||||
|
h q f* Q 0.4 w S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
4 796 m
|
||||||
|
4 788 l
|
||||||
|
12 788 l
|
||||||
|
12 796 l
|
||||||
|
h 1 0 0 rg q f* Q 0.8 w 0 g S
|
||||||
|
Q
|
||||||
|
q np
|
||||||
|
9 792 m
|
||||||
|
9 792.552 8.55228 793 8 793 c
|
||||||
|
7.44772 793 7 792.552 7 792 c
|
||||||
|
7 791.448 7.44772 791 8 791 c
|
||||||
|
8.55228 791 9 791.448 9 792 c
|
||||||
|
h q f* Q 0.4 w S
|
||||||
|
Q
|
||||||
|
showpage
|
||||||
|
%%BeginIpeXml: /FlateDecode
|
||||||
|
%GhV7]gN)"%&:N^l1jV+%Z7LnDmSdKh)$3LY@'I[*o^_\2?!0)4A2&Z^SMW-Z:KI%XZSsEkF*5<Z
|
||||||
|
%7C.3g0'?CDR;fTJ$@A_?S:?;_4Vk,:MPD\N0O3BK94r;uQsf/8AO]8jFYn0O<TW["Q9#!=71*IV
|
||||||
|
%NmfsZ;]3JYe^CST`L=YNcK=``B?h;f<<M.mn5e;AJitu/\TbfHS1A+umB<6m41bZK/aKg@SKs,Z
|
||||||
|
%p;+u>io#i0]4u[pqd&$TrLp2KY\@Ft`<Ptf6fUF#bV1aKRnCt,Xt7s)s)V3WO<H>:+@[9H;ouJC
|
||||||
|
%6k^sTJ@-ArrX-)SZl[I=80:gDMH>A\9EVI69M^dPRhcjUj8h!qOq\0i$e1Z%!dY<OgJKL:U!b/`
|
||||||
|
%'+5r78<2F14IhokJUeA/gc\7j'i_)dP/kRT+$qo[+L1?$=5jp.P(^564.B+KH'u5WCdQC&K9-dU
|
||||||
|
%<FZ"$LqH8e>0g_(2F=3im`cg1O)=!2F(,pP3-9[SiX2l%!7#RN5:euCK#AKt9SOENZ)JLh-)8]a
|
||||||
|
%%:Dt$]$NbDr+)T2nsd#r)E+;2QV[hB@(H=sVD!\HM9d-3IOVe'h61n6X:F_Z3$0$*6KHi5o$Zsa
|
||||||
|
%I+c83_7rikq+pX5MEMbF$o@(qhbsb?IMIcgH]jNV\tJZ)I=hfHJ(L,nF5WN\^4J*Y`gQWu>T(-P
|
||||||
|
%U]Sl840fk996[G3X#6dO0$X_m1,A-%lFI6B4&Mm4\*kO+Jg%4VCd$**Ponn2Pk6+c*nbsjo$jRd
|
||||||
|
%"SZPr5.LX]/4\l3d@]R>AI:\+Q>#Q%5j]HCS>,)IO13SZ_Rn2Z4P$WO2HOCBWbIis\q8O2)GUSL
|
||||||
|
%PPs4dE"=e!J"N"u;EDl@[YtLkVA`FUfD*7\*%5`EBg3fd1e@f@1;RlBnEObuquIrd*XD~>
|
||||||
|
%%EndIpeXml
|
||||||
|
%%Trailer
|
||||||
|
end
|
||||||
|
%%EOF
|
||||||
Binary file not shown.
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,953 @@
|
||||||
|
%!PS-Adobe-3.0
|
||||||
|
%%Creator: GIMP PostScript file plugin V 1.17 by Peter Kirchgessner
|
||||||
|
%%Title: tight_passage_grey.ps
|
||||||
|
%%CreationDate: Fri Apr 13 01:25:27 2007
|
||||||
|
%%DocumentData: Clean7Bit
|
||||||
|
%%LanguageLevel: 2
|
||||||
|
%%Pages: 1
|
||||||
|
%%BoundingBox: 14 14 320 320
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
% Use own dictionary to avoid conflicts
|
||||||
|
10 dict begin
|
||||||
|
%%EndProlog
|
||||||
|
%%Page: 1 1
|
||||||
|
% Translate for offset
|
||||||
|
14.173228346456694 14.173228346456694 translate
|
||||||
|
% Translate to begin of first scanline
|
||||||
|
0 304.95118110236223 translate
|
||||||
|
304.95118110236223 -304.95118110236223 scale
|
||||||
|
% Image geometry
|
||||||
|
305 305 8
|
||||||
|
% Transformation matrix
|
||||||
|
[ 305 0 0 305 0 0 ]
|
||||||
|
% Strings to hold RGB-samples per scanline
|
||||||
|
/rstr 305 string def
|
||||||
|
/gstr 305 string def
|
||||||
|
/bstr 305 string def
|
||||||
|
{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop}
|
||||||
|
{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop}
|
||||||
|
{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop}
|
||||||
|
true 3
|
||||||
|
%%BeginData: 17528 ASCII Bytes
|
||||||
|
colorimage
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-^%6JXQD'Y0?m5J,~>
|
||||||
|
s-^%6JXQD'Y0?m5J,~>
|
||||||
|
s-^%6JXQD'Y0?m5J,~>
|
||||||
|
s-^%6JXQD'Y0?m5J,~>
|
||||||
|
s-^%6JXQD'Y0?m5J,~>
|
||||||
|
s-^%6JXQD'Y0?m5J,~>
|
||||||
|
s-^%6rL)C>VO=U2rgA9~>
|
||||||
|
s-^%6rL)C>VO=U2rgA9~>
|
||||||
|
s-^%6rL)C>VO=U2rgA9~>
|
||||||
|
s-^%6rgDF=VjX^3rgA9~>
|
||||||
|
s-^%6rgDF=VjX^3rgA9~>
|
||||||
|
s-^%6rgDF=VjX^3rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6s-_I<rgBt6rL'h4rgA9~>
|
||||||
|
s-^%6rgDF=rL'k5rL'h4rgA9~>
|
||||||
|
s-^%6rgDF=rL'k5rL'h4rgA9~>
|
||||||
|
s-^%6rgDF=rL'k5rL'h4rgA9~>
|
||||||
|
s-^%6rL)C>r0ab4rL'h4rgA9~>
|
||||||
|
s-^%6rL)C>r0ab4rL'h4rgA9~>
|
||||||
|
s-^%6rL)C>r0ab4rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-^%6d@%2^rL'h4rgA9~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
s-\G^XN^X2Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
JXNC'Y0?m5J,~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
s-\G^J]uZgrgA9~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
JXM(Wd$]C~>
|
||||||
|
%%EndData
|
||||||
|
showpage
|
||||||
|
%%Trailer
|
||||||
|
end
|
||||||
|
%%EOF
|
||||||
|
|
@ -0,0 +1,45 @@
|
||||||
|
\relax
|
||||||
|
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Minkowski Sum of Polyhedra }{1}{chapter.1}}
|
||||||
|
\@writefile{lof}{\addvspace {10\p@ }}
|
||||||
|
\@writefile{lot}{\addvspace {10\p@ }}
|
||||||
|
\newlabel{chapterMinkowskiSum3}{{1}{1}{Minkowski Sum of Polyhedra \label {chapterMinkowskiSum3}\relax }{chapter.1}{}}
|
||||||
|
\@writefile{lof}{\contentsline {xchapter}{Minkowski Sum of Polyhedra }{1}{chapter.1}}
|
||||||
|
\@writefile{lot}{\contentsline {xchapter}{Minkowski Sum of Polyhedra }{1}{chapter.1}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Introduction}{1}{section.1.1}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Decomposition Method}{1}{section.1.2}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Features and Restrictions}{1}{section.1.3}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces The Minkowski sum of a spoon and a star.}}{1}{figure.1.1}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces The Minkowski sum of a spoon and a star.}}{2}{figure.1.2}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces The Minkowski sum of a spoon and a star.}}{2}{figure.1.3}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Usage}{2}{section.1.4}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces The Minkowski sum of a spoon and a star.}}{4}{figure.1.4}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Glide}{4}{section.1.5}}
|
||||||
|
\@setckpt{Minkowski_sum_3/main}{
|
||||||
|
\setcounter{page}{6}
|
||||||
|
\setcounter{equation}{0}
|
||||||
|
\setcounter{enumi}{4}
|
||||||
|
\setcounter{enumii}{0}
|
||||||
|
\setcounter{enumiii}{0}
|
||||||
|
\setcounter{enumiv}{0}
|
||||||
|
\setcounter{footnote}{0}
|
||||||
|
\setcounter{mpfootnote}{0}
|
||||||
|
\setcounter{part}{0}
|
||||||
|
\setcounter{chapter}{1}
|
||||||
|
\setcounter{section}{5}
|
||||||
|
\setcounter{subsection}{0}
|
||||||
|
\setcounter{subsubsection}{0}
|
||||||
|
\setcounter{paragraph}{0}
|
||||||
|
\setcounter{subparagraph}{0}
|
||||||
|
\setcounter{figure}{4}
|
||||||
|
\setcounter{table}{0}
|
||||||
|
\setcounter{r@tfl@t}{0}
|
||||||
|
\setcounter{LT@tables}{0}
|
||||||
|
\setcounter{LT@chunks}{0}
|
||||||
|
\setcounter{Item}{9}
|
||||||
|
\setcounter{Hfootnote}{0}
|
||||||
|
\setcounter{mtc}{1}
|
||||||
|
\setcounter{minitocdepth}{2}
|
||||||
|
\setcounter{ptc}{0}
|
||||||
|
\setcounter{parttocdepth}{2}
|
||||||
|
\setcounter{section@level}{1}
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,155 @@
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | CGAL User Manual:
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% |
|
||||||
|
% | 10.07.2008 Peter Hachenberger
|
||||||
|
% |
|
||||||
|
\RCSdef{\MinkowskiSum3Rev}{$Id$}
|
||||||
|
\RCSdefDate{\MinkowskiSum3Date}{$Date$}
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
|
||||||
|
\ccParDims
|
||||||
|
|
||||||
|
\ccUserChapter{Minkowski Sum of Polyhedra \label{chapterMinkowskiSum3}}
|
||||||
|
\ccChapterRelease{\MinkowskiSum3Rev. \ \MinkowskiSum3Date}
|
||||||
|
\ccChapterAuthor{Peter Hachenberger}
|
||||||
|
|
||||||
|
%\input{Minkowski_sum_3/PkgDescription.tex}
|
||||||
|
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{ccTexOnly}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/spoon_star}
|
||||||
|
\end{center}
|
||||||
|
\end{ccTexOnly}
|
||||||
|
\begin{ccHtmlOnly}
|
||||||
|
<p><center>
|
||||||
|
<img src="./fig/spoon_star.gif" border=0 alt="Minkowski sum example">
|
||||||
|
</center>
|
||||||
|
\end{ccHtmlOnly}
|
||||||
|
\caption{The Minkowski sum of a spoon and a star.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The Minkowski sum of two point sets $P$ and $Q$ in $R^d$, denoted by
|
||||||
|
$P \oplus Q$, is defined as the set $\{p+q:p \in P, q \in Q
|
||||||
|
\}$. Minkowski sums are used in a wide range of applications such as
|
||||||
|
robot motion planning and computer-aided design. This
|
||||||
|
package provides a function that computes the Minkowski sum of two Nef
|
||||||
|
polyhedra.
|
||||||
|
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
\section{Decomposition Method}
|
||||||
|
|
||||||
|
The decomposition method for computing the Minkowski sum of non-convex
|
||||||
|
polyhedra is based on the fact that the Minkowski sum of convex
|
||||||
|
polyhedra is rather easy to compute. The method decomposes both
|
||||||
|
polyhedra into convex pieces computes all pairwise Minkowski sums of
|
||||||
|
the convex pieces and merges the pairwise sums.
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{ccTexOnly}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/decomposition_method}
|
||||||
|
\end{center}
|
||||||
|
\end{ccTexOnly}
|
||||||
|
\begin{ccHtmlOnly}
|
||||||
|
<p><center>
|
||||||
|
<img src="./fig/decomposition_method.gif" border=0 alt="Minkowski sum example">
|
||||||
|
</center>
|
||||||
|
\end{ccHtmlOnly}
|
||||||
|
\caption{The Minkowski sum of a spoon and a star.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The Minkowski sum is an iherent complex method. Using the
|
||||||
|
decomposition method, each polyhedron might be divided into a
|
||||||
|
quadratic number of pieces, which is worst-case optimal. Then up to
|
||||||
|
$n^2m^2$ pairwise sums have to be computed and merged, where $n$ and
|
||||||
|
$m$ is the complexity of the two input polyhedra.
|
||||||
|
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
\section{Features and Restrictions}
|
||||||
|
|
||||||
|
This package was written to allow the computation of Minkowski sums of
|
||||||
|
full-dimensional polyhedra even in so-called tight-passage scenarios,
|
||||||
|
i.e., solve motion planing problems with passages that are exactly as
|
||||||
|
wide as the robot. In these scenarios at least one polyhedron---the
|
||||||
|
obstacles or the robot---must be modeled as an open set. This is
|
||||||
|
possible with the current implementation.
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{ccTexOnly}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/tight_passage}
|
||||||
|
\end{center}
|
||||||
|
\end{ccTexOnly}
|
||||||
|
\begin{ccHtmlOnly}
|
||||||
|
<p><center>
|
||||||
|
<img src="./fig/tigh_passage.gif" border=0 alt="Minkowski sum example">
|
||||||
|
</center>
|
||||||
|
\end{ccHtmlOnly}
|
||||||
|
\caption{The Minkowski sum of a spoon and a star.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
We strife for extending the package to work for arbitrary
|
||||||
|
polyhedra. Yet we added several features, but are not complete. At
|
||||||
|
the moment we allow an input polyhedron to consist of:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item singular vertices
|
||||||
|
\item singular edges
|
||||||
|
\item singular convex facets without holes
|
||||||
|
\item surface with convex facets that have no holes.
|
||||||
|
\item open or closed solids
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
Taking a different viewpoint, the implementation is restricted as
|
||||||
|
follows:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item The input polyhedra must be finite point sets.
|
||||||
|
\item Every convex Minkowski sum must be full-dimensional, i.e., one
|
||||||
|
of the two input polyhedra must not include lower-dimensional
|
||||||
|
featueres. Note that lower-dimensional holes are still possible.
|
||||||
|
\item All sets of coplanar facets that form a side of a full-dimensional
|
||||||
|
featuer, must have the same selection mark.
|
||||||
|
\item All facets of lower-dimensional features need to be convex and
|
||||||
|
must not have holes.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
\section{Usage}
|
||||||
|
|
||||||
|
The following example code illustrates the usage of the function
|
||||||
|
\ccc{minkowski_sum_3}. Note that the two input polyhedra will be
|
||||||
|
destroyed by the function. So, if they are further on needed, they
|
||||||
|
need to be copied, first. The copying is not done by the function
|
||||||
|
itself to keep the memory usage as small as possible.
|
||||||
|
|
||||||
|
\ccIncludeExampleCode{Minkowski_sum_3/minkowski_sum.cpp}
|
||||||
|
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
\section{Glide}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{ccTexOnly}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/glide}
|
||||||
|
\end{center}
|
||||||
|
\end{ccTexOnly}
|
||||||
|
\begin{ccHtmlOnly}
|
||||||
|
<p><center>
|
||||||
|
<img src="./fig/glide.gif" border=0 alt="Minkowski sum example">
|
||||||
|
</center>
|
||||||
|
\end{ccHtmlOnly}
|
||||||
|
\caption{The Minkowski sum of a spoon and a star.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
With the function \ccc{minkowski_sum_3} it is also possible to realize
|
||||||
|
other interesting geometric operations like glide operation, which
|
||||||
|
computes the point set swept by polyhedron that moves along a
|
||||||
|
polygonal path. The following example shows how to construct a
|
||||||
|
polygonal path and then compute the glide operation by calling the
|
||||||
|
function \ccc{minkowski_sum_3}.
|
||||||
|
|
||||||
|
\ccIncludeExampleCode{Minkowski_sum_3/glide.cpp}
|
||||||
|
|
@ -0,0 +1,28 @@
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | CGAL Reference Manual: intro.tex
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | Minkowski sum 3 reference manual pages
|
||||||
|
% |
|
||||||
|
\RCSdef{\MinkowskiSum3RefRev}{$Id$}
|
||||||
|
\RCSdefDate{\MinkowskiSum3RefDate}{$Date$}
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
|
||||||
|
\ccRefChapter{Minkowski sum of Polyhedra\label{chapterMinkowskiSum3Ref}}
|
||||||
|
\ccChapterAuthor{Peter Hachenberger}
|
||||||
|
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
|
||||||
|
The function \ccc{convex_decomposition_3} takes a
|
||||||
|
\ccc{Nef_polyhedron_3} $N$ as input parameter and inserts additional facets,
|
||||||
|
such that each marked volume (except for the outer volume) is
|
||||||
|
subdivided into convex pieces.
|
||||||
|
|
||||||
|
\section{Classified Reference Pages}
|
||||||
|
|
||||||
|
\subsection*{Functions}
|
||||||
|
|
||||||
|
\ccFunction{Nef_polyhedron_3 minkowski_sum_3(Nef_polyhedron_3& N0, Nef_polyhedron_3& N1);}
|
||||||
|
{\lcRawHtml{<A HREF="convex_decomposition_3.html">(go there)</A>}
|
||||||
|
\lcTex{\hfill page~\pageref{refConvex_decomposition_3}}}
|
||||||
|
|
||||||
|
%% EOF %%
|
||||||
|
|
@ -0,0 +1,37 @@
|
||||||
|
\relax
|
||||||
|
\@writefile{@@@}{\chapterbegin }
|
||||||
|
\newlabel{chapterMinkowskiSum3Ref}{{1.5}{7}{Minkowski sum of Polyhedra\label {chapterMinkowskiSum3Ref}\\ Reference~Manual\relax }{figure.1.4}{}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\hbox to\@tempdima {\hfil }{Reference Manual}}{7}{chapter*.2}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.6}Classified Reference Pages}{7}{section.1.6}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1.7}Alphabetical List of Reference Pages}{7}{section.1.7}}
|
||||||
|
\newlabel{ccRef_CGAL::minkowski_sum_3}{{1.7}{8}{\ifnum \ccNewRefManualStyle =\ccTrue \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectConceptCat \ccDrawRefTabs {FunctionObjectConcept}{minkowski_sum_3}\\ \else \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectClassCat \ccDrawRefTabs {FunctionObjectClass}{minkowski_sum_3}\\ \else \ccDrawRefTabs {\ccRefCategory }{minkowski_sum_3}\\ \fi \fi \else \ccRefCategory \fi \expandafter \ccPrintTokens \ccRefPureGlobalScope \ccEnd {\expandafter \ccPrintTokens \ccPureRefScope minkowski_sum_3\ccEnd }\relax }{section*.4}{}}
|
||||||
|
\newlabel{refminkowski_sum_3}{{1.7}{8}{\ifnum \ccNewRefManualStyle =\ccTrue \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectConceptCat \ccDrawRefTabs {FunctionObjectConcept}{minkowski_sum_3}\\ \else \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectClassCat \ccDrawRefTabs {FunctionObjectClass}{minkowski_sum_3}\\ \else \ccDrawRefTabs {\ccRefCategory }{minkowski_sum_3}\\ \fi \fi \else \ccRefCategory \fi \expandafter \ccPrintTokens \ccRefPureGlobalScope \ccEnd {\expandafter \ccPrintTokens \ccPureRefScope minkowski_sum_3\ccEnd }\relax }{section*.4}{}}
|
||||||
|
\@setckpt{Minkowski_sum_3_ref/main}{
|
||||||
|
\setcounter{page}{9}
|
||||||
|
\setcounter{equation}{0}
|
||||||
|
\setcounter{enumi}{4}
|
||||||
|
\setcounter{enumii}{0}
|
||||||
|
\setcounter{enumiii}{0}
|
||||||
|
\setcounter{enumiv}{0}
|
||||||
|
\setcounter{footnote}{0}
|
||||||
|
\setcounter{mpfootnote}{0}
|
||||||
|
\setcounter{part}{0}
|
||||||
|
\setcounter{chapter}{1}
|
||||||
|
\setcounter{section}{7}
|
||||||
|
\setcounter{subsection}{0}
|
||||||
|
\setcounter{subsubsection}{0}
|
||||||
|
\setcounter{paragraph}{0}
|
||||||
|
\setcounter{subparagraph}{0}
|
||||||
|
\setcounter{figure}{4}
|
||||||
|
\setcounter{table}{0}
|
||||||
|
\setcounter{r@tfl@t}{0}
|
||||||
|
\setcounter{LT@tables}{0}
|
||||||
|
\setcounter{LT@chunks}{0}
|
||||||
|
\setcounter{Item}{9}
|
||||||
|
\setcounter{Hfootnote}{0}
|
||||||
|
\setcounter{mtc}{1}
|
||||||
|
\setcounter{minitocdepth}{2}
|
||||||
|
\setcounter{ptc}{0}
|
||||||
|
\setcounter{parttocdepth}{2}
|
||||||
|
\setcounter{section@level}{1}
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,10 @@
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | CBP Reference Manual: main.tex
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | Automatically generated driver file for the reference manual chapter
|
||||||
|
% | of this package. Do not edit manually, you may loose your changes.
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
|
||||||
|
\input{Minkowski_sum_3_ref/intro.tex}
|
||||||
|
|
||||||
|
\input{Minkowski_sum_3_ref/minkowski_sum_3.tex}
|
||||||
|
|
@ -0,0 +1,27 @@
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | Reference manual page: minkowski_sum_3.tex
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
% | 11.06.2008 Peter Hachenberger
|
||||||
|
% | Package: Minkowski_sum_3
|
||||||
|
% |
|
||||||
|
\RCSdef{\RCSminkowski_sum_3Rev}{$Id$}
|
||||||
|
\RCSdefDate{\RCminkowski_sum_3Date}{$Date$}
|
||||||
|
% |
|
||||||
|
%%RefPage: end of header, begin of main body
|
||||||
|
% +------------------------------------------------------------------------+
|
||||||
|
|
||||||
|
\ccHtmlNoClassLinks
|
||||||
|
\begin{ccRefFunction}{minkowski_sum_3}
|
||||||
|
\label{refminkowski_sum_3}
|
||||||
|
|
||||||
|
\ccDefinition
|
||||||
|
|
||||||
|
This function takes two \ccc{Nef_polyhedron_3} and returns their
|
||||||
|
Minkowski sum.
|
||||||
|
|
||||||
|
\ccGlobalFunction{Nef_polyhedron_3 convex_decomposition_3(Nef_polyhedron_3& N0, Nef_polyhedron_3 N1);}
|
||||||
|
|
||||||
|
\ccSeeAlso
|
||||||
|
\ccRefIdfierPage{CGAL::Nef_polyhedron_3<Traits>}\\
|
||||||
|
|
||||||
|
\end{ccRefFunction}
|
||||||
Loading…
Reference in New Issue