new manual

This commit is contained in:
Peter Hachenberger 2008-06-15 20:22:17 +00:00
parent 08d1f279b0
commit eb1ea04d8c
12 changed files with 6673 additions and 0 deletions

7
.gitattributes vendored
View File

@ -2736,6 +2736,13 @@ Minkowski_sum_2/test/Minkowski_sum_2/data/rooms_part1.dat -text
Minkowski_sum_2/test/Minkowski_sum_2/data/rooms_part2.dat -text Minkowski_sum_2/test/Minkowski_sum_2/data/rooms_part2.dat -text
Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part1.dat -text Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part1.dat -text
Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part2.dat -text Minkowski_sum_2/test/Minkowski_sum_2/data/wheels_part2.dat -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/decomposition_method.eps -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/decomposition_method.pdf -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/glide.eps -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/spoon_star.ps -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3/fig/tight_passage.ps -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3/main.aux -text
Minkowski_sum_3/doc_tex/Minkowski_sum_3_ref/main.aux -text
Modifier/doc_tex/Modifier/idraw/modifier.eps -text svneol=unset#application/postscript Modifier/doc_tex/Modifier/idraw/modifier.eps -text svneol=unset#application/postscript
Modifier/doc_tex/Modifier/idraw/modifier.pdf -text svneol=unset#application/pdf Modifier/doc_tex/Modifier/idraw/modifier.pdf -text svneol=unset#application/pdf
Modifier/doc_tex/Modifier/modifier.gif -text svneol=unset#image/gif Modifier/doc_tex/Modifier/modifier.gif -text svneol=unset#image/gif

View File

@ -0,0 +1,351 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: Ipelib 60023 (Ipe 6.0 preview 23)
%%CreationDate: D:20080615141514
%%LanguageLevel: 2
%%BoundingBox: 3 671 361 825
%%HiResBoundingBox: 3.2 671.2 360.8 824.8
%%EndComments
%%BeginProlog
%%BeginResource: procset ipe 6.0 60023
/ipe 40 dict def ipe begin
/np { newpath } def
/m { moveto } def
/l { lineto } def
/c { curveto } def
/h { closepath } def
/re { 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath } def
/d { setdash } def
/w { setlinewidth } def
/J { setlinecap } def
/j { setlinejoin } def
/cm { [ 7 1 roll ] concat } def
/q { gsave } def
/Q { grestore } def
/g { setgray } def
/rg { setrgbcolor } def
/G { setgray } def
/RG { setrgbcolor } def
/S { stroke } def
/f* { eofill } def
/f { fill } def
/ipeMakeFont {
exch findfont
dup length dict begin
{ 1 index /FID ne { def } { pop pop } ifelse } forall
/Encoding exch def
currentdict
end
definefont pop
} def
/ipeFontSize 0 def
/Tf { dup /ipeFontSize exch store selectfont } def
/Td { translate } def
/BT { gsave } def
/ET { grestore } def
/TJ { 0 0 moveto { dup type /stringtype eq
{ show } { ipeFontSize mul -0.001 mul 0 rmoveto } ifelse
} forall } def
end
%%EndResource
%%EndProlog
%%BeginSetup
ipe begin
%%EndSetup
q np
28 704 m
36 704 l
36 680 l
4 680 l
4 688 l
h 1 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
44 728 m
60 744 l
68 744 l
84 728 l
84 688 l
68 672 l
60 672 l
44 688 l
h 1 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
92 736 m
124 736 l
124 728 l
100 712 l
92 712 l
h 1 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
92 704 m
92 680 l
124 680 l
124 688 l
100 704 l
h 1 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
188 744 m
180 744 l
164 728 l
140 728 l
140 720 l
160 708 l
140 696 l
140 688 l
164 688 l
180 672 l
188 672 l
204 688 l
228 688 l
228 696 l
208 708 l
228 720 l
228 728 l
204 728 l
h 1 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
4 736 m
4 728 l
28 712 l
36 712 l
36 736 l
h 1 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
64 824 m
48 808 l
24 808 l
48 792 l
48 792 l
48 792 l
24 776 l
48 776 l
64 760 l
80 776 l
104 776 l
80 792 l
104 808 l
80 808 l
80 808 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
184 824 m
168 808 l
144 808 l
168 792 l
168 792 l
168 792 l
144 776 l
168 776 l
184 760 l
200 776 l
224 776 l
200 792 l
224 808 l
200 808 l
200 808 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
168 808 m
168 776 l
0 0.333333 1 rg q f* Q [1 3] 0 d 0.8 w 0 g S
Q
q np
200 808 m
200 776 l
[1 3] 0 d 0.8 w S
Q
q np
288 808 m
288 776 l
304 760 l
320 776 l
320 808 l
304 824 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
336 816 m
336 800 l
360 816 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
272 816 m
272 800 l
248 816 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
272 784 m
248 768 l
272 768 l
272 768 l
272 768 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
336 784 m
336 768 l
360 768 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
48 724 m
48 692 l
64 676 l
80 692 l
80 724 l
64 740 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
96 732 m
96 716 l
120 732 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
32 732 m
32 716 l
8 732 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
32 700 m
8 684 l
32 684 l
32 684 l
32 684 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
96 700 m
96 684 l
120 684 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
184 740 m
168 724 l
144 724 l
168 708 l
168 708 l
168 708 l
144 692 l
168 692 l
184 676 l
200 692 l
224 692 l
200 708 l
224 724 l
200 724 l
200 724 l
h 0 0.333333 1 rg q f* Q 0.8 w 0 g S
Q
q np
308 744 m
300 744 l
284 728 l
260 728 l
260 720 l
280 708 l
260 696 l
260 688 l
284 688 l
300 672 l
308 672 l
324 688 l
348 688 l
348 696 l
328 708 l
348 720 l
348 728 l
324 728 l
h 0.333333 1 0 rg q f* Q 0.8 w 0 g S
Q
q np
244 796 m
244 788 l
252 788 l
252 796 l
h 1 0 0 rg q f* Q 0.8 w 0 g S
Q
q np
4 736 m
4 728 l
12 728 l
12 736 l
h 1 0 0 rg q f* Q 0.8 w 0 g S
Q
q np
124 796 m
124 788 l
132 788 l
132 796 l
h 1 0 0 rg q f* Q 0.8 w 0 g S
Q
q np
129 792 m
129 792.552 128.552 793 128 793 c
127.448 793 127 792.552 127 792 c
127 791.448 127.448 791 128 791 c
128.552 791 129 791.448 129 792 c
h q f* Q 0.4 w S
Q
q np
9 732 m
9 732.552 8.55228 733 8 733 c
7.44772 733 7 732.552 7 732 c
7 731.448 7.44772 731 8 731 c
8.55228 731 9 731.448 9 732 c
h q f* Q 0.4 w S
Q
q np
249 792 m
249 792.552 248.552 793 248 793 c
247.448 793 247 792.552 247 792 c
247 791.448 247.448 791 248 791 c
248.552 791 249 791.448 249 792 c
h q f* Q 0.4 w S
Q
q np
4 796 m
4 788 l
12 788 l
12 796 l
h 1 0 0 rg q f* Q 0.8 w 0 g S
Q
q np
9 792 m
9 792.552 8.55228 793 8 793 c
7.44772 793 7 792.552 7 792 c
7 791.448 7.44772 791 8 791 c
8.55228 791 9 791.448 9 792 c
h q f* Q 0.4 w S
Q
showpage
%%BeginIpeXml: /FlateDecode
%GhV7]gN)"%&:N^l1jV+%Z7LnDmSdKh)$3LY@'I[*o^_\2?!0)4A2&Z^SMW-Z:KI%XZSsEkF*5<Z
%7C.3g0'?CDR;fTJ$@A_?S:?;_4Vk,:MPD\N0O3BK94r;uQsf/8AO]8jFYn0O<TW["Q9#!=71*IV
%NmfsZ;]3JYe^CST`L=YNcK=``B?h;f<<M.mn5e;AJitu/\TbfHS1A+umB<6m41bZK/aKg@SKs,Z
%p;+u>io#i0]4u[pqd&$TrLp2KY\@Ft`<Ptf6fUF#bV1aKRnCt,Xt7s)s)V3WO<H>:+@[9H;ouJC
%6k^sTJ@-ArrX-)SZl[I=80:gDMH>A\9EVI69M^dPRhcjUj8h!qOq\0i$e1Z%!dY<OgJKL:U!b/`
%'+5r78<2F14IhokJUeA/gc\7j'i_)dP/kRT+$qo[+L1?$=5jp.P(^564.B+KH'u5WCdQC&K9-dU
%<FZ"$LqH8e>0g_(2F=3im`cg1O)=!2F(,pP3-9[SiX2l%!7#RN5:euCK#AKt9SOENZ)JLh-)8]a
%%:Dt$]$NbDr+)T2nsd#r)E+;2QV[hB@(H=sVD!\HM9d-3IOVe'h61n6X:F_Z3$0$*6KHi5o$Zsa
%I+c83_7rikq+pX5MEMbF$o@(qhbsb?IMIcgH]jNV\tJZ)I=hfHJ(L,nF5WN\^4J*Y`gQWu>T(-P
%U]Sl840fk996[G3X#6dO0$X_m1,A-%lFI6B4&Mm4\*kO+Jg%4VCd$**Ponn2Pk6+c*nbsjo$jRd
%"SZPr5.LX]/4\l3d@]R>AI:\+Q>#Q%5j]HCS>,)IO13SZ_Rn2Z4P$WO2HOCBWbIis\q8O2)GUSL
%PPs4dE"=e!J"N"u;EDl@[YtLkVA`FUfD*7\*%5`EBg3fd1e@f@1;RlBnEObuquIrd*XD~>
%%EndIpeXml
%%Trailer
end
%%EOF

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,953 @@
%!PS-Adobe-3.0
%%Creator: GIMP PostScript file plugin V 1.17 by Peter Kirchgessner
%%Title: tight_passage_grey.ps
%%CreationDate: Fri Apr 13 01:25:27 2007
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%Pages: 1
%%BoundingBox: 14 14 320 320
%%EndComments
%%BeginProlog
% Use own dictionary to avoid conflicts
10 dict begin
%%EndProlog
%%Page: 1 1
% Translate for offset
14.173228346456694 14.173228346456694 translate
% Translate to begin of first scanline
0 304.95118110236223 translate
304.95118110236223 -304.95118110236223 scale
% Image geometry
305 305 8
% Transformation matrix
[ 305 0 0 305 0 0 ]
% Strings to hold RGB-samples per scanline
/rstr 305 string def
/gstr 305 string def
/bstr 305 string def
{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop}
{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop}
{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop}
true 3
%%BeginData: 17528 ASCII Bytes
colorimage
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-^%6JXQD'Y0?m5J,~>
s-^%6JXQD'Y0?m5J,~>
s-^%6JXQD'Y0?m5J,~>
s-^%6JXQD'Y0?m5J,~>
s-^%6JXQD'Y0?m5J,~>
s-^%6JXQD'Y0?m5J,~>
s-^%6rL)C>VO=U2rgA9~>
s-^%6rL)C>VO=U2rgA9~>
s-^%6rL)C>VO=U2rgA9~>
s-^%6rgDF=VjX^3rgA9~>
s-^%6rgDF=VjX^3rgA9~>
s-^%6rgDF=VjX^3rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6s-_I<rgBt6rL'h4rgA9~>
s-^%6rgDF=rL'k5rL'h4rgA9~>
s-^%6rgDF=rL'k5rL'h4rgA9~>
s-^%6rgDF=rL'k5rL'h4rgA9~>
s-^%6rL)C>r0ab4rL'h4rgA9~>
s-^%6rL)C>r0ab4rL'h4rgA9~>
s-^%6rL)C>r0ab4rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-^%6d@%2^rL'h4rgA9~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
s-\G^XN^X2Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
JXNC'Y0?m5J,~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
s-\G^J]uZgrgA9~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
JXM(Wd$]C~>
%%EndData
showpage
%%Trailer
end
%%EOF

View File

@ -0,0 +1,45 @@
\relax
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Minkowski Sum of Polyhedra }{1}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapterMinkowskiSum3}{{1}{1}{Minkowski Sum of Polyhedra \label {chapterMinkowskiSum3}\relax }{chapter.1}{}}
\@writefile{lof}{\contentsline {xchapter}{Minkowski Sum of Polyhedra }{1}{chapter.1}}
\@writefile{lot}{\contentsline {xchapter}{Minkowski Sum of Polyhedra }{1}{chapter.1}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Introduction}{1}{section.1.1}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Decomposition Method}{1}{section.1.2}}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Features and Restrictions}{1}{section.1.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces The Minkowski sum of a spoon and a star.}}{1}{figure.1.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces The Minkowski sum of a spoon and a star.}}{2}{figure.1.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces The Minkowski sum of a spoon and a star.}}{2}{figure.1.3}}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Usage}{2}{section.1.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces The Minkowski sum of a spoon and a star.}}{4}{figure.1.4}}
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Glide}{4}{section.1.5}}
\@setckpt{Minkowski_sum_3/main}{
\setcounter{page}{6}
\setcounter{equation}{0}
\setcounter{enumi}{4}
\setcounter{enumii}{0}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{1}
\setcounter{section}{5}
\setcounter{subsection}{0}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{4}
\setcounter{table}{0}
\setcounter{r@tfl@t}{0}
\setcounter{LT@tables}{0}
\setcounter{LT@chunks}{0}
\setcounter{Item}{9}
\setcounter{Hfootnote}{0}
\setcounter{mtc}{1}
\setcounter{minitocdepth}{2}
\setcounter{ptc}{0}
\setcounter{parttocdepth}{2}
\setcounter{section@level}{1}
}

View File

@ -0,0 +1,155 @@
% +------------------------------------------------------------------------+
% | CGAL User Manual:
% +------------------------------------------------------------------------+
% |
% | 10.07.2008 Peter Hachenberger
% |
\RCSdef{\MinkowskiSum3Rev}{$Id$}
\RCSdefDate{\MinkowskiSum3Date}{$Date$}
% +------------------------------------------------------------------------+
\ccParDims
\ccUserChapter{Minkowski Sum of Polyhedra \label{chapterMinkowskiSum3}}
\ccChapterRelease{\MinkowskiSum3Rev. \ \MinkowskiSum3Date}
\ccChapterAuthor{Peter Hachenberger}
%\input{Minkowski_sum_3/PkgDescription.tex}
% +------------------------------------------------------------------------+
\section{Introduction}
\begin{figure}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/spoon_star}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<p><center>
<img src="./fig/spoon_star.gif" border=0 alt="Minkowski sum example">
</center>
\end{ccHtmlOnly}
\caption{The Minkowski sum of a spoon and a star.}
\end{figure}
The Minkowski sum of two point sets $P$ and $Q$ in $R^d$, denoted by
$P \oplus Q$, is defined as the set $\{p+q:p \in P, q \in Q
\}$. Minkowski sums are used in a wide range of applications such as
robot motion planning and computer-aided design. This
package provides a function that computes the Minkowski sum of two Nef
polyhedra.
% +------------------------------------------------------------------------+
\section{Decomposition Method}
The decomposition method for computing the Minkowski sum of non-convex
polyhedra is based on the fact that the Minkowski sum of convex
polyhedra is rather easy to compute. The method decomposes both
polyhedra into convex pieces computes all pairwise Minkowski sums of
the convex pieces and merges the pairwise sums.
\begin{figure}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/decomposition_method}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<p><center>
<img src="./fig/decomposition_method.gif" border=0 alt="Minkowski sum example">
</center>
\end{ccHtmlOnly}
\caption{The Minkowski sum of a spoon and a star.}
\end{figure}
The Minkowski sum is an iherent complex method. Using the
decomposition method, each polyhedron might be divided into a
quadratic number of pieces, which is worst-case optimal. Then up to
$n^2m^2$ pairwise sums have to be computed and merged, where $n$ and
$m$ is the complexity of the two input polyhedra.
% +------------------------------------------------------------------------+
\section{Features and Restrictions}
This package was written to allow the computation of Minkowski sums of
full-dimensional polyhedra even in so-called tight-passage scenarios,
i.e., solve motion planing problems with passages that are exactly as
wide as the robot. In these scenarios at least one polyhedron---the
obstacles or the robot---must be modeled as an open set. This is
possible with the current implementation.
\begin{figure}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/tight_passage}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<p><center>
<img src="./fig/tigh_passage.gif" border=0 alt="Minkowski sum example">
</center>
\end{ccHtmlOnly}
\caption{The Minkowski sum of a spoon and a star.}
\end{figure}
We strife for extending the package to work for arbitrary
polyhedra. Yet we added several features, but are not complete. At
the moment we allow an input polyhedron to consist of:
\begin{enumerate}
\item singular vertices
\item singular edges
\item singular convex facets without holes
\item surface with convex facets that have no holes.
\item open or closed solids
\end{enumerate}
Taking a different viewpoint, the implementation is restricted as
follows:
\begin{enumerate}
\item The input polyhedra must be finite point sets.
\item Every convex Minkowski sum must be full-dimensional, i.e., one
of the two input polyhedra must not include lower-dimensional
featueres. Note that lower-dimensional holes are still possible.
\item All sets of coplanar facets that form a side of a full-dimensional
featuer, must have the same selection mark.
\item All facets of lower-dimensional features need to be convex and
must not have holes.
\end{enumerate}
% +------------------------------------------------------------------------+
\section{Usage}
The following example code illustrates the usage of the function
\ccc{minkowski_sum_3}. Note that the two input polyhedra will be
destroyed by the function. So, if they are further on needed, they
need to be copied, first. The copying is not done by the function
itself to keep the memory usage as small as possible.
\ccIncludeExampleCode{Minkowski_sum_3/minkowski_sum.cpp}
% +------------------------------------------------------------------------+
\section{Glide}
\begin{figure}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=0.8\textwidth]{Minkowski_sum_3/fig/glide}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<p><center>
<img src="./fig/glide.gif" border=0 alt="Minkowski sum example">
</center>
\end{ccHtmlOnly}
\caption{The Minkowski sum of a spoon and a star.}
\end{figure}
With the function \ccc{minkowski_sum_3} it is also possible to realize
other interesting geometric operations like glide operation, which
computes the point set swept by polyhedron that moves along a
polygonal path. The following example shows how to construct a
polygonal path and then compute the glide operation by calling the
function \ccc{minkowski_sum_3}.
\ccIncludeExampleCode{Minkowski_sum_3/glide.cpp}

View File

@ -0,0 +1,28 @@
% +------------------------------------------------------------------------+
% | CGAL Reference Manual: intro.tex
% +------------------------------------------------------------------------+
% | Minkowski sum 3 reference manual pages
% |
\RCSdef{\MinkowskiSum3RefRev}{$Id$}
\RCSdefDate{\MinkowskiSum3RefDate}{$Date$}
% +------------------------------------------------------------------------+
\ccRefChapter{Minkowski sum of Polyhedra\label{chapterMinkowskiSum3Ref}}
\ccChapterAuthor{Peter Hachenberger}
% +------------------------------------------------------------------------+
The function \ccc{convex_decomposition_3} takes a
\ccc{Nef_polyhedron_3} $N$ as input parameter and inserts additional facets,
such that each marked volume (except for the outer volume) is
subdivided into convex pieces.
\section{Classified Reference Pages}
\subsection*{Functions}
\ccFunction{Nef_polyhedron_3 minkowski_sum_3(Nef_polyhedron_3& N0, Nef_polyhedron_3& N1);}
{\lcRawHtml{<A HREF="convex_decomposition_3.html">(go there)</A>}
\lcTex{\hfill page~\pageref{refConvex_decomposition_3}}}
%% EOF %%

View File

@ -0,0 +1,37 @@
\relax
\@writefile{@@@}{\chapterbegin }
\newlabel{chapterMinkowskiSum3Ref}{{1.5}{7}{Minkowski sum of Polyhedra\label {chapterMinkowskiSum3Ref}\\ Reference~Manual\relax }{figure.1.4}{}}
\@writefile{toc}{\contentsline {section}{\hbox to\@tempdima {\hfil }{Reference Manual}}{7}{chapter*.2}}
\@writefile{toc}{\contentsline {section}{\numberline {1.6}Classified Reference Pages}{7}{section.1.6}}
\@writefile{toc}{\contentsline {section}{\numberline {1.7}Alphabetical List of Reference Pages}{7}{section.1.7}}
\newlabel{ccRef_CGAL::minkowski_sum_3}{{1.7}{8}{\ifnum \ccNewRefManualStyle =\ccTrue \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectConceptCat \ccDrawRefTabs {FunctionObjectConcept}{minkowski_sum_3}\\ \else \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectClassCat \ccDrawRefTabs {FunctionObjectClass}{minkowski_sum_3}\\ \else \ccDrawRefTabs {\ccRefCategory }{minkowski_sum_3}\\ \fi \fi \else \ccRefCategory \fi \expandafter \ccPrintTokens \ccRefPureGlobalScope \ccEnd {\expandafter \ccPrintTokens \ccPureRefScope minkowski_sum_3\ccEnd }\relax }{section*.4}{}}
\newlabel{refminkowski_sum_3}{{1.7}{8}{\ifnum \ccNewRefManualStyle =\ccTrue \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectConceptCat \ccDrawRefTabs {FunctionObjectConcept}{minkowski_sum_3}\\ \else \ifnum \ccCurrentIndexCat =\ccIndexFunctionObjectClassCat \ccDrawRefTabs {FunctionObjectClass}{minkowski_sum_3}\\ \else \ccDrawRefTabs {\ccRefCategory }{minkowski_sum_3}\\ \fi \fi \else \ccRefCategory \fi \expandafter \ccPrintTokens \ccRefPureGlobalScope \ccEnd {\expandafter \ccPrintTokens \ccPureRefScope minkowski_sum_3\ccEnd }\relax }{section*.4}{}}
\@setckpt{Minkowski_sum_3_ref/main}{
\setcounter{page}{9}
\setcounter{equation}{0}
\setcounter{enumi}{4}
\setcounter{enumii}{0}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{1}
\setcounter{section}{7}
\setcounter{subsection}{0}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{4}
\setcounter{table}{0}
\setcounter{r@tfl@t}{0}
\setcounter{LT@tables}{0}
\setcounter{LT@chunks}{0}
\setcounter{Item}{9}
\setcounter{Hfootnote}{0}
\setcounter{mtc}{1}
\setcounter{minitocdepth}{2}
\setcounter{ptc}{0}
\setcounter{parttocdepth}{2}
\setcounter{section@level}{1}
}

View File

@ -0,0 +1,10 @@
% +------------------------------------------------------------------------+
% | CBP Reference Manual: main.tex
% +------------------------------------------------------------------------+
% | Automatically generated driver file for the reference manual chapter
% | of this package. Do not edit manually, you may loose your changes.
% +------------------------------------------------------------------------+
\input{Minkowski_sum_3_ref/intro.tex}
\input{Minkowski_sum_3_ref/minkowski_sum_3.tex}

View File

@ -0,0 +1,27 @@
% +------------------------------------------------------------------------+
% | Reference manual page: minkowski_sum_3.tex
% +------------------------------------------------------------------------+
% | 11.06.2008 Peter Hachenberger
% | Package: Minkowski_sum_3
% |
\RCSdef{\RCSminkowski_sum_3Rev}{$Id$}
\RCSdefDate{\RCminkowski_sum_3Date}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\ccHtmlNoClassLinks
\begin{ccRefFunction}{minkowski_sum_3}
\label{refminkowski_sum_3}
\ccDefinition
This function takes two \ccc{Nef_polyhedron_3} and returns their
Minkowski sum.
\ccGlobalFunction{Nef_polyhedron_3 convex_decomposition_3(Nef_polyhedron_3& N0, Nef_polyhedron_3 N1);}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Nef_polyhedron_3<Traits>}\\
\end{ccRefFunction}