mirror of https://github.com/CGAL/cgal
*** empty log message ***
This commit is contained in:
parent
dad9db39a5
commit
eb33c92fca
|
|
@ -1,5 +1,5 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: General_priority_search.tex
|
||||
% | Reference manual page: Incremental_neighbor_search.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 1.07.2001 Johan W.H. Tangelder
|
||||
% | Package: ASPAS
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
||||
\begin{ccRefClass}{General_priority_search<PointTraits, GeneralDistance, Splitter, SpatialTree>}
|
||||
\begin{ccRefClass}{Incremental_neighbor_search<PointTraits, GeneralDistance, Splitter, SpatialTree>}
|
||||
|
||||
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
|
||||
%% \ccHtmlIndexC[class]{} %% add further index entries
|
||||
|
|
@ -22,7 +22,7 @@ The class \ccRefName\ implements incremental nearest and furthest neighbor searc
|
|||
using priority search on a tree. It is not required that the tree is
|
||||
built with extended nodes.
|
||||
|
||||
\ccInclude{CGAL/General_priority_search.h}
|
||||
\ccInclude{CGAL/Incremental_neighbor_search.h}
|
||||
|
||||
\ccParameters
|
||||
|
||||
|
|
@ -56,7 +56,7 @@ template argument \ccc{CGAL::Tag_false} makes that the tree is built with unexte
|
|||
|
||||
|
||||
\def\ccLongParamLayout{\ccTrue}
|
||||
\ccConstructor{General_priority_search(Tree& tree, QueryItem q, NT eps=NT(0.0),
|
||||
\ccConstructor{Incremental_neighbor_search(Tree& tree, QueryItem q, NT eps=NT(0.0),
|
||||
bool search_nearest=true, GeneralDistance d=GeneralDistance());}
|
||||
{Constructor for incremental neighbor searching of the query item \ccc{q}
|
||||
in the points stored \ccc{tree} using a distance \ccc{d} and approximation factor \ccc{eps}. }
|
||||
|
|
@ -1,17 +1,17 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: General_standard_search.tex
|
||||
% | Reference manual page: K_neighbor_search.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 1.07.2001 Johan W.H. Tangelder
|
||||
% | Package: ASPAS
|
||||
% |
|
||||
\RCSdef{\RCSGeneralstandardsearchRev}{$Revision$}
|
||||
\RCSdefDate{\RCSGeneralstandardsearchDate}{$Date$}
|
||||
\RCSdef{\RCSKneighborsearchRev}{$Revision$}
|
||||
\RCSdefDate{\RCSKneighborsearchDate}{$Date$}
|
||||
% |
|
||||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
||||
\begin{ccRefClass}{General_standard_search<PointTraits, Splitter, GeneralDistance, SpatialTree>}
|
||||
\begin{ccRefClass}{K_neighbor_search<PointTraits, Splitter, GeneralDistance, SpatialTree>}
|
||||
|
||||
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
|
||||
%% \ccHtmlIndexC[class]{} %% add further index entries
|
||||
|
|
@ -19,10 +19,9 @@
|
|||
\ccDefinition
|
||||
|
||||
The class \ccRefName\ implements approximate $k$-nearest and $k$-furthest neighbor searching
|
||||
using standard search on a tree using a general distance
|
||||
class.
|
||||
using standard search on a tree using a general distance class.
|
||||
|
||||
\ccInclude{CGAL/General_standard_search.h}
|
||||
\ccInclude{CGAL/K_neighbor_search.h}
|
||||
|
||||
\ccParameters
|
||||
|
||||
|
|
@ -54,8 +53,8 @@ template argument \ccc{CGAL::Tag_false} makes that the tree is built with unexte
|
|||
|
||||
|
||||
\def\ccLongParamLayout{\ccTrue}
|
||||
\ccConstructor{General_standard_search(Tree& tree, Query_item q, int k=1, NT eps=NT(0.0),
|
||||
bool search_nearest=true, GeneralDistance d=GeneralDistance());}
|
||||
\ccConstructor{K_neighbor_search(Tree& tree, Query_item q, int k=1, NT eps=NT(0.0),
|
||||
bool search_nearest=true, GeneralDistance d=GeneralDistance());}
|
||||
{Constructor for searching approximately $k$ neighbors of the query item \ccc{q}
|
||||
in the points stored in \ccc{tree} using
|
||||
distance class $d$ and approximation factor \ccc{eps}.}
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: General_priority_search.tex
|
||||
% | Reference manual page: Incremental_neighbor_search.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 1.07.2001 Johan W.H. Tangelder
|
||||
% | Package: ASPAS
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
||||
\begin{ccRefClass}{General_priority_search<PointTraits, GeneralDistance, Splitter, SpatialTree>}
|
||||
\begin{ccRefClass}{Incremental_neighbor_search<PointTraits, GeneralDistance, Splitter, SpatialTree>}
|
||||
|
||||
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
|
||||
%% \ccHtmlIndexC[class]{} %% add further index entries
|
||||
|
|
@ -22,7 +22,7 @@ The class \ccRefName\ implements incremental nearest and furthest neighbor searc
|
|||
using priority search on a tree. It is not required that the tree is
|
||||
built with extended nodes.
|
||||
|
||||
\ccInclude{CGAL/General_priority_search.h}
|
||||
\ccInclude{CGAL/Incremental_neighbor_search.h}
|
||||
|
||||
\ccParameters
|
||||
|
||||
|
|
@ -56,7 +56,7 @@ template argument \ccc{CGAL::Tag_false} makes that the tree is built with unexte
|
|||
|
||||
|
||||
\def\ccLongParamLayout{\ccTrue}
|
||||
\ccConstructor{General_priority_search(Tree& tree, QueryItem q, NT eps=NT(0.0),
|
||||
\ccConstructor{Incremental_neighbor_search(Tree& tree, QueryItem q, NT eps=NT(0.0),
|
||||
bool search_nearest=true, GeneralDistance d=GeneralDistance());}
|
||||
{Constructor for incremental neighbor searching of the query item \ccc{q}
|
||||
in the points stored \ccc{tree} using a distance \ccc{d} and approximation factor \ccc{eps}. }
|
||||
|
|
@ -1,17 +1,17 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: General_standard_search.tex
|
||||
% | Reference manual page: K_neighbor_search.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 1.07.2001 Johan W.H. Tangelder
|
||||
% | Package: ASPAS
|
||||
% |
|
||||
\RCSdef{\RCSGeneralstandardsearchRev}{$Revision$}
|
||||
\RCSdefDate{\RCSGeneralstandardsearchDate}{$Date$}
|
||||
\RCSdef{\RCSKneighborsearchRev}{$Revision$}
|
||||
\RCSdefDate{\RCSKneighborsearchDate}{$Date$}
|
||||
% |
|
||||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
||||
\begin{ccRefClass}{General_standard_search<PointTraits, Splitter, GeneralDistance, SpatialTree>}
|
||||
\begin{ccRefClass}{K_neighbor_search<PointTraits, Splitter, GeneralDistance, SpatialTree>}
|
||||
|
||||
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
|
||||
%% \ccHtmlIndexC[class]{} %% add further index entries
|
||||
|
|
@ -19,10 +19,9 @@
|
|||
\ccDefinition
|
||||
|
||||
The class \ccRefName\ implements approximate $k$-nearest and $k$-furthest neighbor searching
|
||||
using standard search on a tree using a general distance
|
||||
class.
|
||||
using standard search on a tree using a general distance class.
|
||||
|
||||
\ccInclude{CGAL/General_standard_search.h}
|
||||
\ccInclude{CGAL/K_neighbor_search.h}
|
||||
|
||||
\ccParameters
|
||||
|
||||
|
|
@ -54,8 +53,8 @@ template argument \ccc{CGAL::Tag_false} makes that the tree is built with unexte
|
|||
|
||||
|
||||
\def\ccLongParamLayout{\ccTrue}
|
||||
\ccConstructor{General_standard_search(Tree& tree, Query_item q, int k=1, NT eps=NT(0.0),
|
||||
bool search_nearest=true, GeneralDistance d=GeneralDistance());}
|
||||
\ccConstructor{K_neighbor_search(Tree& tree, Query_item q, int k=1, NT eps=NT(0.0),
|
||||
bool search_nearest=true, GeneralDistance d=GeneralDistance());}
|
||||
{Constructor for searching approximately $k$ neighbors of the query item \ccc{q}
|
||||
in the points stored in \ccc{tree} using
|
||||
distance class $d$ and approximation factor \ccc{eps}.}
|
||||
Loading…
Reference in New Issue