mirror of https://github.com/CGAL/cgal
Update citations (s/07/08/).
Let us hope that CGAL-3.4 will be release before 2009!
This commit is contained in:
parent
dbc2821d17
commit
ec9f2e29e5
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Algebraic Foundations\label{Pkg:AlgebraicFoundations}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-ac-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-ac-08}
|
||||
\ccPkgSummary{
|
||||
This package defines what algebra means for \cgal, in terms of
|
||||
concepts, classes and functions. The main features are:
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Alpha Shapes\label{Pkg:AlphaShape2}}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-08}
|
||||
\ccPkgSummary{
|
||||
This package offers a data structure encoding the whole family of alpha-complexes
|
||||
related to a given 2D Delaunay or regular triangulation. In particular, the data structure
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Alpha Shapes\label{Pkg:AlphaShapes3}}
|
||||
\ccPkgHowToCiteCgal{cgal:dy-as3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:dy-as3-08}
|
||||
\ccPkgSummary{This package offers a data structure encoding the whole family of alpha-complexes
|
||||
related to a given 3D Delaunay or regular triangulation. In particular, the data structure
|
||||
allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Apollonius Graphs (Delaunay Graphs of Disks)\label{Pkg::ApolloniusGraph2}}
|
||||
\ccPkgHowToCiteCgal{cgal:ky-ag2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:ky-ag2-08}
|
||||
\ccPkgSummary{
|
||||
Algorithms for computing the Apollonius
|
||||
graph in two dimensions. The Apollonius graph is the dual of the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Arrangement\label{Pkg:Arrangement2}}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-08}
|
||||
\ccPkgSummary{
|
||||
This package can be used to construct, maintain, alter, and display
|
||||
arrangements in the plane. Once an arrangement is constructed, the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Intersection of Curves\label{Pkg:IntersectionOfCurves2}}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-08}
|
||||
\ccPkgSummary{This package provides three free functions implemented
|
||||
based on the sweep-line paradigm: given a collection of input curves,
|
||||
compute all intersection points, compute the set of subcurves that are
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{CGAL and the Boost Graph Library\label{Pkg:BGL}}
|
||||
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-07}
|
||||
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-08}
|
||||
|
||||
\ccPkgSummary{This package provides a framework for interfacing \cgal\
|
||||
data structures with the algorithms of the {\sc BGL}. It allows to run
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Benchmark \label{Pkg:Benchmark}}
|
||||
\ccPkgHowToCiteCgal{cgal:f-b-07}
|
||||
\ccPkgHowToCiteCgal{cgal:f-b-08}
|
||||
\ccPkgSummary{This package consists of a practical toolkit to evaluate the
|
||||
status of code. It can be used to create programs that measure performance,
|
||||
known as benchmarks, and other various tests, execute them, and analyze
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Regularized Boolean Set-Operations\label{Pkg:BooleanSetOperations2}}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-08}
|
||||
\ccPkgSummary{
|
||||
This package consists of the implementation of Boolean set-operations
|
||||
on point sets bounded by weakly x-monotone curves in 2-dimensional
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Intersecting Sequences of dD Iso-oriented Boxes\label{Pkg:BoxIntersectionD}}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-07}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-08}
|
||||
\ccPkgSummary{
|
||||
An efficient algorithm for finding all intersecting pairs for large
|
||||
numbers of iso-oriented boxes, in order to apply a user defined callback
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Circular Geometry Kernel \label{Pkg:CircularKernel2}}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-cgk2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-cgk2-08}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ kernel. It offers
|
||||
functionalities on circles, circular arcs and line segments in the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Spherical Geometry Kernel \label{Pkg:SphericalKernel3}}
|
||||
\ccPkgHowToCiteCgal{cgal:t-sgk3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:t-sgk3-08}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ Kernel. It offers
|
||||
functionalities on spheres, circles, circular arcs and line segments
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Convex Decomposition of Polyhedra\label{Pkg:ConvexDecomposition3}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-emspe-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-emspe-08}
|
||||
\ccPkgSummary{
|
||||
This packages provides a function for decomposing a bounded polyhedron
|
||||
into convex sub-polyhedra. The decomposition yields $O(r^2)$ convex
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Convex Hulls and Extreme Points \label{Pkg:ConvexHull2}}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chep2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chep2-08}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls in two dimensions as well as functions for
|
||||
checking if sets of points are strongly convex are not. There are also
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Convex Hulls\label{Pkg:ConvexHull3}}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-ch3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-ch3-08}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls in three dimensions as well as functions
|
||||
for checking if sets of points are strongly convex or not. One can
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Convex Hulls and Delaunay Triangulations\label{Pkg:ConvexHullD}}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chdt3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chdt3-08}
|
||||
\ccPkgSummary{This package provides functions for computing convex hulls and
|
||||
Delaunay triangulations in $d$-dimensional Euclidean space.}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Envelopes\label{Pkg:Envelope2}}
|
||||
\ccPkgHowToCiteCgal{cgal:w-e2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:w-e2-08}
|
||||
\ccPkgSummary{
|
||||
This package consits of functions that computes the lower (or upper)
|
||||
envelope of a set of arbitrary curves in 2D. The output is
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Envelopes\label{Pkg:Envelope3}}
|
||||
\ccPkgHowToCiteCgal{cgal:mwz-e3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:mwz-e3-08}
|
||||
\ccPkgSummary{
|
||||
This package consits of functions that compute the lower (or upper)
|
||||
envelope of a set of arbitrary surfaces in 3D. The output is
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Geometric Object Generators\label{Pkg:Generators}}
|
||||
\ccPkgHowToCiteCgal{cgal:hhk-gog-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hhk-gog-08}
|
||||
|
||||
\ccPkgSummary{This package provides a variety of generators for geometric objects.
|
||||
They are useful as synthetic test data sets, e.g.~for testing
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Halfedge Data Structures \label{Pkg:HDS}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-hds-07}
|
||||
\ccPkgHowToCiteCgal{cgal:k-hds-08}
|
||||
\ccPkgSummary{
|
||||
A halfedge data structure is an edge-centered data structure
|
||||
capable of maintaining incidence information of vertices, edges and
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D and Surface Function Interpolation\label{Pkg:Interpolation2}}
|
||||
\ccPkgHowToCiteCgal{cgal:f-i-07}
|
||||
\ccPkgHowToCiteCgal{cgal:f-i-08}
|
||||
\ccPkgSummary{
|
||||
This package implements different methods for scattered data
|
||||
interpolation: Given measures of a function on a set of discrete data
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Interval Skip List\label{Pkg:IntervalSkipList}}
|
||||
\ccPkgHowToCiteCgal{cgal:f-isl-07}
|
||||
\ccPkgHowToCiteCgal{cgal:f-isl-08}
|
||||
\ccPkgSummary{An interval skip list is a data structure for finding all
|
||||
intervals that contain a point, and for stabbing queries, that is for
|
||||
answering the question whether a given point is contained in an
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Estimation of Local Differential Properties \label{Pkg:Jet_fitting_3}}
|
||||
\ccPkgHowToCiteCgal{cgal:pc-eldp-07}
|
||||
\ccPkgHowToCiteCgal{cgal:pc-eldp-08}
|
||||
|
||||
\ccPkgSummary{For a surface discretized as a point cloud or a mesh, it
|
||||
is desirable to estimate pointwise differential quantities. More
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D and 3D Linear Geometry Kernel\label{Pkg:Kernel23}}
|
||||
\ccPkgHowToCiteCgal{cgal:bfghhkps-lgk23-07}
|
||||
\ccPkgHowToCiteCgal{cgal:bfghhkps-lgk23-08}
|
||||
\ccPkgSummary{ This package contains kernels each containing objects of
|
||||
constant size, such as point, vector, direction, line, ray, segment, circle
|
||||
as well as predicates and constructions for these objects. The kernels
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Geometry Kernel\label{Pkg:KernelD}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-gkd-07}
|
||||
\ccPkgHowToCiteCgal{cgal:s-gkd-08}
|
||||
\ccPkgSummary{The dD Kernel contains objects of constant size, such as point,
|
||||
vector, direction, line, ray, segment, circle in d dimensional Euclidean space,
|
||||
as well as predicates and constructions for these objects.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Kinetic Data Structures\label{Pkg:Kds}}
|
||||
\ccPkgHowToCiteCgal{cgal:r-kds-07}
|
||||
\ccPkgHowToCiteCgal{cgal:r-kds-08}
|
||||
\ccPkgSummary{ Kinetic data structures allow combinatorial structures
|
||||
to be maintained as the primitives move. The package provides
|
||||
implementations of kinetic data structures for Delaunay triangulations
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Kinetic Framework\label{Pkg:KdsFramework}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-kdsf-07}
|
||||
\ccPkgHowToCiteCgal{cgal:s-kdsf-08}
|
||||
\ccPkgSummary{
|
||||
Kinetic data structures allow combinatorial geometric structures to be
|
||||
maintained as the primitives move. The package provides a framework to
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Introduction\label{Pkg:GeneralIntroduction}}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-07}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-08}
|
||||
\ccPkgSummary{
|
||||
This chapter explains how the manual is organized, presents a ``Hello World''
|
||||
program, and gives recommendations for further readings.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Preliminaries\label{Pkg:Preliminaries}}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-07}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-08}
|
||||
\ccPkgSummary{
|
||||
This chapter lists the licenses
|
||||
under which the \cgal\ datastructures and algorithms are distributed,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Monotone and Sorted Matrix Search \label{Pkg:MatrixSearch}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-msms-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-msms-08}
|
||||
\ccPkgSummary{
|
||||
This package provides a matrix search framework, which is
|
||||
the underlying technique for the computation of all furthest neighbors for the vertices of a convex polygon,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Conforming Triangulations and Meshes\label{Pkg:Mesh2}}
|
||||
\ccPkgHowToCiteCgal{cgal:r-ctm2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:r-ctm2-08}
|
||||
\ccPkgSummary{
|
||||
This package implements a Delaunay refinement algorithm to construct
|
||||
conforming triangulations and 2D meshes.
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Minkowski Sums\label{Pkg:MinkowskiSum2}}
|
||||
\ccPkgHowToCiteCgal{cgal:w-rms2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:w-rms2-08}
|
||||
\ccPkgSummary{
|
||||
This package consists of functions that compute the Minkowski sum
|
||||
of two simple straight-edge polygons in the plane. It also contains
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Minkowski Sum of Polyhedra\label{Pkg:MinkowskiSum3}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-emspe-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-emspe-08}
|
||||
\ccPkgSummary{
|
||||
This package provides a function, which computes the Minkowski sum of
|
||||
two point sets in $\mathbb{R}^3$. These point sets may consist of
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Modular Arithmetic \label{Pkg:ModularArithmetic}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-ma-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-ma-08}
|
||||
\ccPkgSummary{
|
||||
This package provides arithmetic over finite fields.
|
||||
The provided tools are in particular useful for filters based on
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons \label{Pkg:Nef2}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonp2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonp2-08}
|
||||
\ccPkgSummary{
|
||||
A Nef polygon is any set that can be obtained from a
|
||||
finite set of open halfspaces by set complement and set intersection
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Boolean Operations on Nef Polyhedra\label{Pkg:Nef3}}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonp3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonp3-08}
|
||||
\ccPkgSummary{
|
||||
3D Nef polyhedra, are a
|
||||
boundary representation for cell-complexes bounded by halfspaces that
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons Embedded on the Sphere \label{Pkg:NefS2}}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonpes2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonpes2-08}
|
||||
\ccPkgSummary{This package offers the equivalent to 2D Nef Polygons in the plane.
|
||||
Here halfplanes correspond to half spheres delimited by great circles. }
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Number Types\label{Pkg:NumberTypes}}
|
||||
\ccPkgHowToCiteCgal{cgal:hhkps-nt-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hhkps-nt-08}
|
||||
\ccPkgSummary{
|
||||
This package provides number type concepts as well as number type
|
||||
classes and wrapper classes for third party number type libraries.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Bounding Volumes \label{Pkg:BoundingVolumes}}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-bv-07}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-bv-08}
|
||||
\ccPkgSummary{ This package
|
||||
provides algorithms for computing optimal bounding volumes of
|
||||
point sets. In d-dimensional space, the smallest enclosing sphere,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Inscribed Areas \label{Pkg:InscribedAreas}}
|
||||
\ccPkgHowToCiteCgal{cgal:hp-ia-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hp-ia-08}
|
||||
\ccPkgSummary{
|
||||
This package provides algorithms for computing inscribed areas.
|
||||
The algorithms for computing inscribed areas are: the largest inscribed
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Polygon Partitioning \label{Pkg:PolygonPartitioning2}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-pp2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-pp2-08}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for partitioning polygons in monotone or convex polygons.
|
||||
The algorithms can produce results with the minimal number of
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Range and Neighbor Search\label{Pkg:PointSet2}}
|
||||
\ccPkgHowToCiteCgal{cgal:b-ss2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:b-ss2-08}
|
||||
\ccPkgSummary{
|
||||
This package supports circular, triangular, and isorectangular range search
|
||||
queries as well as (k) nearest neighbor search queries on 2D point sets.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Polygon\label{Pkg:Polygon2}}
|
||||
\ccPkgHowToCiteCgal{cgal:gw-p2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:gw-p2-08}
|
||||
\ccPkgSummary{
|
||||
This package provides a polygon class and operations on
|
||||
sequences of points, like the simplicity test.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Polyhedral Surface \label{Pkg:Polyhedron}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ps-07}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ps-08}
|
||||
\ccPkgSummary{Polyhedral surfaces in three dimensions are composed of
|
||||
vertices, edges, facets and an incidence relationship on them. The
|
||||
organization beneath is a halfedge data structure, which restricts the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Polynomial \label{Pkg:Polynomial}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-p-07}
|
||||
\ccPkgHowToCiteCgal{cgal:h-p-08}
|
||||
\ccPkgSummary{
|
||||
This package introduces a concept \ccc{Polynomial_d}, a concept for multivariate
|
||||
polynomials in $d$ variables. Though the concept is written for an arbitrary
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Optimal Distances \label{Pkg:OptimalDistances}}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-od-07}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-od-08}
|
||||
\ccPkgSummary{
|
||||
This package provides algorithms for computing the distance between the
|
||||
convex hulls of two point sets in d-dimensional space, without
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Principal Component Analysis\label{Pkg:PrincipalComponentAnalysisD}}
|
||||
\ccPkgHowToCiteCgal{cgal:ap-pcad-07}
|
||||
\ccPkgHowToCiteCgal{cgal:ap-pcad-08}
|
||||
\ccPkgSummary{This package provides functions to compute global information on the
|
||||
shape of a set of 2D or 3D kernel objects. It provides the
|
||||
computation of axis-aligned bounding boxes for point sets, barycenters
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
|
||||
\begin{ccPkgDescription}{Linear and Quadratic Programming Solver
|
||||
\label{Pkg:QPSolver}}
|
||||
\ccPkgHowToCiteCgal{cgal:fgsw-lqps-07}
|
||||
\ccPkgHowToCiteCgal{cgal:fgsw-lqps-08}
|
||||
\ccPkgSummary{This package contains algorithms for minimizing linear and
|
||||
convex quadratic functions over polyhedral domains, described by linear
|
||||
equations and inequalities. The algorithms are exact, i.e. the solution
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Quadrical Geometry Kernel \label{Pkg:QuadricalKernel3}}
|
||||
\ccPkgHowToCiteCgal{cgal:bh-qgk3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:bh-qgk3-08}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the spherical \cgal\ Kernel. It offers
|
||||
functionalities on quadrics and space curves defined by quadrics
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{STL Extensions for CGAL\label{Pkg:StlExtension}}
|
||||
\ccPkgHowToCiteCgal{cgal:hkpw-se-07}
|
||||
\ccPkgHowToCiteCgal{cgal:hkpw-se-08}
|
||||
|
||||
\ccPkgSummary{\cgal\ is designed in the spirit of the generic programming paradigm
|
||||
to work together with the Standard Template Library (\stl). This package provides
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Range and Segment Trees \label{Pkg:RangeSegmentTreesD}}
|
||||
\ccPkgHowToCiteCgal{cgal:n-rstd-07}
|
||||
\ccPkgHowToCiteCgal{cgal:n-rstd-08}
|
||||
\ccPkgSummary{Range and segment trees allow to perform window queries on point
|
||||
sets, and to enumerate all ranges enclosing a query point. The provided data structures
|
||||
are static and they are optimized for fast queries.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Segment Delaunay Graphs \label{Pkg::SegmentDelaunayGraph2}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-sdg2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:k-sdg2-08}
|
||||
\ccPkgSummary{
|
||||
An algorithm for computing the dual of a Voronoi diagram of a set
|
||||
of segments under the Euclidean metric. It is a generalization of the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Skin Surface Meshing \label{Pkg:SkinSurface3}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ssm3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ssm3-08}
|
||||
\ccPkgSummary{ %
|
||||
This package allows to build a triangular mesh of a skin surface.
|
||||
Skin surfaces are used for modeling large molecules in biological
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Snap Rounding \label{Pkg:SnapRounding2}}
|
||||
\ccPkgHowToCiteCgal{cgal:p-sr2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:p-sr2-08}
|
||||
\ccPkgSummary{
|
||||
Snap Rounding is a well known method for converting
|
||||
arbitrary-precision arrangements of segments into a fixed-precision
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Spatial Searching\label{Pkg:SpatialSearchingD}}
|
||||
\ccPkgHowToCiteCgal{cgal:tf-ssd-07}
|
||||
\ccPkgHowToCiteCgal{cgal:tf-ssd-08}
|
||||
\ccPkgSummary{
|
||||
|
||||
This package implements exact and approximate distance browsing by
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Spatial Sorting \label{Pkg:SpatialSorting}}
|
||||
\ccPkgHowToCiteCgal{cgal:d-ss-07}
|
||||
\ccPkgHowToCiteCgal{cgal:d-ss-08}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for sorting geometric objects in two and three dimensions, in order to improve
|
||||
efficiency of incremental geometric algorithms.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Straight Skeleton and Polygon Offsetting \label{Pkg:StraightSkeleton2}}
|
||||
\ccPkgHowToCiteCgal{cgal:c-sspo2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:c-sspo2-08}
|
||||
\ccPkgSummary{This package implements an algorithm to construct a halfedge data
|
||||
structure representing the straight skeleton in the interior of 2D
|
||||
polygons with holes and an algorithm to construct inward offset
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Placement of Streamlines\label{Pkg:PlacementOfStreamlines2}}
|
||||
\ccPkgHowToCiteCgal{cgal:m-ps-07}
|
||||
\ccPkgHowToCiteCgal{cgal:m-ps-08}
|
||||
\ccPkgSummary{
|
||||
Visualizing vector fields is important for many application domains. A
|
||||
good way to do it is to generate streamlines that describe the flow
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Surface Subdivision Methods\label{Pkg:SurfaceSubdivisionMethods3}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-ssm2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:s-ssm2-08}
|
||||
\ccPkgSummary{
|
||||
Subdivision methods recursively refine a control mesh and generate
|
||||
points approximating the limit surface. This package consists of four
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Planar Parameterization of Triangulated Surface Meshes\label{Pkg:SurfaceParameterization}}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-08}
|
||||
\ccPkgSummary{Parameterizing a surface amounts to finding a one-to-one mapping from
|
||||
a suitable domain to the surface. In this package, we focus on
|
||||
triangulated surfaces that are homeomorphic to a disk and on piecewise
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Triangulated Surface Mesh Simplification\label{Pkg:SurfaceMeshSimplification}}
|
||||
\ccPkgHowToCiteCgal{cgal:c-tsms-07}
|
||||
\ccPkgHowToCiteCgal{cgal:c-tsms-08}
|
||||
\ccPkgSummary{This package provides an algorithm to simplify a triangulated surface mesh
|
||||
by edge collapsing. It is an implementation of the Turk/Lindstrom {\em memoryless}
|
||||
mesh simplification algorithm.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Surface Mesh Generation\label{Pkg:SurfaceMesher3}}
|
||||
\ccPkgHowToCiteCgal{cgal:ry-smg-07}
|
||||
\ccPkgHowToCiteCgal{cgal:ry-smg-08}
|
||||
\ccPkgSummary{
|
||||
This package provides functions to generate
|
||||
surface meshes that interpolate
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Surface Reconstruction\label{Pkg:SurfaceReconstruction}}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-08}
|
||||
\ccPkgSummary{
|
||||
[TODO: replace next paragraph by actual description]
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Triangulation Data Structure \label{Pkg:TDS2}}
|
||||
\ccPkgHowToCiteCgal{cgal:py-tds2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:py-tds2-08}
|
||||
\ccPkgSummary{
|
||||
This package provides a data structure to store a two-dimensional
|
||||
triangulation that has the topology of a two-dimensional sphere.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Triangulation \label{Pkg:Triangulation2}}
|
||||
\ccPkgHowToCiteCgal{cgal:y-t2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:y-t2-08}
|
||||
\ccPkgSummary{This package allows to build and handle
|
||||
various triangulations for point sets two dimensions.
|
||||
Any CGAL triangulation covers the convex hull of its
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Triangulation Data Structure \label{Pkg:TDS3}}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-tds3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-tds3-08}
|
||||
\ccPkgSummary{
|
||||
This package provides a data structure to store a three-dimensional
|
||||
triangulation that has the topology of a three-dimensional sphere.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Triangulations\label{Pkg:Triangulation3}}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-t3-07}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-t3-08}
|
||||
\ccPkgSummary{
|
||||
This package allows to build and handle
|
||||
triangulations for point sets in three dimensions.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Voronoi Diagram Adaptor \label{Pkg::VoronoiDiagramAdaptor2}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-vda2-07}
|
||||
\ccPkgHowToCiteCgal{cgal:k-vda2-08}
|
||||
\ccPkgSummary{
|
||||
The 2D Voronoi diagram adaptor package provides an adaptor that adapts a
|
||||
2-dimensional triangulated Delaunay graph to the corresponding
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{IO Streams\label{Pkg:IOstreams}}
|
||||
\ccPkgHowToCiteCgal{cgal:fgk-ios-07}
|
||||
\ccPkgHowToCiteCgal{cgal:fgk-ios-08}
|
||||
|
||||
\ccPkgSummary{All classes in the \cgal\ kernel provide input and output operators for
|
||||
IO streams.
|
||||
|
|
|
|||
Loading…
Reference in New Issue