Trimmed Regular triangulation euclidean traits (doc version)

Now that the traits is exactly the kernel, there isn't a big need for a lot of
documentation.
This commit is contained in:
Mael Rouxel-Labbé 2017-04-14 15:53:12 +02:00
parent ee5b2d2876
commit ed4ca2ee69
2 changed files with 10 additions and 197 deletions

View File

@ -5,47 +5,21 @@ namespace CGAL {
\ingroup PkgTriangulation2TraitsClasses
\deprecated The class is deprecated since \cgal 4.10, as the weighted point and the function
objects for weighted points are part of the concept `Kernel`. The class is kept for backward
compatibility, but ignores the template parameter `Weight`.
`Regular_triangulation_euclidean_traits_2` is a model for the concept `RegularTriangulationTraits_2`
objects for weighted points are part of the concept `Kernel`. The class is kept for backward
compatibility, but ignores the template parameter `Weight`.
\tparam K must be a model of the `Kernel` concept.
\tparam Weight This template parameter is ignored, as `Kernel::Weighted_point_2` uses the type `Kernel::FT`.
This class inherits from `K`
and uses a `K::Weighted_point_2` as point type.
\tparam Weight This template parameter is ignored, as `Kernel::Weighted_point_2`
uses the type `Kernel::FT`.
\cgalModels `RegularTriangulationTraits_2`
\sa `CGAL::Regular_triangulation_2`
*/
template< typename K, typename Weight >
class Regular_triangulation_euclidean_traits_2 : public K {
public:
/// \name Types
/// @{
/*!
The type for point \f$ p\f$ of a weighted point \f$ {p}^{(w)}=(p,w_p)\f$.
*/
typedef K::Point_2 Bare_point;
/*!
The type for weighted points.
*/
typedef K::Weighted_point_2 Weighted_point_2;
/*!
The type for points.
*/
typedef K::Weighted_point_2 Point_2;
/// @}
}; /* end Regular_triangulation_euclidean_traits_2 */
} /* end namespace CGAL */

View File

@ -5,182 +5,21 @@ namespace CGAL {
\ingroup PkgTriangulation3TraitsClasses
\deprecated The class is deprecated since \cgal 4.10, as the weighted point and the function
objects for weighted points are part of the concept `Kernel`. The class is kept for backward
compatibility, but ignores the template parameter `Weight`.
The class `Regular_triangulation_euclidean_traits_3` was the default traits class for the
class `Regular_triangulation_3<RegularTriangulationTraits_3,TriangulationDataStructure_3>`
and uses the type `K::Weighted_point_3` for weighted points`.
objects for weighted points are part of the concept `Kernel`. The class is kept for backward
compatibility, but ignores the template parameter `Weight`.
\tparam K must be a model of the `Kernel` concept.
\tparam Weight This template parameter is ignored, as `Kernel::Weighted_point_3` uses the type `Kernel::FT`.
The class is a model of the concept `RegularTriangulationTraits_3`.
It also contains some additional predicates and constructors on weighted points
that are not required in the concept `RegularTriangulationTraits_3`,
and hence documented here. They are used by mesh generation packages.
Note that filtered predicates are automatically used if the
Boolean `Has_filtered_predicates` in the kernel provided as template parameter
of that class is set to `true`. This is the case for the predefined kernels
\ref kernel_predef.
\tparam Weight This template parameter is ignored, as `Kernel::Weighted_point_3`
uses the type `Kernel::FT`.
\cgalModels `RegularTriangulationTraits_3`
*/
template< typename K, typename Weight >
class Regular_triangulation_euclidean_traits_3 : public K {
public:
/// \name Types
/// @{
/*!
The type for point \f$ p\f$ of a weighted point \f$ {p}^{(w)}=(p,w_p)\f$.
*/
typedef K::Point_3 Bare_point;
/*!
The type for weighted points.
*/
typedef K::Weighted_point_3 Weighted_point_3;
/*!
The type for points.
*/
typedef K::Weighted_point_3 Point_3;
/// @}
/// \name Types for Predicate Functors
/// @{
/*!
A predicate type, model of `Kernel::CompareWeightedSquaredRadius_3`.
The operator() takes weighted point(s) as arguments,
together with one weight. It compares the weight of the smallest sphere
orthogonal to the weighted points with the input weight.
`Comparison_result operator()( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s, FT w) ;`
`Comparison_result operator()( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, FT w) ;`
`Comparison_result operator()( Weighted_point_3 p, Weighted_point_3 q, FT w) ;`
`Comparison_result operator()( Weighted_point_3 p, FT w) ;`
*/
typedef unspecified_type Compare_weighted_squared_radius_3;
/*!
A predicate type, model of `Kernel::PowerSideOfBoundedPowerSphere_3`.
The operator() is similar to the operator() of
`Power_side_of_oriented_power_sphere_3`
except that the returned type is not an `Oriented_side`
but belongs to the enum `Bounded_side`
(`NEGATIVE`, `ZERO` and `POSITIVE`)
corresponding respectively to
`ON_BOUNDED_SIDE`, `ON_BOUNDARY` and `ON_UNBOUNDED_SIDE`)).
`Bounded_side operator() ( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s, Weighted_point_3 t) ; `
`Bounded_side operator() ( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s) ; `
`Bounded_side operator() ( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r) ; `
*/
typedef unspecified_type Power_side_of_bounded_power_sphere_3;
/// @}
/// \name Types for Constructor Functors
/// @{
/*!
A functor type, model of `Kernel::ComputePowerProduct_3`. The operator() computes the power distance between its
arguments.
`FT operator() ( Weighted_point_3 p, Weighted_point_3 q) ; `
*/
typedef unspecified_type Compute_power_product_3;
/*!
A functor type, model of `Kernel::ComputeSquaredRadiusSmallestOrthogonalSphere_3`.
The operator() computes the squared radius of the
smallest sphere orthogonal to the argument(s).
`FT operator() ( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s);`
`FT operator() ( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r);`
`FT operator() ( Weighted_point_3 p, Weighted_point_3 q);`
`FT operator() ( Weighted_point_3 p);`
*/
typedef unspecified_type Compute_squared_radius_smallest_orthogonal_sphere_3;
/*!
A functor type, model of `Kernel::ComputePowerDistanceToPowerSphere_3`.
The operator() takes weighted points as arguments
and computes the squared radius
of the sphere centered in the last point and orthogonal
to the other weighted points. The last argument is a weighted point
but its weight does not matter.
`FT operator() ( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s, Weighted_point_3 t);`
*/
typedef unspecified_type Compute_power_distance_to_power_sphere_3;
/// @}
/// \name Operations
/// @{
/*!
*/
Compare_weighted_squared_radius_3
compare_weighted_squared_radius_3_object();
/*!
*/
Power_side_of_bounded_power_sphere_3
power_side_of_bounded_power_sphere_3_object();
/*!
*/
Compute_power_product_3
compute_power_product_3_object() ;
/*!
*/
Compute_squared_radius_smallest_orthogonal_sphere_3
compute_squared_radius_smallest_orthogonal_sphere_3_object() ;
/*!
*/
Compute_power_distance_to_power_sphere_3
compute_power_distance_to_power_sphere_3_object();
/// @}
}; /* end Regular_triangulation_euclidean_traits_3 */
} /* end namespace CGAL */