mirror of https://github.com/CGAL/cgal
fixed bugs from HTML conversion
This commit is contained in:
parent
c0eba4ddc5
commit
ef47ecf1ba
|
|
@ -98,7 +98,7 @@ reconstructing $mc(P)$ from a given support set $S$ of $P$.
|
|||
CGAL_Random& random = CGAL_random,
|
||||
Traits const& traits = Traits() );}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(P)$ with $P$ being the set of points
|
||||
in the range [\ccc{first},\ccc{last}). If \ccc{randomize} is
|
||||
\ccc{true}, a random permutation of $P$ is computed in
|
||||
|
|
@ -144,7 +144,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
|
||||
\ccConstructor{ CGAL_Min_circle_2( Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to
|
||||
$mc(\mbox{\ccTexHtml{$\emptyset$}{Ø}})$, the empty set.
|
||||
\ccPostcond \ccVar\ccc{.is_empty()} = \ccc{true}.}
|
||||
|
|
@ -152,7 +152,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
\ccConstructor{ CGAL_Min_circle_2( Point const& p,
|
||||
Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(\{p\})$, the set $\{p\}$.
|
||||
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
|
||||
|
||||
|
|
@ -160,7 +160,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p2,
|
||||
Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(\{p1,p2\})$, the circle with diameter
|
||||
equal to the segment connecting $p1$ and $p2$.}
|
||||
|
||||
|
|
@ -169,7 +169,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p3,
|
||||
Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(\{p1,p2,p3\})$.}
|
||||
|
||||
\ccUnchecked
|
||||
|
|
@ -233,9 +233,9 @@ bounded side, i.e.\ its unbounded side equals the whole plane $\E_2$.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -366,7 +366,7 @@ correct.
|
|||
\ccc{Point} and \ccc{Circle}.}
|
||||
|
||||
% -----------------------------------------------------------------------------
|
||||
\ccSeeAlso
|
||||
\ccHeading{See Also}
|
||||
|
||||
\ccc{CGAL_Min_ellipse_2}
|
||||
(Section~\ref{sec:min_ellipse_2_spec}),
|
||||
|
|
|
|||
|
|
@ -133,8 +133,9 @@ of \ccc{CGAL_Min_circle_2} is used.
|
|||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q);}{
|
||||
sets \ccVar\ to the circle with diameter
|
||||
$\overline{\mbox{\ccc{p}\ccc{q}}}$. The algorithm
|
||||
guarantees that \ccc{set} is never called with two equal points.}
|
||||
\ccTexHtml{$\overline{\mbox{\ccc{p}\ccc{q}}}$}{<i>pq</i>}.
|
||||
The algorithm guarantees that \ccc{set} is never called
|
||||
with two equal points.}
|
||||
|
||||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q,
|
||||
|
|
@ -155,9 +156,9 @@ predicate of \ccc{CGAL_Min_circle_2} is used.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -198,9 +199,11 @@ The following operations are only needed, if the member function
|
|||
The following I/O operators are only needed, if the corresponding I/O
|
||||
operators of \ccc{CGAL_Min_circle_2} are used.
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ ostream& operator << ( ostream& os, Circle const& circle);}{
|
||||
writes \ccVar\ to output stream \ccc{os}.}
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ istream& operator >> ( istream& is, Circle &circle);}{
|
||||
reads \ccVar\ from input stream \ccc{is}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -98,7 +98,7 @@ reconstructing $mc(P)$ from a given support set $S$ of $P$.
|
|||
CGAL_Random& random = CGAL_random,
|
||||
Traits const& traits = Traits() );}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(P)$ with $P$ being the set of points
|
||||
in the range [\ccc{first},\ccc{last}). If \ccc{randomize} is
|
||||
\ccc{true}, a random permutation of $P$ is computed in
|
||||
|
|
@ -144,7 +144,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
|
||||
\ccConstructor{ CGAL_Min_circle_2( Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to
|
||||
$mc(\mbox{\ccTexHtml{$\emptyset$}{Ø}})$, the empty set.
|
||||
\ccPostcond \ccVar\ccc{.is_empty()} = \ccc{true}.}
|
||||
|
|
@ -152,7 +152,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
\ccConstructor{ CGAL_Min_circle_2( Point const& p,
|
||||
Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(\{p\})$, the set $\{p\}$.
|
||||
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
|
||||
|
||||
|
|
@ -160,7 +160,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p2,
|
||||
Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(\{p1,p2\})$, the circle with diameter
|
||||
equal to the segment connecting $p1$ and $p2$.}
|
||||
|
||||
|
|
@ -169,7 +169,7 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p3,
|
||||
Traits const& traits = Traits());}{
|
||||
creates a variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(\{p1,p2,p3\})$.}
|
||||
|
||||
\ccUnchecked
|
||||
|
|
@ -233,9 +233,9 @@ bounded side, i.e.\ its unbounded side equals the whole plane $\E_2$.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -366,7 +366,7 @@ correct.
|
|||
\ccc{Point} and \ccc{Circle}.}
|
||||
|
||||
% -----------------------------------------------------------------------------
|
||||
\ccSeeAlso
|
||||
\ccHeading{See Also}
|
||||
|
||||
\ccc{CGAL_Min_ellipse_2}
|
||||
(Section~\ref{sec:min_ellipse_2_spec}),
|
||||
|
|
|
|||
|
|
@ -133,8 +133,9 @@ of \ccc{CGAL_Min_circle_2} is used.
|
|||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q);}{
|
||||
sets \ccVar\ to the circle with diameter
|
||||
$\overline{\mbox{\ccc{p}\ccc{q}}}$. The algorithm
|
||||
guarantees that \ccc{set} is never called with two equal points.}
|
||||
\ccTexHtml{$\overline{\mbox{\ccc{p}\ccc{q}}}$}{<i>pq</i>}.
|
||||
The algorithm guarantees that \ccc{set} is never called
|
||||
with two equal points.}
|
||||
|
||||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q,
|
||||
|
|
@ -155,9 +156,9 @@ predicate of \ccc{CGAL_Min_circle_2} is used.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -198,9 +199,11 @@ The following operations are only needed, if the member function
|
|||
The following I/O operators are only needed, if the corresponding I/O
|
||||
operators of \ccc{CGAL_Min_circle_2} are used.
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ ostream& operator << ( ostream& os, Circle const& circle);}{
|
||||
writes \ccVar\ to output stream \ccc{os}.}
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ istream& operator >> ( istream& is, Circle &circle);}{
|
||||
reads \ccVar\ from input stream \ccc{is}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -23,8 +23,8 @@ euclidean space $\E_2$. For a point set $P$ we denote by $me(P)$ the
|
|||
smallest ellipse that contains all points of $P$. Note that $me(P)$ can be
|
||||
degenerate, i.e.\ $me(P)=\mbox{\ccTexHtml{$\;\emptyset$}{Ø}}$ if
|
||||
$P=\mbox{\ccTexHtml{$\;\emptyset$}{Ø}}$, $me(P)=\{p\}$ if $P=\{p\}$,
|
||||
and $me(P) = \{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 \}$ if
|
||||
$P=\{p,q\}$.
|
||||
and $me(P) = \{ \mbox{\ccTexHtml{$(1-\lambda)p + \lambda q \mid
|
||||
0 \leq \lambda \leq 1$}{(1-l)p + l q | 0 <= l <= 1}} \}$ if $P=\{p,q\}$.
|
||||
|
||||
An inclusion-minimal subset $S$ of $P$ with $me(S)=me(P)$ is called a
|
||||
\emph{support set}, the points in $S$ are the \emph{support points}.
|
||||
|
|
@ -99,9 +99,9 @@ useful for reconstructing $me(P)$ from a given support set $S$ of $P$.
|
|||
CGAL_Random& random = CGAL_random,
|
||||
Traits const& traits = Traits() );}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(P)$ with $P$ being the set of points
|
||||
in the range [\ccc{first},\ccc{last}). If \ccc{randomize} is
|
||||
\ccc{true}, a random permutation of $P$ is computed in
|
||||
|
|
@ -147,9 +147,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
|
||||
\ccConstructor{ CGAL_Min_ellipse_2( Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to
|
||||
$me(\mbox{\ccTexHtml{$\emptyset$}{Ø}})$, the empty set.
|
||||
\ccPostcond \ccVar\ccc{.is_empty()} = \ccc{true}.}
|
||||
|
|
@ -157,11 +157,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
\ccConstructor{ CGAL_Min_ellipse_2( Point const& p,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p\})$, the set $\{p\}$.
|
||||
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
|
||||
|
||||
|
|
@ -169,9 +167,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& q,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p,q\})$, the set
|
||||
$\{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 \}$.
|
||||
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
|
||||
|
|
@ -181,9 +179,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p3,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p1,p2,p3\})$.}
|
||||
|
||||
\ccConstructor{ CGAL_Min_ellipse_2( Point const& p1,
|
||||
|
|
@ -192,9 +190,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p4,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p1,p2,p3,p4\})$.}
|
||||
|
||||
\ccConstructor{ CGAL_Min_ellipse_2( Point const& p1,
|
||||
|
|
@ -204,9 +202,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p5,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p1,p2,p3,p4,p5\})$.}
|
||||
|
||||
\ccUnchecked
|
||||
|
|
@ -252,10 +250,10 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
|
||||
\ccMemberFunction{ Point const& support_point( int i) const;}{
|
||||
returns the \ccc{i}-th support point of \ccVar%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
Between two
|
||||
modifying operations (see
|
||||
\SaveSpaceByHand{$\!$}{}
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}
|
||||
below) any call to
|
||||
\ccVar\ccc{.support_point(i)} with the same \ccc{i} returns
|
||||
the same point.
|
||||
|
|
@ -273,9 +271,9 @@ bounded side, i.e.\ its unbounded side equals the whole plane $\E_2$.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -410,7 +408,7 @@ correct.
|
|||
\ccc{Point} and \ccc{Ellipse}.}
|
||||
|
||||
% -----------------------------------------------------------------------------
|
||||
\ccSeeAlso
|
||||
\ccHeading{See Also}
|
||||
|
||||
\ccc{CGAL_Min_circle_2}
|
||||
(Section~\ref{sec:min_circle_2_spec}),
|
||||
|
|
|
|||
|
|
@ -112,8 +112,9 @@ whole plane $\E_2$.
|
|||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q);}{
|
||||
sets \ccVar\ to the ellipse containing exactly the segment
|
||||
$\overline{\mbox{\ccc{p}\ccc{q}}}$. The algorithm
|
||||
guarantees that \ccc{set} is never called with two equal points.}
|
||||
\ccTexHtml{$\overline{\mbox{\ccc{p}\ccc{q}}}$}{<i>pq</i>}.
|
||||
The algorithm guarantees that \ccc{set} is never called
|
||||
with two equal points.}
|
||||
|
||||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q,
|
||||
|
|
@ -151,9 +152,9 @@ predicate of \ccc{CGAL_Min_ellipse_2} is used.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -179,9 +180,11 @@ predicate of \ccc{CGAL_Min_ellipse_2} is used.
|
|||
The following I/O operators are only needed, if the corresponding I/O
|
||||
operators of \ccc{CGAL_Min_ellipse_2} are used.
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ ostream& operator << ( ostream& os, Ellipse const& ellipse);}{
|
||||
writes \ccVar\ to output stream \ccc{os}.}
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ istream& operator >> ( istream& is, Ellipse &ellipse);}{
|
||||
reads \ccVar\ from input stream \ccc{is}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -23,8 +23,8 @@ euclidean space $\E_2$. For a point set $P$ we denote by $me(P)$ the
|
|||
smallest ellipse that contains all points of $P$. Note that $me(P)$ can be
|
||||
degenerate, i.e.\ $me(P)=\mbox{\ccTexHtml{$\;\emptyset$}{Ø}}$ if
|
||||
$P=\mbox{\ccTexHtml{$\;\emptyset$}{Ø}}$, $me(P)=\{p\}$ if $P=\{p\}$,
|
||||
and $me(P) = \{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 \}$ if
|
||||
$P=\{p,q\}$.
|
||||
and $me(P) = \{ \mbox{\ccTexHtml{$(1-\lambda)p + \lambda q \mid
|
||||
0 \leq \lambda \leq 1$}{(1-l)p + l q | 0 <= l <= 1}} \}$ if $P=\{p,q\}$.
|
||||
|
||||
An inclusion-minimal subset $S$ of $P$ with $me(S)=me(P)$ is called a
|
||||
\emph{support set}, the points in $S$ are the \emph{support points}.
|
||||
|
|
@ -99,9 +99,9 @@ useful for reconstructing $me(P)$ from a given support set $S$ of $P$.
|
|||
CGAL_Random& random = CGAL_random,
|
||||
Traits const& traits = Traits() );}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $mc(P)$ with $P$ being the set of points
|
||||
in the range [\ccc{first},\ccc{last}). If \ccc{randomize} is
|
||||
\ccc{true}, a random permutation of $P$ is computed in
|
||||
|
|
@ -147,9 +147,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
|
||||
\ccConstructor{ CGAL_Min_ellipse_2( Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to
|
||||
$me(\mbox{\ccTexHtml{$\emptyset$}{Ø}})$, the empty set.
|
||||
\ccPostcond \ccVar\ccc{.is_empty()} = \ccc{true}.}
|
||||
|
|
@ -157,11 +157,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
\ccConstructor{ CGAL_Min_ellipse_2( Point const& p,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p\})$, the set $\{p\}$.
|
||||
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
|
||||
|
||||
|
|
@ -169,9 +167,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& q,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p,q\})$, the set
|
||||
$\{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 \}$.
|
||||
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
|
||||
|
|
@ -181,9 +179,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p3,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p1,p2,p3\})$.}
|
||||
|
||||
\ccConstructor{ CGAL_Min_ellipse_2( Point const& p1,
|
||||
|
|
@ -192,9 +190,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p4,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p1,p2,p3,p4\})$.}
|
||||
|
||||
\ccConstructor{ CGAL_Min_ellipse_2( Point const& p1,
|
||||
|
|
@ -204,9 +202,9 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
Point const& p5,
|
||||
Traits const& traits = Traits());}{
|
||||
creates
|
||||
\SaveSpaceByHand{}{a}
|
||||
\SaveSpaceByHand\ccTexHtml{}{a}
|
||||
variable \ccVar\ of type \ccClassTemplateName%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
It is initialized to $me(\{p1,p2,p3,p4,p5\})$.}
|
||||
|
||||
\ccUnchecked
|
||||
|
|
@ -252,10 +250,10 @@ the \stl\ input stream iterator \ccc{istream_iterator<Point>}.
|
|||
|
||||
\ccMemberFunction{ Point const& support_point( int i) const;}{
|
||||
returns the \ccc{i}-th support point of \ccVar%
|
||||
\SaveSpaceByHand{$\!$}{}.
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}.
|
||||
Between two
|
||||
modifying operations (see
|
||||
\SaveSpaceByHand{$\!$}{}
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{}
|
||||
below) any call to
|
||||
\ccVar\ccc{.support_point(i)} with the same \ccc{i} returns
|
||||
the same point.
|
||||
|
|
@ -273,9 +271,9 @@ bounded side, i.e.\ its unbounded side equals the whole plane $\E_2$.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -410,7 +408,7 @@ correct.
|
|||
\ccc{Point} and \ccc{Ellipse}.}
|
||||
|
||||
% -----------------------------------------------------------------------------
|
||||
\ccSeeAlso
|
||||
\ccHeading{See Also}
|
||||
|
||||
\ccc{CGAL_Min_circle_2}
|
||||
(Section~\ref{sec:min_circle_2_spec}),
|
||||
|
|
|
|||
|
|
@ -112,8 +112,9 @@ whole plane $\E_2$.
|
|||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q);}{
|
||||
sets \ccVar\ to the ellipse containing exactly the segment
|
||||
$\overline{\mbox{\ccc{p}\ccc{q}}}$. The algorithm
|
||||
guarantees that \ccc{set} is never called with two equal points.}
|
||||
\ccTexHtml{$\overline{\mbox{\ccc{p}\ccc{q}}}$}{<i>pq</i>}.
|
||||
The algorithm guarantees that \ccc{set} is never called
|
||||
with two equal points.}
|
||||
|
||||
\ccMemberFunction{ void set( Point const& p,
|
||||
Point const& q,
|
||||
|
|
@ -151,9 +152,9 @@ predicate of \ccc{CGAL_Min_ellipse_2} is used.
|
|||
\ccMemberFunction{ CGAL_Bounded_side
|
||||
bounded_side( Point const& p) const;}{
|
||||
returns \ccc{CGAL_ON_BOUNDED_SIDE},%
|
||||
\SaveSpaceByHand{}{ }%
|
||||
\SaveSpaceByHand\ccTexHtml{}{ }%
|
||||
\ccc{CGAL_ON_BOUNDARY}%
|
||||
\SaveSpaceByHand{$\!$}{},
|
||||
\SaveSpaceByHand\ccTexHtml{$\!$}{},
|
||||
or
|
||||
\ccc{CGAL_ON_UNBOUNDED_SIDE} iff \ccc{p} lies properly inside,
|
||||
on the boundary, or properly outside of \ccVar, resp.}
|
||||
|
|
@ -179,9 +180,11 @@ predicate of \ccc{CGAL_Min_ellipse_2} is used.
|
|||
The following I/O operators are only needed, if the corresponding I/O
|
||||
operators of \ccc{CGAL_Min_ellipse_2} are used.
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ ostream& operator << ( ostream& os, Ellipse const& ellipse);}{
|
||||
writes \ccVar\ to output stream \ccc{os}.}
|
||||
|
||||
\ccHtmlNoIndex
|
||||
\ccFunction{ istream& operator >> ( istream& is, Ellipse &ellipse);}{
|
||||
reads \ccVar\ from input stream \ccc{is}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -9,18 +9,16 @@
|
|||
% $Date$
|
||||
% =============================================================================
|
||||
|
||||
\newcommand{\ccSeeAlso}{\ccHeading{See Also}}
|
||||
|
||||
\newcommand{\ccSetThreeColumnsByHand}{\ccSetThreeColumns}
|
||||
\newcommand{\ccSetThreeColumnsByHand}{\ccTexHtml{\ccSetThreeColumns}{}}
|
||||
\newcommand{\linebreakByHand}{\ccTexHtml{\\}{}}
|
||||
\newcommand{\SaveSpaceByHand}[2]{\ccTexHtml{#1}{#2}}
|
||||
\newcommand{\SaveSpaceByHand}{} %%%% [2]{\ccTexHtml{#1}{#2}}
|
||||
|
||||
\chapter{Optimisation} \label{Optimisation}
|
||||
\RCSdefDate{\OptRCSDate}{$Date$}
|
||||
|
||||
\ccChapterRelease{Release: 1.2 \quad \OptRCSDate}
|
||||
\ccChapterRelease{Release: 1.2 \ccTexHtml{\quad}{ , } \OptRCSDate}
|
||||
|
||||
\ccChapterAuthor{Bernd Gärtner} \par
|
||||
\ccChapterAuthor{Bernd Gärtner}\ccTexHtml{\par}{<br>}
|
||||
\ccChapterAuthor{Sven Schönherr}
|
||||
|
||||
\ccTexHtml{\thispagestyle{empty}}{}
|
||||
|
|
|
|||
|
|
@ -9,18 +9,16 @@
|
|||
% $Date$
|
||||
% =============================================================================
|
||||
|
||||
\newcommand{\ccSeeAlso}{\ccHeading{See Also}}
|
||||
|
||||
\newcommand{\ccSetThreeColumnsByHand}{\ccSetThreeColumns}
|
||||
\newcommand{\ccSetThreeColumnsByHand}{\ccTexHtml{\ccSetThreeColumns}{}}
|
||||
\newcommand{\linebreakByHand}{\ccTexHtml{\\}{}}
|
||||
\newcommand{\SaveSpaceByHand}[2]{\ccTexHtml{#1}{#2}}
|
||||
\newcommand{\SaveSpaceByHand}{} %%%% [2]{\ccTexHtml{#1}{#2}}
|
||||
|
||||
\chapter{Optimisation} \label{Optimisation}
|
||||
\RCSdefDate{\OptRCSDate}{$Date$}
|
||||
|
||||
\ccChapterRelease{Release: 1.2 \quad \OptRCSDate}
|
||||
\ccChapterRelease{Release: 1.2 \ccTexHtml{\quad}{ , } \OptRCSDate}
|
||||
|
||||
\ccChapterAuthor{Bernd Gärtner} \par
|
||||
\ccChapterAuthor{Bernd Gärtner}\ccTexHtml{\par}{<br>}
|
||||
\ccChapterAuthor{Sven Schönherr}
|
||||
|
||||
\ccTexHtml{\thispagestyle{empty}}{}
|
||||
|
|
|
|||
Loading…
Reference in New Issue