diff --git a/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt b/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt index b7c06a9c905..9e04f459f55 100644 --- a/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt +++ b/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt @@ -155,7 +155,7 @@ other words, if we embed the triangulation in \f$ \R^3\f$, then the fourth vertices \f$ v_3^1\f$ and \f$ v_3^2\f$ of \f$ c_1\f$ and \f$ c_2\f$ see the common facet in opposite orientations. See Figure \ref TDS3figcomborient. -The set \f$ \sigma\f$\f$ _4\f$ of permutations of +The set \f$ \sigma\f$\f$ _4\f$ of permutations of \f$ (0,1,2,3)\f$ has cardinality 24, and the set of positive permutations \f$ A_4\f$ has cardinality 12. Thus, for a given orientation, there are up to 12 different orderings of the four vertices of a cell. Note