From f2b1af6f3d3b23397f4a382f2a4b1cff6e1d2b9e Mon Sep 17 00:00:00 2001 From: Efi Fogel Date: Thu, 27 Feb 2003 20:32:41 +0000 Subject: [PATCH] Removed do_intersect..() --- .../Pmwx_traits.tex | 35 ++++++------------- .../Pmwx_traits.tex | 35 ++++++------------- 2 files changed, 22 insertions(+), 48 deletions(-) diff --git a/Packages/Arrangement/doc_tex/Pm_with_intersections_2_ref/Pmwx_traits.tex b/Packages/Arrangement/doc_tex/Pm_with_intersections_2_ref/Pmwx_traits.tex index 1ff558c6904..b9b8f702ee5 100644 --- a/Packages/Arrangement/doc_tex/Pm_with_intersections_2_ref/Pmwx_traits.tex +++ b/Packages/Arrangement/doc_tex/Pm_with_intersections_2_ref/Pmwx_traits.tex @@ -32,15 +32,13 @@ %intersection of 2 curves. \ccTypes - \ccNestedType{Point_2}{same as \ccc{PlanarMapTraits_2::Point_2}.} + \ccNestedType{Curve_2}{A type that holds a general curve in the plane. The + sweep-line operation operates on curves of this type.} \ccNestedType{X_curve_2}{same as \ccc{PlanarMapTraits_2::X_curve_2}.} - \ccNestedType{Curve_2}{ - curve type, this type should be {\it syntactically} identical to - the \ccc{X_curve_2} type (i.e., it should {\em be} the same type). - However, {\it semantically} it differs from the \ccc{X_curve_2} in - that it is not necessarily $x$-monotone. In the following methods - when we require an \ccc{X_curve_2} as a parameter, we assume that the - curve is $x$-monotone.} + \ccNestedType{Point_2}{same as \ccc{PlanarMapTraits_2::Point_2}.} + + The following methods that have a parameter of type \ccc{X_curve_2} have the + implicit precondition that requires the parameter to be $x$-monotone. \ccOperations @@ -63,21 +61,11 @@ axes). E.g., the point $(2,2)$ will be reflected as $(-2,-2)$. } that is the reflection of \ccc{cv} about the origin (both the $x$ and $y$ axes). E.g., the line segment $((2,2),(3,3))$ will be reflected as $((-2,-2),(-3,-3))$. } -\ccMethod{void curve_split(const X_curve_2& cv, X_curve_2& c1, X_curve_2& c2, - const Point_2& split_pt);}{splits $cv$ at \ccc{split_pt} -and assigns the resulting two curves to \ccc{c1} and \ccc{c2}. -\ccPrecond{\ccc{split_pt} is on \ccc{cv} but is not an endpoint.} -} - -\ccMethod{bool do_intersect_to_right(const X_curve_2& c1, const X_curve_2& c2, - const Point_2& pt);}{returns $true$ if \ccc{c1} -and \ccc{c2} intersect at a point that is lexicographically larger than -\ccc{pt} -% to the right of the point \ccc{pt}. -% Intersection to the right of \ccc{pt} is defined as -% an intersection which is lexicographically strictly to the right of \ccc{pt} -(i.e., an intersection above or to the right of -\ccc{pt} but {\em not} on \ccc{pt}).} + \ccMethod{void curve_split(const X_curve_2& cv, X_curve_2& c1, X_curve_2& c2, + const Point_2& split_pt);} + {splits $cv$ at \ccc{split_pt} into two curves, and assigns them to + \ccc{c1} and \ccc{c2} respectively. + \ccPrecond{\ccc{split_pt} is on \ccc{cv} but is not an endpoint.}} \ccMethod{bool nearest_intersection_to_right(const X_curve_2& c1, const X_curve_2& c2, @@ -97,7 +85,6 @@ if the overlapping subcurve contains \ccc{pt} either \ccc{p1} or \ccc{p2} will be equal to \ccc{pt}, this is the only case in which this can happen. If \ccc{c1} and \ccc{c2} do not intersect to the right of \ccc{pt} the function returns \ccc{false}, otherwise it returns true. -%\ccPrecond{\ccc{do_intersect_to_right(c1,c2,pt) == true}} } %The intersection function is defined in such a way to enable dealing with diff --git a/Packages/Arrangement/doc_tex/basic/Pm_with_intersections_2_ref/Pmwx_traits.tex b/Packages/Arrangement/doc_tex/basic/Pm_with_intersections_2_ref/Pmwx_traits.tex index 1ff558c6904..b9b8f702ee5 100644 --- a/Packages/Arrangement/doc_tex/basic/Pm_with_intersections_2_ref/Pmwx_traits.tex +++ b/Packages/Arrangement/doc_tex/basic/Pm_with_intersections_2_ref/Pmwx_traits.tex @@ -32,15 +32,13 @@ %intersection of 2 curves. \ccTypes - \ccNestedType{Point_2}{same as \ccc{PlanarMapTraits_2::Point_2}.} + \ccNestedType{Curve_2}{A type that holds a general curve in the plane. The + sweep-line operation operates on curves of this type.} \ccNestedType{X_curve_2}{same as \ccc{PlanarMapTraits_2::X_curve_2}.} - \ccNestedType{Curve_2}{ - curve type, this type should be {\it syntactically} identical to - the \ccc{X_curve_2} type (i.e., it should {\em be} the same type). - However, {\it semantically} it differs from the \ccc{X_curve_2} in - that it is not necessarily $x$-monotone. In the following methods - when we require an \ccc{X_curve_2} as a parameter, we assume that the - curve is $x$-monotone.} + \ccNestedType{Point_2}{same as \ccc{PlanarMapTraits_2::Point_2}.} + + The following methods that have a parameter of type \ccc{X_curve_2} have the + implicit precondition that requires the parameter to be $x$-monotone. \ccOperations @@ -63,21 +61,11 @@ axes). E.g., the point $(2,2)$ will be reflected as $(-2,-2)$. } that is the reflection of \ccc{cv} about the origin (both the $x$ and $y$ axes). E.g., the line segment $((2,2),(3,3))$ will be reflected as $((-2,-2),(-3,-3))$. } -\ccMethod{void curve_split(const X_curve_2& cv, X_curve_2& c1, X_curve_2& c2, - const Point_2& split_pt);}{splits $cv$ at \ccc{split_pt} -and assigns the resulting two curves to \ccc{c1} and \ccc{c2}. -\ccPrecond{\ccc{split_pt} is on \ccc{cv} but is not an endpoint.} -} - -\ccMethod{bool do_intersect_to_right(const X_curve_2& c1, const X_curve_2& c2, - const Point_2& pt);}{returns $true$ if \ccc{c1} -and \ccc{c2} intersect at a point that is lexicographically larger than -\ccc{pt} -% to the right of the point \ccc{pt}. -% Intersection to the right of \ccc{pt} is defined as -% an intersection which is lexicographically strictly to the right of \ccc{pt} -(i.e., an intersection above or to the right of -\ccc{pt} but {\em not} on \ccc{pt}).} + \ccMethod{void curve_split(const X_curve_2& cv, X_curve_2& c1, X_curve_2& c2, + const Point_2& split_pt);} + {splits $cv$ at \ccc{split_pt} into two curves, and assigns them to + \ccc{c1} and \ccc{c2} respectively. + \ccPrecond{\ccc{split_pt} is on \ccc{cv} but is not an endpoint.}} \ccMethod{bool nearest_intersection_to_right(const X_curve_2& c1, const X_curve_2& c2, @@ -97,7 +85,6 @@ if the overlapping subcurve contains \ccc{pt} either \ccc{p1} or \ccc{p2} will be equal to \ccc{pt}, this is the only case in which this can happen. If \ccc{c1} and \ccc{c2} do not intersect to the right of \ccc{pt} the function returns \ccc{false}, otherwise it returns true. -%\ccPrecond{\ccc{do_intersect_to_right(c1,c2,pt) == true}} } %The intersection function is defined in such a way to enable dealing with