mirror of https://github.com/CGAL/cgal
backtick and lowercase as a cleanup
This commit is contained in:
parent
1bf3680ade
commit
f54fe71b11
|
|
@ -107,28 +107,28 @@ void set_alpha_max(NT alpha);
|
||||||
/// @{
|
/// @{
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Returns true for Gabriel faces.
|
returns `true` for Gabriel faces.
|
||||||
*/
|
*/
|
||||||
bool is_Gabriel() const ;
|
bool is_Gabriel() const ;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Returns true for convex hull faces.
|
returns `true` for convex hull faces.
|
||||||
*/
|
*/
|
||||||
bool is_on_chull() const;
|
bool is_on_chull() const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Returns the `alpha_min`.
|
returns the `alpha_min`.
|
||||||
\pre `is_Gabriel()` returns false;
|
\pre `is_Gabriel()` returns `false`.
|
||||||
*/
|
*/
|
||||||
NT alpha_min() const;
|
NT alpha_min() const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Returns the `alpha_mid`.
|
returns `alpha_mid`.
|
||||||
*/
|
*/
|
||||||
NT alpha_mid() const;
|
NT alpha_mid() const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Returns `alpha_max`.
|
returns `alpha_max`.
|
||||||
\pre `is_on_chull()` returns `false`.
|
\pre `is_on_chull()` returns `false`.
|
||||||
*/
|
*/
|
||||||
NT alpha_max() const;
|
NT alpha_max() const;
|
||||||
|
|
|
||||||
|
|
@ -55,11 +55,11 @@ Enum to classify the simplices of the underlying
|
||||||
triangulation with respect to a given alpha value.
|
triangulation with respect to a given alpha value.
|
||||||
|
|
||||||
Each k-dimensional simplex of the triangulation
|
Each k-dimensional simplex of the triangulation
|
||||||
can be classified as EXTERIOR, SINGULAR, REGULAR
|
can be classified as `EXTERIOR`, `SINGULAR`, `REGULAR`
|
||||||
or INTERIOR.
|
or `INTERIOR`.
|
||||||
A \f$ k\f$ simplex is REGULAR if it is on the boundary
|
A \f$ k\f$ simplex is `REGULAR` if it is on the boundary
|
||||||
of the alpha complex and belongs to a \f$ k+1\f$ simplex in this complex
|
of the alpha complex and belongs to a \f$ k+1\f$ simplex in this complex
|
||||||
and it is SINGULAR if it is a boundary simplex that is not included in a \f$ k+1\f$ simplex of the complex.
|
and it is `SINGULAR` if it is a boundary simplex that is not included in a \f$ k+1\f$ simplex of the complex.
|
||||||
|
|
||||||
*/
|
*/
|
||||||
enum Classification_type {EXTERIOR, SINGULAR, REGULAR, INTERIOR};
|
enum Classification_type {EXTERIOR, SINGULAR, REGULAR, INTERIOR};
|
||||||
|
|
@ -70,19 +70,19 @@ enum Classification_type {EXTERIOR, SINGULAR, REGULAR, INTERIOR};
|
||||||
/// @{
|
/// @{
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Introduces an empty fixed alpha shape and sets the alpha value to `alpha`.
|
builds an empty fixed alpha shape and sets the alpha value to `alpha`.
|
||||||
*/
|
*/
|
||||||
Fixed_alpha_shape_3(FT alpha = 0);
|
Fixed_alpha_shape_3(FT alpha = 0);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Builds a fixed alpha shape from the triangulation `dt`,
|
builds a fixed alpha shape from the triangulation `dt`,
|
||||||
and sets the alpha value to `alpha`.
|
and sets the alpha value to `alpha`.
|
||||||
\attention This operation swaps `*this` and `dt`, that is `dt` is an empty triangulation once the fixed alpha shape is built.
|
\attention This operation swaps `*this` and `dt`, that is `dt` is an empty triangulation once the fixed alpha shape is built.
|
||||||
*/
|
*/
|
||||||
Fixed_alpha_shape_3(Dt& dt,FT alpha = 0);
|
Fixed_alpha_shape_3(Dt& dt,FT alpha = 0);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Builds a fixed alpha shape for the points in the range
|
builds a fixed alpha shape for the points in the range
|
||||||
`[first,last)` and sets the alpha value to `alpha`.
|
`[first,last)` and sets the alpha value to `alpha`.
|
||||||
\tparam InputIterator must be an input iterator with value type `Point` (the type point of the underlying triangulation.)
|
\tparam InputIterator must be an input iterator with value type `Point` (the type point of the underlying triangulation.)
|
||||||
*/
|
*/
|
||||||
|
|
@ -99,7 +99,7 @@ const FT& alpha = 0);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
|
|
||||||
Inserts the point p in the underlying triangulation and returns the corresponding vertex.
|
inserts the point `p` in the underlying triangulation and returns the corresponding vertex.
|
||||||
The optional argument `start` is used as a starting place for the search.
|
The optional argument `start` is used as a starting place for the search.
|
||||||
The classification types of the new simplices are computed and that of the simplices incident
|
The classification types of the new simplices are computed and that of the simplices incident
|
||||||
to the new ones are updated.
|
to the new ones are updated.
|
||||||
|
|
@ -109,14 +109,14 @@ Vertex_handle insert (Point p,Cell_handle start = Cell_handle());
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
|
|
||||||
Removes the vertex v from the underlying triangulation.
|
removes the vertex `v` from the underlying triangulation.
|
||||||
The classification types of new simplices and their incident faces are set or reset.
|
The classification types of new simplices and their incident faces are set or reset.
|
||||||
|
|
||||||
*/
|
*/
|
||||||
void remove (Vertex_handle v);
|
void remove (Vertex_handle v);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Clears the structure.
|
clears the structure.
|
||||||
*/
|
*/
|
||||||
void
|
void
|
||||||
clear();
|
clear();
|
||||||
|
|
@ -127,40 +127,40 @@ clear();
|
||||||
/// @{
|
/// @{
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Returns the \f$ \alpha\f$-value.
|
returns the \f$ \alpha\f$-value.
|
||||||
*/
|
*/
|
||||||
const FT&
|
const FT&
|
||||||
get_alpha(void) const;
|
get_alpha(void) const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Classifies the cell `c` of the underlying triangulation in the alpha complex.
|
classifies the cell `c` of the underlying triangulation in the alpha complex.
|
||||||
*/
|
*/
|
||||||
Classification_type
|
Classification_type
|
||||||
classify(Cell_handle c) const;
|
classify(Cell_handle c) const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Classifies the facet `f` of the underlying triangulation in the alpha complex.
|
classifies the facet `f` of the underlying triangulation in the alpha complex.
|
||||||
*/
|
*/
|
||||||
Classification_type classify(Facet f) const;
|
Classification_type classify(Facet f) const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Classifies the facet of the cell `f` opposite to the vertex with index
|
classifies the facet of the cell `f` opposite to the vertex with index
|
||||||
`i` of the underlying triangulation in the alpha complex.
|
`i` of the underlying triangulation in the alpha complex.
|
||||||
*/
|
*/
|
||||||
Classification_type classify(Cell_handle f, int i) const;
|
Classification_type classify(Cell_handle f, int i) const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Classifies the edge `e` of the underlying triangulation in the alpha complex.
|
classifies the edge `e` of the underlying triangulation in the alpha complex.
|
||||||
*/
|
*/
|
||||||
Classification_type classify(const Edge& e) const;
|
Classification_type classify(const Edge& e) const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Classifies the vertex `v` of the underlying triangulation in the alpha complex.
|
classifies the vertex `v` of the underlying triangulation in the alpha complex.
|
||||||
*/
|
*/
|
||||||
Classification_type classify(Vertex_handle v) const;
|
Classification_type classify(Vertex_handle v) const;
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Writes the cells which are of type `type` in the alpha complex
|
writes the cells which are of type `type` in the alpha complex
|
||||||
to the sequence
|
to the sequence
|
||||||
pointed to by the output iterator `it`. Returns past the end
|
pointed to by the output iterator `it`. Returns past the end
|
||||||
of the output sequence.
|
of the output sequence.
|
||||||
|
|
@ -169,7 +169,7 @@ template<class OutputIterator>
|
||||||
OutputIterator get_alpha_shape_cells(OutputIterator it, Classification_type type);
|
OutputIterator get_alpha_shape_cells(OutputIterator it, Classification_type type);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Writes the facets which are of type `type` in the alpha complex
|
writes the facets which are of type `type` in the alpha complex
|
||||||
to the sequence pointed to by the output iterator `it`. Returns past the end
|
to the sequence pointed to by the output iterator `it`. Returns past the end
|
||||||
of the output sequence.
|
of the output sequence.
|
||||||
*/
|
*/
|
||||||
|
|
@ -177,7 +177,7 @@ template<class OutputIterator>
|
||||||
OutputIterator get_alpha_shape_facets(OutputIterator it, Classification_type type);
|
OutputIterator get_alpha_shape_facets(OutputIterator it, Classification_type type);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Writes the edges which are of type `type` in the alpha complex
|
writes the edges which are of type `type` in the alpha complex
|
||||||
to the sequence
|
to the sequence
|
||||||
pointed to by the output iterator `it`. Returns past the end
|
pointed to by the output iterator `it`. Returns past the end
|
||||||
of the output sequence.
|
of the output sequence.
|
||||||
|
|
@ -186,7 +186,7 @@ template<class OutputIterator>
|
||||||
OutputIterator get_alpha_shape_edges(OutputIterator it, Classification_type type);
|
OutputIterator get_alpha_shape_edges(OutputIterator it, Classification_type type);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Writes the vertices which are of type `type` in the alpha complex
|
writes the vertices which are of type `type` in the alpha complex
|
||||||
to the sequence pointed to by the output iterator `it`. Returns past the end
|
to the sequence pointed to by the output iterator `it`. Returns past the end
|
||||||
of the output sequence.
|
of the output sequence.
|
||||||
*/
|
*/
|
||||||
|
|
@ -198,7 +198,7 @@ OutputIterator get_alpha_shape_vertices(OutputIterator it, Classification_type t
|
||||||
}; /* end Fixed_alpha_shape_3 */
|
}; /* end Fixed_alpha_shape_3 */
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
Inserts the fixed alpha shape `A` into the stream `os`.
|
inserts the fixed alpha shape `A` into the stream `os`.
|
||||||
|
|
||||||
|
|
||||||
An overlaoad of `operator<<` must be available for `GT::Point`.
|
An overlaoad of `operator<<` must be available for `GT::Point`.
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue