mirror of https://github.com/CGAL/cgal
polish doc, and add implementation of trivial getter (remark of Pierre)
This commit is contained in:
parent
bf4bdda1e3
commit
fa1940382f
|
|
@ -101,12 +101,12 @@ void update();
|
|||
/*!
|
||||
returns the separating distance.
|
||||
*/
|
||||
void get_separating_distance();
|
||||
FT get_separating_distance() const;
|
||||
|
||||
/*!
|
||||
returns the saturation ratio.
|
||||
*/
|
||||
void get_saturation_ratio();
|
||||
FT get_saturation_ratio() const;
|
||||
|
||||
/*!
|
||||
prints the streamlines to an ASCII file: line by line, and point by point.
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
|
||||
This class provides a vector field specified by a set of sample points
|
||||
defined on a triangulated domain. All sample points are inserted to a
|
||||
`Delaunay triangulation`, and for each point `p` in the domain
|
||||
Delaunay triangulation, and for each point `p` in the domain
|
||||
located in a face `f`, its vector value is interpolated from the
|
||||
vertices of the face `f`.
|
||||
|
||||
|
|
@ -45,13 +45,13 @@ typedef StreamLinesTraits_2::Vector_2 Vector_2;
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
Defines the points in the range
|
||||
`[first_point, `last_point)
|
||||
as the sample points of the grid, with the corresponding number of vectors started at `first_vector`.
|
||||
\pre The `value_type` of `InputIterator1` is `Point_2`.
|
||||
\pre The `value_type` of `InputIterator2` is `Vector_2`.
|
||||
Defines the points in the range `[first_point, last_point)`
|
||||
as the sample points of the triangular field, with the corresponding number of vectors started at `first_vector`.
|
||||
\tparam PointInputIterator must be an input iterator with the value type `Point_2`.
|
||||
\tparam VectorInputIterator must be an input iterator with the value type `Vector_2`.
|
||||
*/
|
||||
Triangular_field_2( InputIterator1 first_point, InputIterator1 last_point, InputIterator2 first_vector);
|
||||
mplate <class PointIterator1, class VectorInputIterator>
|
||||
Triangular_field_2( PointInputIterator first_point, PointInputIterator last_point, VectorInputIterator first_vector);
|
||||
|
||||
/// @}
|
||||
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ typedef Hidden_type Vector_2;
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
Any constructor has to allow the user to fill the vector values (i.e. assign a vector to each position within the domain).
|
||||
Any constructor has to allow the user to fill the vector values, i.e., assign a vector to each position within the domain.
|
||||
*/
|
||||
VectorField_2();
|
||||
|
||||
|
|
@ -56,26 +56,25 @@ VectorField_2();
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
returns
|
||||
the bounding box of the whole domain.
|
||||
returns the bounding box of the whole domain.
|
||||
*/
|
||||
Geom_traits::Iso_rectangle_2 bbox();
|
||||
|
||||
/*!
|
||||
returns the vector field value and the local density.
|
||||
\pre `is_in_domain(p)` must be true.
|
||||
\pre `is_in_domain(p)` must be `true`.
|
||||
*/
|
||||
std::pair<Vector_2,FT> get_field(Point_2 p);
|
||||
|
||||
/*!
|
||||
returns true if the point p
|
||||
is inside the domain boundaries, false otherwise.
|
||||
returns `true` if the point `p`
|
||||
is inside the domain boundaries, `false` otherwise.
|
||||
*/
|
||||
bool is_in_domain(Point_2 p);
|
||||
|
||||
/*!
|
||||
returns the integration step at the point p (i.e. the distance between `p` and the next point in the polyline.).
|
||||
\pre `is_in_domain(p)` must be true.
|
||||
returns the integration step at the point `p`, i.e., the distance between `p` and the next point in the polyline.
|
||||
\pre `is_in_domain(p)` must be `true`.
|
||||
*/
|
||||
FT get_integration_step(Point_2 p);
|
||||
|
||||
|
|
|
|||
|
|
@ -107,6 +107,17 @@ protected:
|
|||
public:
|
||||
void set_separating_distance(FT new_value){separating_distance = new_value;}
|
||||
void set_saturation_ratio(FT new_value){ saturation_ratio = new_value;}
|
||||
|
||||
FT get_separating_distance() const
|
||||
{
|
||||
return separating_distance;
|
||||
}
|
||||
|
||||
FT get_saturation_ratio() const
|
||||
{
|
||||
return saturation_ratio;
|
||||
}
|
||||
|
||||
void update()
|
||||
{
|
||||
ir = il = 0; // initialization
|
||||
|
|
|
|||
Loading…
Reference in New Issue