diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Delaunay_triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Delaunay_triangulation_3.h index 6ccff4252fc..5b4449f1ecf 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Delaunay_triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Delaunay_triangulation_3.h @@ -162,7 +162,7 @@ Delaunay_triangulation_3 (InputIterator first, InputIterator last, /// @{ /*! -Inserts point `p` in the triangulation and returns the corresponding +Inserts the point `p` in the triangulation and returns the corresponding vertex. Similar to the insertion in a triangulation, but ensures in addition the empty sphere property of all the created faces. The optional argument `start` is used as a starting place for the search. @@ -185,7 +185,7 @@ Vertex_handle insert(const Point & p, Vertex_handle hint, bool *could_lock_zone = NULL); /*! -Inserts point `p` in the triangulation and returns the corresponding +Inserts the point `p` in the triangulation and returns the corresponding vertex. Similar to the above `insert()` function, but takes as additional parameter the return values of a previous location query. See description of `Triangulation_3::locate()`. @@ -397,17 +397,14 @@ specifying where to start the search. \pre `c` is a cell of `dt`. */ -Vertex_handle nearest_vertex(Point p, -Cell_handle c = Cell_handle()); +Vertex_handle nearest_vertex(const Point& p, + Cell_handle c = Cell_handle()); /*! -Returns the vertex of the cell `c` that is -nearest to \f$ p\f$. - +Returns the vertex of the cell `c` that is nearest to \f$ p\f$. */ -Vertex_handle nearest_vertex_in_cell(Point p, -Cell_handle c); - +Vertex_handle nearest_vertex_in_cell(const Point& p, + Cell_handle c); /// @} @@ -447,9 +444,9 @@ Returns the pair composed of the resulting output iterators. template std::pair -find_conflicts(Point p, Cell_handle c, -OutputIteratorBoundaryFacets bfit, -OutputIteratorCells cit, bool *could_lock_zone = NULL); +find_conflicts(const Point& p, Cell_handle c, + OutputIteratorBoundaryFacets bfit, + OutputIteratorCells cit, bool *could_lock_zone = NULL); /*! Same as the other `find_conflicts()` function, except that it also @@ -479,24 +476,23 @@ Returns the `Triple` composed of the resulting output iterators. */ template + class OutputIteratorCells, + class OutputIteratorInternalFacets> Triple -find_conflicts(Point p, Cell_handle c, -OutputIteratorBoundaryFacets bfit, -OutputIteratorCells cit, -OutputIteratorInternalFacets ifit, -bool *could_lock_zone = NULL); + OutputIteratorCells, + OutputIteratorInternalFacets> +find_conflicts(const Point& p, Cell_handle c, + OutputIteratorBoundaryFacets bfit, + OutputIteratorCells cit, + OutputIteratorInternalFacets ifit, + bool *could_lock_zone = NULL); /*! \deprecated This function is renamed `vertices_on_conflict_zone_boundary` since CGAL-3.8. */ template OutputIterator -vertices_in_conflict(Point p, Cell_handle c, -OutputIterator res); +vertices_in_conflict(const Point& p, Cell_handle c, OutputIterator res); /*! Similar to `find_conflicts()`, but reports the vertices which are on the @@ -507,9 +503,7 @@ Returns the resulting output iterator. */ template OutputIterator -vertices_on_conflict_zone_boundary(Point p, Cell_handle c, -OutputIterator res); - +vertices_on_conflict_zone_boundary(const Point& p, Cell_handle c, OutputIterator res); /// @} diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h index 6591182c7df..22ad57a0db6 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h @@ -64,13 +64,12 @@ public: /// @{ /*! -The type for points -`p` of weighted points \f$ {p}^{(w)}=(p,w_p)\f$ +The type for points `p` of weighted points \f$ {p}^{(w)}=(p,w_p)\f$ */ typedef Traits::Point_3 Bare_point; /*! - +The type for weighted points */ typedef Traits::Weighted_point_3 Weighted_point; @@ -126,7 +125,7 @@ The following methods, which already exist in `Triangulation_3`, are overloaded /// @{ /*! -Inserts weighted point `p` in the triangulation. The optional +Inserts the weighted point `p` in the triangulation. The optional argument `start` is used as a starting place for the search. If this insertion creates a vertex, this vertex is returned. @@ -160,7 +159,7 @@ Same as above but uses `hint` as a starting place for the search. Vertex_handle insert(const Weighted_point & p, Vertex_handle hint, bool *could_lock_zone = NULL); /*! -Inserts weighted point `p` in the triangulation and returns the corresponding +Inserts the weighted point `p` in the triangulation and returns the corresponding vertex. Similar to the above `insert()` function, but takes as additional parameter the return values of a previous location query. See description of `Triangulation_3::locate()`. @@ -229,16 +228,18 @@ of `p` and is stored in the new cell which contains it. \pre `rt`.`dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, not empty, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`. */ template -Vertex_handle insert_in_hole(Weighted_point p, CellIt cell_begin, CellIt cell_end, -Cell_handle begin, int i); +Vertex_handle insert_in_hole(const Weighted_point& p, + CellIt cell_begin, CellIt cell_end, + Cell_handle begin, int i); /*! Same as above, except that `newv` will be used as the new vertex, which must have been allocated previously with, e.g.\ `create_vertex`. */ template -Vertex_handle insert_in_hole(Weighted_point p, CellIt cell_begin, CellIt cell_end, -Cell_handle begin, int i, Vertex_handle newv); +Vertex_handle insert_in_hole(const Weighted_point& p, + CellIt cell_begin, CellIt cell_end, + Cell_handle begin, int i, Vertex_handle newv); /// @} @@ -406,7 +407,7 @@ with respect to the power distance. This means that the power of the query point `p` with respect to the weighted point in the returned vertex is smaller than the power of `p` with respect to the weighted point -in any other vertex. Ties are broken arbitrarily. +for any other vertex. Ties are broken arbitrarily. The default constructed handle is returned if the triangulation is empty. The optional argument `c` is a hint @@ -414,8 +415,8 @@ specifying where to start the search. \pre `c` is a cell of `rt`. */ -Vertex_handle nearest_power_vertex(Weighted_point p, -Cell_handle c = Cell_handle()); +Vertex_handle nearest_power_vertex(const Bare_point& p, + Cell_handle c = Cell_handle()); /*! Returns the vertex of the cell `c` @@ -423,8 +424,8 @@ that is nearest to \f$ p\f$ with respect to the power distance. */ -Vertex_handle nearest_power_vertex_in_cell(Weighted_point p, -Cell_handle c); +Vertex_handle nearest_power_vertex_in_cell(const Bare_point& p, + Cell_handle c); /// @} @@ -485,8 +486,7 @@ bool *the_facet_is_in_its_cz = NULL); */ template OutputIterator -vertices_in_conflict(Weighted_point p, Cell_handle c, -OutputIterator res); +vertices_in_conflict(const Weighted_point& p, Cell_handle c, OutputIterator res); /*! Similar to `find_conflicts()`, but reports the vertices which are on the @@ -497,8 +497,7 @@ Returns the resulting output iterator. */ template OutputIterator -vertices_on_conflict_zone_boundary(Weighted_point p, Cell_handle c, -OutputIterator res); +vertices_on_conflict_zone_boundary(const Weighted_point& p, Cell_handle c, OutputIterator res); /*! Similar to `find_conflicts()`, but reports the vertices which are in @@ -511,7 +510,7 @@ Returns the resulting output iterator. */ template OutputIterator -vertices_inside_conflict_zone(Weighted_point p, Cell_handle c, +vertices_inside_conflict_zone(const Weighted_point& p, Cell_handle c, OutputIterator res); diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h index 1c8683e53ba..3bd0dfbe653 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Triangulation_3.h @@ -862,7 +862,7 @@ void flip_flippable(Cell_handle c, int i); /// @{ /*! -Inserts point `p` in the triangulation and returns the corresponding +Inserts the point `p` in the triangulation and returns the corresponding vertex. If point `p` coincides with an already existing vertex, this @@ -896,7 +896,7 @@ Same as above but uses `hint` as the starting place for the search. Vertex_handle insert(const Point & p, Vertex_handle hint); /*! -Inserts point `p` in the triangulation and returns the corresponding +Inserts the point `p` in the triangulation and returns the corresponding vertex. Similar to the above `insert()` function, but takes as additional parameter the return values of a previous location query. See description of locate() above. @@ -926,14 +926,14 @@ valid triangulation when they are applied on a valid triangulation. // @{ /*! -Inserts point `p` in cell `c`. Cell `c` is split into 4 +Inserts the point `p` in the cell `c`. The cell `c` is split into 4 tetrahedra. \pre `t.dimension() == 3` and `p` lies strictly inside cell `c`. */ Vertex_handle insert_in_cell(const Point & p, Cell_handle c); /*! -Inserts point `p` in facet `f`. In dimension 3, the 2 +Inserts the point `p` in the facet `f`. In dimension 3, the 2 neighboring cells are split into 3 tetrahedra; in dimension 2, the facet is split into 3 triangles. \pre `t.dimension()` \f$ \geq2\f$ and `p` lies strictly inside face `f`. @@ -941,14 +941,14 @@ is split into 3 triangles. Vertex_handle insert_in_facet(const Point & p, const Facet & f); /*! -As above, insertion in facet `(c,i)`. +As above, insertion in the facet `(c,i)`. \pre As above and \f$ i \in\{0,1,2,3\}\f$ in dimension 3, \f$ i = 3\f$ in dimension 2. */ Vertex_handle insert_in_facet(const Point & p, Cell_handle c, int i); /*! -Inserts `p` in edge `e`. In dimension 3, +Inserts `p` in the edge `e`. In dimension 3, all the cells having this edge are split into 2 tetrahedra; in dimension 2, the 2 neighboring facets are split into 2 triangles; in dimension 1, the edge is split into 2 edges. @@ -957,10 +957,10 @@ dimension 1, the edge is split into 2 edges. Vertex_handle insert_in_edge(const Point & p, const Edge & e); /*! -As above, inserts `p` in edge \f$ (i, j)\f$ of `c`. +As above, inserts `p` in the edge \f$ (i, j)\f$ of `c`. \pre As above and \f$ i\neq j\f$. Moreover \f$ i,j \in\{0,1,2,3\}\f$ in dimension 3, \f$ i,j \in\{0,1,2\}\f$ in dimension 2, \f$ i,j \in\{0,1\}\f$ in dimension 1. */ -Vertex_handle insert_in_edge(Point p, Cell_handle c, int i, int j); +Vertex_handle insert_in_edge(const Point& p, Cell_handle c, int i, int j); /*! The cell `c` must be an infinite cell containing `p`. @@ -1011,16 +1011,16 @@ This operation is equivalent to calling \pre `t.dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`. */ template -Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end, -Cell_handle begin, int i); +Vertex_handle insert_in_hole(const Point& p, CellIt cell_begin, CellIt cell_end, + Cell_handle begin, int i); /*! Same as above, except that `newv` will be used as the new vertex, which must have been allocated previously with e.g.\ `create_vertex`. */ template -Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end, -Cell_handle begin, int i, Vertex_handle newv); +Vertex_handle insert_in_hole(const Point& p, CellIt cell_begin, CellIt cell_end, + Cell_handle begin, int i, Vertex_handle newv); /// @}