diff --git a/Packages/Min_circle_2/doc_tex/Optimisation/Optimisation_ref/Min_circle_2.tex b/Packages/Min_circle_2/doc_tex/Optimisation/Optimisation_ref/Min_circle_2.tex index 2acf8e631d9..6ab36e63277 100644 --- a/Packages/Min_circle_2/doc_tex/Optimisation/Optimisation_ref/Min_circle_2.tex +++ b/Packages/Min_circle_2/doc_tex/Optimisation/Optimisation_ref/Min_circle_2.tex @@ -16,7 +16,7 @@ An object of the class \ccClassTemplateName\ is the unique circle of smallest area enclosing a finite set of points in two-dimensional euclidean space $\E_2$. For a point set $P$ we denote by $mc(P)$ the smallest circle that contains all points of $P$. Note that $mc(P)$ can -be degenerate, i.e.\ $P=$\ccTexHtml{$\emptyset$}{Ø} if +be degenerate, i.e.\ $mc(P)=$\ccTexHtml{$\emptyset$}{Ø} if $P=$\ccTexHtml{$\emptyset$}{Ø} and $mc(P)=\{p\}$ if $P=\{p\}$. An inclusion-minimal subset $S$ of $P$ with $mc(S)=mc(P)$ is called @@ -32,6 +32,9 @@ $P$ may be empty or points may occur more than once. The algorithm computes a support set $S$ which remains fixed until the next insert operation. +Correct results are in this release only guaranteed if the template +parameter of the representation class $R$ is an exact number type. + \ccCreation \ccCreationVariable{min_circle} @@ -136,10 +139,9 @@ the construction method is incremental itself. enclosing circle.} \ccMemberFunction{ void reserve( int n);}{ - reserves storage for at least \ccStyle{n} points in \ccVar. - It can be used, if the number of insert operations is known in - advance.} - + reserves storage for at least \ccStyle{n} points in \ccVar. Although + this is in no case necessary, it may speed up memory allocation if + the number of points to be inserted is known in advance.} \ccHeading{Check operation} @@ -184,7 +186,9 @@ unbounded side equals the whole plane $\E_2$. degeneracy).} \ccMemberFunction{ bool is_degenerate( ) const;}{ - returns \ccStyle{true}, iff \ccVar\ is degenerate.} + returns \ccStyle{true}, iff \ccVar\ is degenerate, i.e. if + \ccVar is empty or equal to a single point, equivalently if + the number of support points is less than 2.} \ccImplementation diff --git a/Packages/Min_circle_2/doc_tex/basic/Optimisation/Optimisation_ref/Min_circle_2.tex b/Packages/Min_circle_2/doc_tex/basic/Optimisation/Optimisation_ref/Min_circle_2.tex index 2acf8e631d9..6ab36e63277 100644 --- a/Packages/Min_circle_2/doc_tex/basic/Optimisation/Optimisation_ref/Min_circle_2.tex +++ b/Packages/Min_circle_2/doc_tex/basic/Optimisation/Optimisation_ref/Min_circle_2.tex @@ -16,7 +16,7 @@ An object of the class \ccClassTemplateName\ is the unique circle of smallest area enclosing a finite set of points in two-dimensional euclidean space $\E_2$. For a point set $P$ we denote by $mc(P)$ the smallest circle that contains all points of $P$. Note that $mc(P)$ can -be degenerate, i.e.\ $P=$\ccTexHtml{$\emptyset$}{Ø} if +be degenerate, i.e.\ $mc(P)=$\ccTexHtml{$\emptyset$}{Ø} if $P=$\ccTexHtml{$\emptyset$}{Ø} and $mc(P)=\{p\}$ if $P=\{p\}$. An inclusion-minimal subset $S$ of $P$ with $mc(S)=mc(P)$ is called @@ -32,6 +32,9 @@ $P$ may be empty or points may occur more than once. The algorithm computes a support set $S$ which remains fixed until the next insert operation. +Correct results are in this release only guaranteed if the template +parameter of the representation class $R$ is an exact number type. + \ccCreation \ccCreationVariable{min_circle} @@ -136,10 +139,9 @@ the construction method is incremental itself. enclosing circle.} \ccMemberFunction{ void reserve( int n);}{ - reserves storage for at least \ccStyle{n} points in \ccVar. - It can be used, if the number of insert operations is known in - advance.} - + reserves storage for at least \ccStyle{n} points in \ccVar. Although + this is in no case necessary, it may speed up memory allocation if + the number of points to be inserted is known in advance.} \ccHeading{Check operation} @@ -184,7 +186,9 @@ unbounded side equals the whole plane $\E_2$. degeneracy).} \ccMemberFunction{ bool is_degenerate( ) const;}{ - returns \ccStyle{true}, iff \ccVar\ is degenerate.} + returns \ccStyle{true}, iff \ccVar\ is degenerate, i.e. if + \ccVar is empty or equal to a single point, equivalently if + the number of support points is less than 2.} \ccImplementation