mirror of https://github.com/CGAL/cgal
prepare ccPkgHowToCiteCgal for CGAL-3.10 (in 2012)
This commit is contained in:
parent
ec21db617e
commit
fdb7ea6c6b
|
|
@ -1,7 +1,7 @@
|
|||
\begin{ccPkgDescription}{3D Fast Intersection and Distance Computation (AABB Tree)\label{Pkg:AABB_tree}}
|
||||
\ccPkgSummary{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
|
||||
|
||||
\ccPkgHowToCiteCgal{cgal:atw-aabb-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:atw-aabb-12}
|
||||
\ccPkgIntroducedInCGAL{3.5}
|
||||
\ccPkgDemo{AABB Tree}{AABB_demo.zip}
|
||||
\ccPkgIllustration{AABB_tree/figs/teaser-thumb.png}{AABB_tree/figs/teaser.png}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Algebraic Foundations\label{Pkg:AlgebraicFoundations}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-af-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-af-12}
|
||||
\ccPkgSummary{
|
||||
This package defines what algebra means for \cgal, in terms of
|
||||
concepts, classes and functions. The main features are:
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Algebraic Kernel \label{Pkg:AlgebraicKerneld}}
|
||||
\ccPkgHowToCiteCgal{cgal:bht-ak-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:bht-ak-12}
|
||||
\ccPkgSummary{
|
||||
Real solving of polynomials is a fundamental problem with a wide application range.
|
||||
This package is targeted to provide black-box implementations of state-of-the-art
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Alpha Shapes\label{Pkg:AlphaShape2}}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-12}
|
||||
\ccPkgSummary{
|
||||
This package offers a data structure encoding the whole family of alpha-complexes
|
||||
related to a given 2D Delaunay or regular triangulation. In particular, the data structure
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Alpha Shapes\label{Pkg:AlphaShapes3}}
|
||||
\ccPkgHowToCiteCgal{cgal:dy-as3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:dy-as3-12}
|
||||
\ccPkgSummary{
|
||||
This package offers a data structure encoding
|
||||
either one alpha-complex or
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Apollonius Graphs (Delaunay Graphs of Disks)\label{Pkg:ApolloniusGraph2}}
|
||||
\ccPkgHowToCiteCgal{cgal:ky-ag2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:ky-ag2-12}
|
||||
\ccPkgSummary{
|
||||
Algorithms for computing the Apollonius
|
||||
graph in two dimensions. The Apollonius graph is the dual of the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Arrangement\label{Pkg:Arrangement2}}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-12}
|
||||
\ccPkgSummary{
|
||||
This package can be used to construct, maintain, alter, and display
|
||||
arrangements in the plane. Once an arrangement is constructed, the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Intersection of Curves\label{Pkg:IntersectionOfCurves2}}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-12}
|
||||
\ccPkgSummary{This package provides three free functions implemented
|
||||
based on the sweep-line paradigm: given a collection of input curves,
|
||||
compute all intersection points, compute the set of subcurves that are
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{CGAL and the Boost Graph Library\label{Pkg:BGL}}
|
||||
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-12}
|
||||
|
||||
\ccPkgSummary{This package provides a framework for interfacing \cgal\
|
||||
data structures with the algorithms of the {\sc BGL}. It allows to run
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Regularized Boolean Set-Operations\label{Pkg:BooleanSetOperations2}}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-12}
|
||||
\ccPkgSummary{
|
||||
This package consists of the implementation of Boolean set-operations
|
||||
on point sets bounded by weakly x-monotone curves in 2-dimensional
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Intersecting Sequences of dD Iso-oriented Boxes\label{Pkg:BoxIntersectionD}}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-12}
|
||||
\ccPkgSummary{
|
||||
An efficient algorithm for finding all intersecting pairs for large
|
||||
numbers of iso-oriented boxes, in order to apply a user defined callback
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{CGAL Ipelets \label{Pkg:CGALIpelets}}
|
||||
\ccPkgHowToCiteCgal{cgal:lp-gi-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:lp-gi-12}
|
||||
\ccPkgSummary{This package provides
|
||||
a generic framework to easily write ipelets (plug-in's) using \cgal{} for the
|
||||
the Ipe extensible drawing editor.}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Circular Geometry Kernel \label{Pkg:CircularKernel2}}
|
||||
\ccPkgHowToCiteCgal{cgal:cpt-cgk2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cpt-cgk2-12}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ kernel. It offers
|
||||
functionalities on circles, circular arcs and line segments in the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Spherical Geometry Kernel \label{Pkg:SphericalKernel3}}
|
||||
\ccPkgHowToCiteCgal{cgal:cclt-sgk3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cclt-sgk3-12}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ Kernel. It offers
|
||||
functionalities on spheres, circles, circular arcs and line segments,
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Handles and Circulators\label{Pkg:HandlesAndCirculators}}
|
||||
\ccPkgHowToCiteCgal{cgal:dksy-hc-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:dksy-hc-12}
|
||||
|
||||
\ccPkgSummary{This package descibes handles and circulators. They are related to
|
||||
iterators. Handles allow to dereference but neither to increment nor to decrement.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Combinatorial Maps\label{Pkg:CombinatorialMaps}}
|
||||
\ccPkgHowToCiteCgal{cgal:d-cm-11b} \ccPkgSummary{This package
|
||||
\ccPkgHowToCiteCgal{cgal:d-cm-12} \ccPkgSummary{This package
|
||||
implements Combinatorial Maps in \emph{d}-dimension. A combinatorial
|
||||
map is a data structure allowing to represent an orientable
|
||||
subdivided object by describing all the cells of the subdivision
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Convex Decomposition of Polyhedra\label{Pkg:ConvexDecomposition3}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-emspe-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-emspe-12}
|
||||
\ccPkgSummary{
|
||||
This packages provides a function for decomposing a bounded polyhedron
|
||||
into convex sub-polyhedra. The decomposition yields $O(r^2)$ convex
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Convex Hulls and Extreme Points \label{Pkg:ConvexHull2}}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chep2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chep2-12}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls in two dimensions as well as functions for
|
||||
checking if sets of points are strongly convex are not. There are also
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Convex Hulls\label{Pkg:ConvexHull3}}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-ch3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-ch3-12}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls in three dimensions as well as functions
|
||||
for checking if sets of points are strongly convex or not. One can
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Convex Hulls and Delaunay Triangulations\label{Pkg:ConvexHullD}}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chdt3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chdt3-12}
|
||||
\ccPkgSummary{This package provides functions for computing convex hulls and
|
||||
Delaunay triangulations in $d$-dimensional Euclidean space.}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Envelopes\label{Pkg:Envelope2}}
|
||||
\ccPkgHowToCiteCgal{cgal:w-e2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:w-e2-12}
|
||||
\ccPkgSummary{
|
||||
This package consits of functions that computes the lower (or upper)
|
||||
envelope of a set of arbitrary curves in 2D. The output is
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Envelopes\label{Pkg:Envelope3}}
|
||||
\ccPkgHowToCiteCgal{cgal:mwz-e3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:mwz-e3-12}
|
||||
\ccPkgSummary{
|
||||
This package consits of functions that compute the lower (or upper)
|
||||
envelope of a set of arbitrary surfaces in 3D. The output is
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Geometric Object Generators\label{Pkg:Generators}}
|
||||
\ccPkgHowToCiteCgal{cgal:hhk-gog-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hhk-gog-12}
|
||||
|
||||
\ccPkgSummary{This package provides a variety of generators for geometric objects.
|
||||
They are useful as synthetic test data sets, e.g.~for testing
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Geomview\label{Pkg:Geomview}}
|
||||
\ccPkgHowToCiteCgal{cgal:fp-gv-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fp-gv-12}
|
||||
\ccPkgSummary{
|
||||
|
||||
This package implements an interface to Geomview, an interactive 3D viewing program,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{CGAL and the Qt Graphics View Framework \label{Pkg:GraphicsView}}
|
||||
\ccPkgHowToCiteCgal{cgal:fr-cqgvf-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fr-cqgvf-12}
|
||||
\ccPkgSummary{This package provides classes for displaying \cgal\ objects
|
||||
and data structures in the \ccAnchor{http://doc.qt.nokia.com/latest/graphicsview.html}{Qt 4 Graphics View Framework}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Halfedge Data Structures \label{Pkg:HDS}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-hds-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:k-hds-12}
|
||||
\ccPkgSummary{A halfedge data structure is an edge-centered data structure
|
||||
capable of maintaining incidence information of vertices, edges and
|
||||
faces, for example for planar maps, polyhedra, or other orientable,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Installation\label{Pkg:Installation}}
|
||||
\ccPkgHowToCiteCgal{cgal:cr-i-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cr-i-12}
|
||||
\ccPkgSummary{
|
||||
This chapter describes how to install \cgal, and lists the third party libraries
|
||||
on which \cgal\ depends, or for which \cgal\ provides interfaces.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D and Surface Function Interpolation\label{Pkg:Interpolation2}}
|
||||
\ccPkgHowToCiteCgal{cgal:f-i-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:f-i-12}
|
||||
\ccPkgSummary{
|
||||
This package implements different methods for scattered data
|
||||
interpolation: Given measures of a function on a set of discrete data
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Interval Skip List\label{Pkg:IntervalSkipList}}
|
||||
\ccPkgHowToCiteCgal{cgal:f-isl-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:f-isl-12}
|
||||
\ccPkgSummary{An interval skip list is a data structure for finding all
|
||||
intervals that contain a point, and for stabbing queries, that is for
|
||||
answering the question whether a given point is contained in an
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Estimation of Local Differential Properties \label{Pkg:Jet_fitting_3}}
|
||||
\ccPkgHowToCiteCgal{cgal:pc-eldp-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:pc-eldp-12}
|
||||
|
||||
\ccPkgSummary{For a surface discretized as a point cloud or a mesh, it
|
||||
is desirable to estimate pointwise differential quantities. More
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D and 3D Linear Geometry Kernel\label{Pkg:Kernel23}}
|
||||
\ccPkgHowToCiteCgal{cgal:bfghhkps-lgk23-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:bfghhkps-lgk23-12}
|
||||
\ccPkgSummary{ This package contains kernels each containing objects of
|
||||
constant size, such as point, vector, direction, line, ray, segment, circle
|
||||
as well as predicates and constructions for these objects. The kernels
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Geometry Kernel\label{Pkg:KernelD}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-gkd-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:s-gkd-12}
|
||||
\ccPkgSummary{The dD Kernel contains objects of constant size, such as point,
|
||||
vector, direction, line, ray, segment, circle in d dimensional Euclidean space,
|
||||
as well as predicates and constructions for these objects.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Kinetic Data Structures\label{Pkg:Kds}}
|
||||
\ccPkgHowToCiteCgal{cgal:r-kds-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:r-kds-12}
|
||||
\ccPkgSummary{ Kinetic data structures allow combinatorial structures
|
||||
to be maintained as the primitives move. The package provides
|
||||
implementations of kinetic data structures for Delaunay triangulations
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Kinetic Framework\label{Pkg:KdsFramework}}
|
||||
\ccPkgHowToCiteCgal{cgal:r-kdsf-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:r-kdsf-12}
|
||||
\ccPkgSummary{
|
||||
Kinetic data structures allow combinatorial geometric structures to be
|
||||
maintained as the primitives move. The package provides a framework to
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Introduction\label{Pkg:GeneralIntroduction}}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-12}
|
||||
\ccPkgSummary{
|
||||
This chapter explains how the manual is organized, presents a ``Hello World''
|
||||
program, and gives recommendations for further readings.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Profiling tools, Hash Map, Union-find, Modifiers \label{Pkg:ProfilingTools}}
|
||||
\ccPkgHowToCiteCgal{cgal:kps-pthum-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:kps-pthum-12}
|
||||
\ccPkgSummary{This package provides classes for profiling time and memory consumption,
|
||||
a hash map, a union find data structure and a modifier.}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Preliminaries\label{Pkg:Preliminaries}}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:eb-gi-12}
|
||||
\ccPkgSummary{
|
||||
This chapter lists the licenses
|
||||
under which the \cgal\ datastructures and algorithms are distributed,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Monotone and Sorted Matrix Search \label{Pkg:MatrixSearch}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-msms-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-msms-12}
|
||||
\ccPkgSummary{
|
||||
This package provides a matrix search framework, which is
|
||||
the underlying technique for the computation of all furthest neighbors for the vertices of a convex polygon,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Conforming Triangulations and Meshes\label{Pkg:Mesh2}}
|
||||
\ccPkgHowToCiteCgal{cgal:r-ctm2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:r-ctm2-12}
|
||||
\ccPkgSummary{
|
||||
This package implements a Delaunay refinement algorithm to construct
|
||||
conforming triangulations and 2D meshes.
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ Surfaces may exhibit 1-dimensional features (e.g. crease edges)
|
|||
and 0-dimensional features (e.g. singular points as corners
|
||||
tips, cusps or darts), that have to be fairly
|
||||
approximated in the mesh. }
|
||||
\ccPkgHowToCiteCgal{cgal:rty-m3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:rty-m3-12}
|
||||
\ccPkgDependsOn{\ccRef[3D Triangulations]{Pkg:Triangulation3},
|
||||
\ccRef[2D Meshes]{Pkg:Mesh2},
|
||||
\ccRef[3D Surface Mesh Generation]{Pkg:SurfaceMesher3}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Minkowski Sums\label{Pkg:MinkowskiSum2}}
|
||||
\ccPkgHowToCiteCgal{cgal:w-rms2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:w-rms2-12}
|
||||
\ccPkgSummary{
|
||||
This package consists of functions that compute the Minkowski sum
|
||||
of two simple straight-edge polygons in the plane. It also contains
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Minkowski Sum of Polyhedra\label{Pkg:MinkowskiSum3}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-msp3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-msp3-12}
|
||||
\ccPkgSummary{
|
||||
This package provides a function, which computes the Minkowski sum of
|
||||
two point sets in $\mathbb{R}^3$. These point sets may consist of
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Modular Arithmetic \label{Pkg:ModularArithmetic}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-ma-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-ma-12}
|
||||
\ccPkgSummary{
|
||||
This package provides arithmetic over finite fields.
|
||||
The provided tools are in particular useful for filters based on
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons \label{Pkg:Nef2}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonp2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonp2-12}
|
||||
\ccPkgSummary{
|
||||
A Nef polygon is any set that can be obtained from a
|
||||
finite set of open halfspaces by set complement and set intersection
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Boolean Operations on Nef Polyhedra\label{Pkg:Nef3}}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonp3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonp3-12}
|
||||
\ccPkgSummary{
|
||||
3D Nef polyhedra, are a
|
||||
boundary representation for cell-complexes bounded by halfspaces that
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons Embedded on the Sphere \label{Pkg:NefS2}}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonpes2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hk-bonpes2-12}
|
||||
\ccPkgSummary{This package offers the equivalent to 2D Nef Polygons in the plane.
|
||||
Here halfplanes correspond to half spheres delimited by great circles. }
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Number Types\label{Pkg:NumberTypes}}
|
||||
\ccPkgHowToCiteCgal{cgal:hhkps-nt-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hhkps-nt-12}
|
||||
\ccPkgSummary{
|
||||
This package provides number type concepts as well as number type
|
||||
classes and wrapper classes for third party number type libraries.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Bounding Volumes \label{Pkg:BoundingVolumes}}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-bv-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-bv-12}
|
||||
\ccPkgSummary{ This package
|
||||
provides algorithms for computing optimal bounding volumes of
|
||||
point sets. In d-dimensional space, the smallest enclosing sphere,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Inscribed Areas \label{Pkg:InscribedAreas}}
|
||||
\ccPkgHowToCiteCgal{cgal:hp-ia-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hp-ia-12}
|
||||
\ccPkgSummary{
|
||||
This package provides algorithms for computing inscribed areas.
|
||||
The algorithms for computing inscribed areas are: the largest inscribed
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Polygon Partitioning \label{Pkg:PolygonPartitioning2}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-pp2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-pp2-12}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for partitioning polygons in monotone or convex polygons.
|
||||
The algorithms can produce results with the minimal number of
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Periodic Triangulations\label{Pkg:Periodic3Triangulation3}}
|
||||
\ccPkgHowToCiteCgal{cgal:ct-pt3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:ct-pt3-12}
|
||||
\ccPkgSummary{
|
||||
This package allows to build and handle triangulations of point sets
|
||||
in the three dimensional flat torus. Triangulations are built
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Range and Neighbor Search\label{Pkg:PointSet2}}
|
||||
\ccPkgHowToCiteCgal{cgal:b-ss2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:b-ss2-12}
|
||||
\ccPkgSummary{
|
||||
This package supports circular, triangular, and isorectangular range search
|
||||
queries as well as (k) nearest neighbor search queries on 2D point sets.
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Point Set Processing\label{Pkg:PointSetProcessing}}
|
||||
\ccPkgHowToCiteCgal{cgal:ass-psp-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:ass-psp-12}
|
||||
\ccPkgSummary{This \cgal\ component implements methods to analyze and process unorganized point sets.
|
||||
The input is an unorganized point set, possibly with normal attributes (unoriented or oriented).
|
||||
The point set can be analyzed to measure its average spacing, and processed through functions devoted
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{CGAL and Boost Property Maps\label{Pkg:Property_map}}
|
||||
\ccPkgHowToCiteCgal{cgal:fs-cbpm-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fs-cbpm-12}
|
||||
|
||||
\ccPkgSummary{This package provides a framework for interfacing \cgal\
|
||||
data structures with algorithms expecting Boost Property Maps.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Polygon\label{Pkg:Polygon2}}
|
||||
\ccPkgHowToCiteCgal{cgal:gw-p2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:gw-p2-12}
|
||||
\ccPkgSummary{
|
||||
|
||||
This package provides a 2D polygon class and operations on sequences
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Polyhedral Surface \label{Pkg:Polyhedron}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ps-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ps-12}
|
||||
\ccPkgSummary{Polyhedral surfaces in three dimensions are composed of
|
||||
vertices, edges, facets and an incidence relationship on them. The
|
||||
organization beneath is a halfedge data structure, which restricts the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Polynomial \label{Pkg:Polynomial}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-p-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-p-12}
|
||||
\ccPkgSummary{
|
||||
This package introduces a concept for univariate and multivariate
|
||||
polynomials in $d$ variables. Though the concept is written for an arbitrary
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Optimal Distances \label{Pkg:OptimalDistances}}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-od-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhs-od-12}
|
||||
\ccPkgSummary{
|
||||
This package provides algorithms for computing the distance between the
|
||||
convex hulls of two point sets in d-dimensional space, without
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Principal Component Analysis\label{Pkg:PrincipalComponentAnalysisD}}
|
||||
\ccPkgHowToCiteCgal{cgal:ap-pcad-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:ap-pcad-12}
|
||||
\ccPkgSummary{This package provides functions to compute global information about the shape of a set of 2D or 3D objects. It provides the computation of axis-aligned bounding boxes for point sets, and barycenters of weighted point sets. In addition, it provides computation of centroids (center of mass) and linear least squares fitting for point sets as well as for sets of other bounded objects. More specifically, it is possible to fit 2D lines to 2D segments, circles, disks, iso rectangles and triangles, as well as to fit 3D lines or 3D planes to 3D segments, triangles, iso cuboids, tetrahedra, spheres and balls. The common interface to these functions takes an iterator range of objects.}
|
||||
|
||||
%\ccPkgDependsOn{}
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
|
||||
\begin{ccPkgDescription}{Linear and Quadratic Programming Solver
|
||||
\label{Pkg:QPSolver}}
|
||||
\ccPkgHowToCiteCgal{cgal:fgsw-lqps-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fgsw-lqps-12}
|
||||
\ccPkgSummary{This package contains algorithms for minimizing linear and
|
||||
convex quadratic functions over polyhedral domains, described by linear
|
||||
equations and inequalities. The algorithms are exact, i.e. the solution
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
\begin{ccPkgDescription}{Approximation of Ridges and Umbilics on
|
||||
Triangulated Surface Meshes \label{Pkg:Ridges_3}}
|
||||
\ccPkgHowToCiteCgal{cgal:cp-arutsm-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cp-arutsm-12}
|
||||
|
||||
\ccPkgSummary{Global features related to curvature extrema encode
|
||||
important informations used in segmentation, registration,
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{STL Extensions for CGAL\label{Pkg:StlExtension}}
|
||||
\ccPkgHowToCiteCgal{cgal:hkpw-se-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:hkpw-se-12}
|
||||
|
||||
\ccPkgSummary{\cgal\ is designed in the spirit of the generic programming paradigm
|
||||
to work together with the Standard Template Library (\stl). This package provides
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Range and Segment Trees \label{Pkg:RangeSegmentTreesD}}
|
||||
\ccPkgHowToCiteCgal{cgal:n-rstd-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:n-rstd-12}
|
||||
\ccPkgSummary{Range and segment trees allow to perform window queries on point
|
||||
sets, and to enumerate all ranges enclosing a query point. The provided data structures
|
||||
are static and they are optimized for fast queries.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Segment Delaunay Graphs \label{Pkg:SegmentDelaunayGraph2}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-sdg2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:k-sdg2-12}
|
||||
\ccPkgSummary{
|
||||
An algorithm for computing the dual of a Voronoi diagram of a set
|
||||
of segments under the Euclidean metric. It is a generalization of the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{3D Skin Surface Meshing \label{Pkg:SkinSurface3}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ssm3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ssm3-12}
|
||||
\ccPkgSummary{ %
|
||||
This package allows to build a triangular mesh of a skin surface.
|
||||
Skin surfaces are used for modeling large molecules in biological
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Snap Rounding \label{Pkg:SnapRounding2}}
|
||||
\ccPkgHowToCiteCgal{cgal:p-sr2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:p-sr2-12}
|
||||
\ccPkgSummary{
|
||||
Snap Rounding is a well known method for converting
|
||||
arbitrary-precision arrangements of segments into a fixed-precision
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Spatial Searching\label{Pkg:SpatialSearchingD}}
|
||||
\ccPkgHowToCiteCgal{cgal:tf-ssd-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:tf-ssd-12}
|
||||
\ccPkgSummary{
|
||||
|
||||
This package implements exact and approximate distance browsing by
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Spatial Sorting \label{Pkg:SpatialSorting}}
|
||||
\ccPkgHowToCiteCgal{cgal:d-ss-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:d-ss-12}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for sorting geometric objects in two, three and higher dimensions, in order to improve
|
||||
efficiency of incremental geometric algorithms.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Straight Skeleton and Polygon Offsetting \label{Pkg:StraightSkeleton2}}
|
||||
\ccPkgHowToCiteCgal{cgal:c-sspo2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:c-sspo2-12}
|
||||
\ccPkgSummary{This package implements an algorithm to construct a halfedge data
|
||||
structure representing the straight skeleton in the interior of 2D
|
||||
polygons with holes and an algorithm to construct inward offset
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Placement of Streamlines\label{Pkg:PlacementOfStreamlines2}}
|
||||
\ccPkgHowToCiteCgal{cgal:m-ps-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:m-ps-12}
|
||||
\ccPkgSummary{
|
||||
Visualizing vector fields is important for many application domains. A
|
||||
good way to do it is to generate streamlines that describe the flow
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Surface Subdivision Methods\label{Pkg:SurfaceSubdivisionMethods3}}
|
||||
\ccPkgHowToCiteCgal{cgal:s-ssm2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:s-ssm2-12}
|
||||
\ccPkgSummary{
|
||||
Subdivision methods recursively refine a control mesh and generate
|
||||
points approximating the limit surface. This package consists of four
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Planar Parameterization of Triangulated Surface Meshes\label{Pkg:SurfaceParameterization}}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-12}
|
||||
\ccPkgSummary{Parameterizing a surface amounts to finding a one-to-one mapping from
|
||||
a suitable domain to the surface. In this package, we focus on
|
||||
triangulated surfaces that are homeomorphic to a disk and on piecewise
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Triangulated Surface Mesh Simplification\label{Pkg:SurfaceMeshSimplification}}
|
||||
\ccPkgHowToCiteCgal{cgal:c-tsms-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:c-tsms-12}
|
||||
\ccPkgSummary{This package provides an algorithm to simplify a triangulated surface mesh
|
||||
by edge collapsing. It is an implementation of the Turk/Lindstrom {\em memoryless}
|
||||
mesh simplification algorithm.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Surface Mesh Generation\label{Pkg:SurfaceMesher3}}
|
||||
\ccPkgHowToCiteCgal{cgal:ry-smg-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:ry-smg-12}
|
||||
\ccPkgSummary{
|
||||
This package provides functions to generate
|
||||
surface meshes that interpolate
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Surface Reconstruction from Point Sets\label{Pkg:SurfaceReconstructionFromPointSets}}
|
||||
\ccPkgHowToCiteCgal{cgal:asg-srps-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:asg-srps-12}
|
||||
\ccPkgSummary{ This \cgal\ package implements a surface reconstruction method: Poisson Surface Reconstruction. It takes as input a set of points with oriented normals and computes an implicit function. The \cgal\ surface mesh generator can then be used to extract an iso-surface from this function. }
|
||||
|
||||
\ccPkgDependsOn{\ccThirdPartyTaucs}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Triangulation Data Structure \label{Pkg:TDS2}}
|
||||
\ccPkgHowToCiteCgal{cgal:py-tds2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:py-tds2-12}
|
||||
\ccPkgSummary{
|
||||
This package provides a data structure to store a two-dimensional
|
||||
triangulation that has the topology of a two-dimensional sphere.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Triangulation \label{Pkg:Triangulation2}}
|
||||
\ccPkgHowToCiteCgal{cgal:y-t2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:y-t2-12}
|
||||
\ccPkgSummary{This package allows to build and handle
|
||||
various triangulations for point sets two dimensions.
|
||||
Any \cgal\ triangulation covers the convex hull of its
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Triangulation Data Structure \label{Pkg:TDS3}}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-tds3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-tds3-12}
|
||||
\ccPkgSummary{
|
||||
This package provides a data structure to store a three-dimensional
|
||||
triangulation that has the topology of a three-dimensional sphere.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Triangulations\label{Pkg:Triangulation3}}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-t3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-t3-12}
|
||||
\ccPkgSummary{
|
||||
This package allows to build and handle
|
||||
triangulations for point sets in three dimensions.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Voronoi Diagram Adaptor \label{Pkg:VoronoiDiagramAdaptor2}}
|
||||
\ccPkgHowToCiteCgal{cgal:k-vda2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:k-vda2-12}
|
||||
\ccPkgSummary{
|
||||
The 2D Voronoi diagram adaptor package provides an adaptor that adapts a
|
||||
2-dimensional triangulated Delaunay graph to the corresponding
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{IO Streams\label{Pkg:IOstreams}}
|
||||
\ccPkgHowToCiteCgal{cgal:fgk-ios-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fgk-ios-12}
|
||||
|
||||
\ccPkgSummary{All classes in the \cgal\ kernel provide input and output operators for
|
||||
IO streams.
|
||||
|
|
|
|||
Loading…
Reference in New Issue