prepare ccPkgHowToCiteCgal for CGAL-3.10 (in 2012)

This commit is contained in:
Laurent Rineau 2011-09-28 16:15:05 +00:00
parent ec21db617e
commit fdb7ea6c6b
81 changed files with 81 additions and 81 deletions

View File

@ -1,7 +1,7 @@
\begin{ccPkgDescription}{3D Fast Intersection and Distance Computation (AABB Tree)\label{Pkg:AABB_tree}}
\ccPkgSummary{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
\ccPkgHowToCiteCgal{cgal:atw-aabb-11b}
\ccPkgHowToCiteCgal{cgal:atw-aabb-12}
\ccPkgIntroducedInCGAL{3.5}
\ccPkgDemo{AABB Tree}{AABB_demo.zip}
\ccPkgIllustration{AABB_tree/figs/teaser-thumb.png}{AABB_tree/figs/teaser.png}

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Algebraic Foundations\label{Pkg:AlgebraicFoundations}}
\ccPkgHowToCiteCgal{cgal:h-af-11b}
\ccPkgHowToCiteCgal{cgal:h-af-12}
\ccPkgSummary{
This package defines what algebra means for \cgal, in terms of
concepts, classes and functions. The main features are:

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Algebraic Kernel \label{Pkg:AlgebraicKerneld}}
\ccPkgHowToCiteCgal{cgal:bht-ak-11b}
\ccPkgHowToCiteCgal{cgal:bht-ak-12}
\ccPkgSummary{
Real solving of polynomials is a fundamental problem with a wide application range.
This package is targeted to provide black-box implementations of state-of-the-art

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Alpha Shapes\label{Pkg:AlphaShape2}}
\ccPkgHowToCiteCgal{cgal:d-as2-11b}
\ccPkgHowToCiteCgal{cgal:d-as2-12}
\ccPkgSummary{
This package offers a data structure encoding the whole family of alpha-complexes
related to a given 2D Delaunay or regular triangulation. In particular, the data structure

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Alpha Shapes\label{Pkg:AlphaShapes3}}
\ccPkgHowToCiteCgal{cgal:dy-as3-11b}
\ccPkgHowToCiteCgal{cgal:dy-as3-12}
\ccPkgSummary{
This package offers a data structure encoding
either one alpha-complex or

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Apollonius Graphs (Delaunay Graphs of Disks)\label{Pkg:ApolloniusGraph2}}
\ccPkgHowToCiteCgal{cgal:ky-ag2-11b}
\ccPkgHowToCiteCgal{cgal:ky-ag2-12}
\ccPkgSummary{
Algorithms for computing the Apollonius
graph in two dimensions. The Apollonius graph is the dual of the

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{2D Arrangement\label{Pkg:Arrangement2}}
\ccPkgHowToCiteCgal{cgal:wfzh-a2-11b}
\ccPkgHowToCiteCgal{cgal:wfzh-a2-12}
\ccPkgSummary{
This package can be used to construct, maintain, alter, and display
arrangements in the plane. Once an arrangement is constructed, the

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{2D Intersection of Curves\label{Pkg:IntersectionOfCurves2}}
\ccPkgHowToCiteCgal{cgal:wfz-ic2-11b}
\ccPkgHowToCiteCgal{cgal:wfz-ic2-12}
\ccPkgSummary{This package provides three free functions implemented
based on the sweep-line paradigm: given a collection of input curves,
compute all intersection points, compute the set of subcurves that are

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{CGAL and the Boost Graph Library\label{Pkg:BGL}}
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-11b}
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-12}
\ccPkgSummary{This package provides a framework for interfacing \cgal\
data structures with the algorithms of the {\sc BGL}. It allows to run

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Regularized Boolean Set-Operations\label{Pkg:BooleanSetOperations2}}
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-11b}
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-12}
\ccPkgSummary{
This package consists of the implementation of Boolean set-operations
on point sets bounded by weakly x-monotone curves in 2-dimensional

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Intersecting Sequences of dD Iso-oriented Boxes\label{Pkg:BoxIntersectionD}}
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-11b}
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-12}
\ccPkgSummary{
An efficient algorithm for finding all intersecting pairs for large
numbers of iso-oriented boxes, in order to apply a user defined callback

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{CGAL Ipelets \label{Pkg:CGALIpelets}}
\ccPkgHowToCiteCgal{cgal:lp-gi-11b}
\ccPkgHowToCiteCgal{cgal:lp-gi-12}
\ccPkgSummary{This package provides
a generic framework to easily write ipelets (plug-in's) using \cgal{} for the
the Ipe extensible drawing editor.}

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{2D Circular Geometry Kernel \label{Pkg:CircularKernel2}}
\ccPkgHowToCiteCgal{cgal:cpt-cgk2-11b}
\ccPkgHowToCiteCgal{cgal:cpt-cgk2-12}
\ccPkgSummary{
This package is an extension of the linear \cgal\ kernel. It offers
functionalities on circles, circular arcs and line segments in the

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{3D Spherical Geometry Kernel \label{Pkg:SphericalKernel3}}
\ccPkgHowToCiteCgal{cgal:cclt-sgk3-11b}
\ccPkgHowToCiteCgal{cgal:cclt-sgk3-12}
\ccPkgSummary{
This package is an extension of the linear \cgal\ Kernel. It offers
functionalities on spheres, circles, circular arcs and line segments,

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Handles and Circulators\label{Pkg:HandlesAndCirculators}}
\ccPkgHowToCiteCgal{cgal:dksy-hc-11b}
\ccPkgHowToCiteCgal{cgal:dksy-hc-12}
\ccPkgSummary{This package descibes handles and circulators. They are related to
iterators. Handles allow to dereference but neither to increment nor to decrement.

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Combinatorial Maps\label{Pkg:CombinatorialMaps}}
\ccPkgHowToCiteCgal{cgal:d-cm-11b} \ccPkgSummary{This package
\ccPkgHowToCiteCgal{cgal:d-cm-12} \ccPkgSummary{This package
implements Combinatorial Maps in \emph{d}-dimension. A combinatorial
map is a data structure allowing to represent an orientable
subdivided object by describing all the cells of the subdivision

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Convex Decomposition of Polyhedra\label{Pkg:ConvexDecomposition3}}
\ccPkgHowToCiteCgal{cgal:h-emspe-11b}
\ccPkgHowToCiteCgal{cgal:h-emspe-12}
\ccPkgSummary{
This packages provides a function for decomposing a bounded polyhedron
into convex sub-polyhedra. The decomposition yields $O(r^2)$ convex

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Convex Hulls and Extreme Points \label{Pkg:ConvexHull2}}
\ccPkgHowToCiteCgal{cgal:hs-chep2-11b}
\ccPkgHowToCiteCgal{cgal:hs-chep2-12}
\ccPkgSummary{This package provides functions
for computing convex hulls in two dimensions as well as functions for
checking if sets of points are strongly convex are not. There are also

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Convex Hulls\label{Pkg:ConvexHull3}}
\ccPkgHowToCiteCgal{cgal:hs-ch3-11b}
\ccPkgHowToCiteCgal{cgal:hs-ch3-12}
\ccPkgSummary{This package provides functions
for computing convex hulls in three dimensions as well as functions
for checking if sets of points are strongly convex or not. One can

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{dD Convex Hulls and Delaunay Triangulations\label{Pkg:ConvexHullD}}
\ccPkgHowToCiteCgal{cgal:hs-chdt3-11b}
\ccPkgHowToCiteCgal{cgal:hs-chdt3-12}
\ccPkgSummary{This package provides functions for computing convex hulls and
Delaunay triangulations in $d$-dimensional Euclidean space.}

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{2D Envelopes\label{Pkg:Envelope2}}
\ccPkgHowToCiteCgal{cgal:w-e2-11b}
\ccPkgHowToCiteCgal{cgal:w-e2-12}
\ccPkgSummary{
This package consits of functions that computes the lower (or upper)
envelope of a set of arbitrary curves in 2D. The output is

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{3D Envelopes\label{Pkg:Envelope3}}
\ccPkgHowToCiteCgal{cgal:mwz-e3-11b}
\ccPkgHowToCiteCgal{cgal:mwz-e3-12}
\ccPkgSummary{
This package consits of functions that compute the lower (or upper)
envelope of a set of arbitrary surfaces in 3D. The output is

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Geometric Object Generators\label{Pkg:Generators}}
\ccPkgHowToCiteCgal{cgal:hhk-gog-11b}
\ccPkgHowToCiteCgal{cgal:hhk-gog-12}
\ccPkgSummary{This package provides a variety of generators for geometric objects.
They are useful as synthetic test data sets, e.g.~for testing

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Geomview\label{Pkg:Geomview}}
\ccPkgHowToCiteCgal{cgal:fp-gv-11b}
\ccPkgHowToCiteCgal{cgal:fp-gv-12}
\ccPkgSummary{
This package implements an interface to Geomview, an interactive 3D viewing program,

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{CGAL and the Qt Graphics View Framework \label{Pkg:GraphicsView}}
\ccPkgHowToCiteCgal{cgal:fr-cqgvf-11b}
\ccPkgHowToCiteCgal{cgal:fr-cqgvf-12}
\ccPkgSummary{This package provides classes for displaying \cgal\ objects
and data structures in the \ccAnchor{http://doc.qt.nokia.com/latest/graphicsview.html}{Qt 4 Graphics View Framework}.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Halfedge Data Structures \label{Pkg:HDS}}
\ccPkgHowToCiteCgal{cgal:k-hds-11b}
\ccPkgHowToCiteCgal{cgal:k-hds-12}
\ccPkgSummary{A halfedge data structure is an edge-centered data structure
capable of maintaining incidence information of vertices, edges and
faces, for example for planar maps, polyhedra, or other orientable,

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Installation\label{Pkg:Installation}}
\ccPkgHowToCiteCgal{cgal:cr-i-11b}
\ccPkgHowToCiteCgal{cgal:cr-i-12}
\ccPkgSummary{
This chapter describes how to install \cgal, and lists the third party libraries
on which \cgal\ depends, or for which \cgal\ provides interfaces.

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D and Surface Function Interpolation\label{Pkg:Interpolation2}}
\ccPkgHowToCiteCgal{cgal:f-i-11b}
\ccPkgHowToCiteCgal{cgal:f-i-12}
\ccPkgSummary{
This package implements different methods for scattered data
interpolation: Given measures of a function on a set of discrete data

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Interval Skip List\label{Pkg:IntervalSkipList}}
\ccPkgHowToCiteCgal{cgal:f-isl-11b}
\ccPkgHowToCiteCgal{cgal:f-isl-12}
\ccPkgSummary{An interval skip list is a data structure for finding all
intervals that contain a point, and for stabbing queries, that is for
answering the question whether a given point is contained in an

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Estimation of Local Differential Properties \label{Pkg:Jet_fitting_3}}
\ccPkgHowToCiteCgal{cgal:pc-eldp-11b}
\ccPkgHowToCiteCgal{cgal:pc-eldp-12}
\ccPkgSummary{For a surface discretized as a point cloud or a mesh, it
is desirable to estimate pointwise differential quantities. More

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D and 3D Linear Geometry Kernel\label{Pkg:Kernel23}}
\ccPkgHowToCiteCgal{cgal:bfghhkps-lgk23-11b}
\ccPkgHowToCiteCgal{cgal:bfghhkps-lgk23-12}
\ccPkgSummary{ This package contains kernels each containing objects of
constant size, such as point, vector, direction, line, ray, segment, circle
as well as predicates and constructions for these objects. The kernels

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{dD Geometry Kernel\label{Pkg:KernelD}}
\ccPkgHowToCiteCgal{cgal:s-gkd-11b}
\ccPkgHowToCiteCgal{cgal:s-gkd-12}
\ccPkgSummary{The dD Kernel contains objects of constant size, such as point,
vector, direction, line, ray, segment, circle in d dimensional Euclidean space,
as well as predicates and constructions for these objects.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Kinetic Data Structures\label{Pkg:Kds}}
\ccPkgHowToCiteCgal{cgal:r-kds-11b}
\ccPkgHowToCiteCgal{cgal:r-kds-12}
\ccPkgSummary{ Kinetic data structures allow combinatorial structures
to be maintained as the primitives move. The package provides
implementations of kinetic data structures for Delaunay triangulations

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Kinetic Framework\label{Pkg:KdsFramework}}
\ccPkgHowToCiteCgal{cgal:r-kdsf-11b}
\ccPkgHowToCiteCgal{cgal:r-kdsf-12}
\ccPkgSummary{
Kinetic data structures allow combinatorial geometric structures to be
maintained as the primitives move. The package provides a framework to

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Introduction\label{Pkg:GeneralIntroduction}}
\ccPkgHowToCiteCgal{cgal:eb-gi-11b}
\ccPkgHowToCiteCgal{cgal:eb-gi-12}
\ccPkgSummary{
This chapter explains how the manual is organized, presents a ``Hello World''
program, and gives recommendations for further readings.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Profiling tools, Hash Map, Union-find, Modifiers \label{Pkg:ProfilingTools}}
\ccPkgHowToCiteCgal{cgal:kps-pthum-11b}
\ccPkgHowToCiteCgal{cgal:kps-pthum-12}
\ccPkgSummary{This package provides classes for profiling time and memory consumption,
a hash map, a union find data structure and a modifier.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Preliminaries\label{Pkg:Preliminaries}}
\ccPkgHowToCiteCgal{cgal:eb-gi-11b}
\ccPkgHowToCiteCgal{cgal:eb-gi-12}
\ccPkgSummary{
This chapter lists the licenses
under which the \cgal\ datastructures and algorithms are distributed,

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Monotone and Sorted Matrix Search \label{Pkg:MatrixSearch}}
\ccPkgHowToCiteCgal{cgal:h-msms-11b}
\ccPkgHowToCiteCgal{cgal:h-msms-12}
\ccPkgSummary{
This package provides a matrix search framework, which is
the underlying technique for the computation of all furthest neighbors for the vertices of a convex polygon,

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Conforming Triangulations and Meshes\label{Pkg:Mesh2}}
\ccPkgHowToCiteCgal{cgal:r-ctm2-11b}
\ccPkgHowToCiteCgal{cgal:r-ctm2-12}
\ccPkgSummary{
This package implements a Delaunay refinement algorithm to construct
conforming triangulations and 2D meshes.

View File

@ -13,7 +13,7 @@ Surfaces may exhibit 1-dimensional features (e.g. crease edges)
and 0-dimensional features (e.g. singular points as corners
tips, cusps or darts), that have to be fairly
approximated in the mesh. }
\ccPkgHowToCiteCgal{cgal:rty-m3-11b}
\ccPkgHowToCiteCgal{cgal:rty-m3-12}
\ccPkgDependsOn{\ccRef[3D Triangulations]{Pkg:Triangulation3},
\ccRef[2D Meshes]{Pkg:Mesh2},
\ccRef[3D Surface Mesh Generation]{Pkg:SurfaceMesher3}

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{2D Minkowski Sums\label{Pkg:MinkowskiSum2}}
\ccPkgHowToCiteCgal{cgal:w-rms2-11b}
\ccPkgHowToCiteCgal{cgal:w-rms2-12}
\ccPkgSummary{
This package consists of functions that compute the Minkowski sum
of two simple straight-edge polygons in the plane. It also contains

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{3D Minkowski Sum of Polyhedra\label{Pkg:MinkowskiSum3}}
\ccPkgHowToCiteCgal{cgal:h-msp3-11b}
\ccPkgHowToCiteCgal{cgal:h-msp3-12}
\ccPkgSummary{
This package provides a function, which computes the Minkowski sum of
two point sets in $\mathbb{R}^3$. These point sets may consist of

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Modular Arithmetic \label{Pkg:ModularArithmetic}}
\ccPkgHowToCiteCgal{cgal:h-ma-11b}
\ccPkgHowToCiteCgal{cgal:h-ma-12}
\ccPkgSummary{
This package provides arithmetic over finite fields.
The provided tools are in particular useful for filters based on

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons \label{Pkg:Nef2}}
\ccPkgHowToCiteCgal{cgal:s-bonp2-11b}
\ccPkgHowToCiteCgal{cgal:s-bonp2-12}
\ccPkgSummary{
A Nef polygon is any set that can be obtained from a
finite set of open halfspaces by set complement and set intersection

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Boolean Operations on Nef Polyhedra\label{Pkg:Nef3}}
\ccPkgHowToCiteCgal{cgal:hk-bonp3-11b}
\ccPkgHowToCiteCgal{cgal:hk-bonp3-12}
\ccPkgSummary{
3D Nef polyhedra, are a
boundary representation for cell-complexes bounded by halfspaces that

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons Embedded on the Sphere \label{Pkg:NefS2}}
\ccPkgHowToCiteCgal{cgal:hk-bonpes2-11b}
\ccPkgHowToCiteCgal{cgal:hk-bonpes2-12}
\ccPkgSummary{This package offers the equivalent to 2D Nef Polygons in the plane.
Here halfplanes correspond to half spheres delimited by great circles. }

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Number Types\label{Pkg:NumberTypes}}
\ccPkgHowToCiteCgal{cgal:hhkps-nt-11b}
\ccPkgHowToCiteCgal{cgal:hhkps-nt-12}
\ccPkgSummary{
This package provides number type concepts as well as number type
classes and wrapper classes for third party number type libraries.

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Bounding Volumes \label{Pkg:BoundingVolumes}}
\ccPkgHowToCiteCgal{cgal:fghhs-bv-11b}
\ccPkgHowToCiteCgal{cgal:fghhs-bv-12}
\ccPkgSummary{ This package
provides algorithms for computing optimal bounding volumes of
point sets. In d-dimensional space, the smallest enclosing sphere,

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Inscribed Areas \label{Pkg:InscribedAreas}}
\ccPkgHowToCiteCgal{cgal:hp-ia-11b}
\ccPkgHowToCiteCgal{cgal:hp-ia-12}
\ccPkgSummary{
This package provides algorithms for computing inscribed areas.
The algorithms for computing inscribed areas are: the largest inscribed

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Polygon Partitioning \label{Pkg:PolygonPartitioning2}}
\ccPkgHowToCiteCgal{cgal:h-pp2-11b}
\ccPkgHowToCiteCgal{cgal:h-pp2-12}
\ccPkgSummary{This package provides functions
for partitioning polygons in monotone or convex polygons.
The algorithms can produce results with the minimal number of

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{3D Periodic Triangulations\label{Pkg:Periodic3Triangulation3}}
\ccPkgHowToCiteCgal{cgal:ct-pt3-11b}
\ccPkgHowToCiteCgal{cgal:ct-pt3-12}
\ccPkgSummary{
This package allows to build and handle triangulations of point sets
in the three dimensional flat torus. Triangulations are built

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Range and Neighbor Search\label{Pkg:PointSet2}}
\ccPkgHowToCiteCgal{cgal:b-ss2-11b}
\ccPkgHowToCiteCgal{cgal:b-ss2-12}
\ccPkgSummary{
This package supports circular, triangular, and isorectangular range search
queries as well as (k) nearest neighbor search queries on 2D point sets.

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Point Set Processing\label{Pkg:PointSetProcessing}}
\ccPkgHowToCiteCgal{cgal:ass-psp-11b}
\ccPkgHowToCiteCgal{cgal:ass-psp-12}
\ccPkgSummary{This \cgal\ component implements methods to analyze and process unorganized point sets.
The input is an unorganized point set, possibly with normal attributes (unoriented or oriented).
The point set can be analyzed to measure its average spacing, and processed through functions devoted

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{CGAL and Boost Property Maps\label{Pkg:Property_map}}
\ccPkgHowToCiteCgal{cgal:fs-cbpm-11b}
\ccPkgHowToCiteCgal{cgal:fs-cbpm-12}
\ccPkgSummary{This package provides a framework for interfacing \cgal\
data structures with algorithms expecting Boost Property Maps.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Polygon\label{Pkg:Polygon2}}
\ccPkgHowToCiteCgal{cgal:gw-p2-11b}
\ccPkgHowToCiteCgal{cgal:gw-p2-12}
\ccPkgSummary{
This package provides a 2D polygon class and operations on sequences

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Polyhedral Surface \label{Pkg:Polyhedron}}
\ccPkgHowToCiteCgal{cgal:k-ps-11b}
\ccPkgHowToCiteCgal{cgal:k-ps-12}
\ccPkgSummary{Polyhedral surfaces in three dimensions are composed of
vertices, edges, facets and an incidence relationship on them. The
organization beneath is a halfedge data structure, which restricts the

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Polynomial \label{Pkg:Polynomial}}
\ccPkgHowToCiteCgal{cgal:h-p-11b}
\ccPkgHowToCiteCgal{cgal:h-p-12}
\ccPkgSummary{
This package introduces a concept for univariate and multivariate
polynomials in $d$ variables. Though the concept is written for an arbitrary

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Optimal Distances \label{Pkg:OptimalDistances}}
\ccPkgHowToCiteCgal{cgal:fghhs-od-11b}
\ccPkgHowToCiteCgal{cgal:fghhs-od-12}
\ccPkgSummary{
This package provides algorithms for computing the distance between the
convex hulls of two point sets in d-dimensional space, without

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Principal Component Analysis\label{Pkg:PrincipalComponentAnalysisD}}
\ccPkgHowToCiteCgal{cgal:ap-pcad-11b}
\ccPkgHowToCiteCgal{cgal:ap-pcad-12}
\ccPkgSummary{This package provides functions to compute global information about the shape of a set of 2D or 3D objects. It provides the computation of axis-aligned bounding boxes for point sets, and barycenters of weighted point sets. In addition, it provides computation of centroids (center of mass) and linear least squares fitting for point sets as well as for sets of other bounded objects. More specifically, it is possible to fit 2D lines to 2D segments, circles, disks, iso rectangles and triangles, as well as to fit 3D lines or 3D planes to 3D segments, triangles, iso cuboids, tetrahedra, spheres and balls. The common interface to these functions takes an iterator range of objects.}
%\ccPkgDependsOn{}

View File

@ -1,7 +1,7 @@
\begin{ccPkgDescription}{Linear and Quadratic Programming Solver
\label{Pkg:QPSolver}}
\ccPkgHowToCiteCgal{cgal:fgsw-lqps-11b}
\ccPkgHowToCiteCgal{cgal:fgsw-lqps-12}
\ccPkgSummary{This package contains algorithms for minimizing linear and
convex quadratic functions over polyhedral domains, described by linear
equations and inequalities. The algorithms are exact, i.e. the solution

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Approximation of Ridges and Umbilics on
Triangulated Surface Meshes \label{Pkg:Ridges_3}}
\ccPkgHowToCiteCgal{cgal:cp-arutsm-11b}
\ccPkgHowToCiteCgal{cgal:cp-arutsm-12}
\ccPkgSummary{Global features related to curvature extrema encode
important informations used in segmentation, registration,

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{STL Extensions for CGAL\label{Pkg:StlExtension}}
\ccPkgHowToCiteCgal{cgal:hkpw-se-11b}
\ccPkgHowToCiteCgal{cgal:hkpw-se-12}
\ccPkgSummary{\cgal\ is designed in the spirit of the generic programming paradigm
to work together with the Standard Template Library (\stl). This package provides

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{dD Range and Segment Trees \label{Pkg:RangeSegmentTreesD}}
\ccPkgHowToCiteCgal{cgal:n-rstd-11b}
\ccPkgHowToCiteCgal{cgal:n-rstd-12}
\ccPkgSummary{Range and segment trees allow to perform window queries on point
sets, and to enumerate all ranges enclosing a query point. The provided data structures
are static and they are optimized for fast queries.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Segment Delaunay Graphs \label{Pkg:SegmentDelaunayGraph2}}
\ccPkgHowToCiteCgal{cgal:k-sdg2-11b}
\ccPkgHowToCiteCgal{cgal:k-sdg2-12}
\ccPkgSummary{
An algorithm for computing the dual of a Voronoi diagram of a set
of segments under the Euclidean metric. It is a generalization of the

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{3D Skin Surface Meshing \label{Pkg:SkinSurface3}}
\ccPkgHowToCiteCgal{cgal:k-ssm3-11b}
\ccPkgHowToCiteCgal{cgal:k-ssm3-12}
\ccPkgSummary{ %
This package allows to build a triangular mesh of a skin surface.
Skin surfaces are used for modeling large molecules in biological

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Snap Rounding \label{Pkg:SnapRounding2}}
\ccPkgHowToCiteCgal{cgal:p-sr2-11b}
\ccPkgHowToCiteCgal{cgal:p-sr2-12}
\ccPkgSummary{
Snap Rounding is a well known method for converting
arbitrary-precision arrangements of segments into a fixed-precision

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{dD Spatial Searching\label{Pkg:SpatialSearchingD}}
\ccPkgHowToCiteCgal{cgal:tf-ssd-11b}
\ccPkgHowToCiteCgal{cgal:tf-ssd-12}
\ccPkgSummary{
This package implements exact and approximate distance browsing by

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Spatial Sorting \label{Pkg:SpatialSorting}}
\ccPkgHowToCiteCgal{cgal:d-ss-11b}
\ccPkgHowToCiteCgal{cgal:d-ss-12}
\ccPkgSummary{This package provides functions
for sorting geometric objects in two, three and higher dimensions, in order to improve
efficiency of incremental geometric algorithms.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Straight Skeleton and Polygon Offsetting \label{Pkg:StraightSkeleton2}}
\ccPkgHowToCiteCgal{cgal:c-sspo2-11b}
\ccPkgHowToCiteCgal{cgal:c-sspo2-12}
\ccPkgSummary{This package implements an algorithm to construct a halfedge data
structure representing the straight skeleton in the interior of 2D
polygons with holes and an algorithm to construct inward offset

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Placement of Streamlines\label{Pkg:PlacementOfStreamlines2}}
\ccPkgHowToCiteCgal{cgal:m-ps-11b}
\ccPkgHowToCiteCgal{cgal:m-ps-12}
\ccPkgSummary{
Visualizing vector fields is important for many application domains. A
good way to do it is to generate streamlines that describe the flow

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Surface Subdivision Methods\label{Pkg:SurfaceSubdivisionMethods3}}
\ccPkgHowToCiteCgal{cgal:s-ssm2-11b}
\ccPkgHowToCiteCgal{cgal:s-ssm2-12}
\ccPkgSummary{
Subdivision methods recursively refine a control mesh and generate
points approximating the limit surface. This package consists of four

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Planar Parameterization of Triangulated Surface Meshes\label{Pkg:SurfaceParameterization}}
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-11b}
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-12}
\ccPkgSummary{Parameterizing a surface amounts to finding a one-to-one mapping from
a suitable domain to the surface. In this package, we focus on
triangulated surfaces that are homeomorphic to a disk and on piecewise

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{Triangulated Surface Mesh Simplification\label{Pkg:SurfaceMeshSimplification}}
\ccPkgHowToCiteCgal{cgal:c-tsms-11b}
\ccPkgHowToCiteCgal{cgal:c-tsms-12}
\ccPkgSummary{This package provides an algorithm to simplify a triangulated surface mesh
by edge collapsing. It is an implementation of the Turk/Lindstrom {\em memoryless}
mesh simplification algorithm.}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Surface Mesh Generation\label{Pkg:SurfaceMesher3}}
\ccPkgHowToCiteCgal{cgal:ry-smg-11b}
\ccPkgHowToCiteCgal{cgal:ry-smg-12}
\ccPkgSummary{
This package provides functions to generate
surface meshes that interpolate

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{Surface Reconstruction from Point Sets\label{Pkg:SurfaceReconstructionFromPointSets}}
\ccPkgHowToCiteCgal{cgal:asg-srps-11b}
\ccPkgHowToCiteCgal{cgal:asg-srps-12}
\ccPkgSummary{ This \cgal\ package implements a surface reconstruction method: Poisson Surface Reconstruction. It takes as input a set of points with oriented normals and computes an implicit function. The \cgal\ surface mesh generator can then be used to extract an iso-surface from this function. }
\ccPkgDependsOn{\ccThirdPartyTaucs}

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Triangulation Data Structure \label{Pkg:TDS2}}
\ccPkgHowToCiteCgal{cgal:py-tds2-11b}
\ccPkgHowToCiteCgal{cgal:py-tds2-12}
\ccPkgSummary{
This package provides a data structure to store a two-dimensional
triangulation that has the topology of a two-dimensional sphere.

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Triangulation \label{Pkg:Triangulation2}}
\ccPkgHowToCiteCgal{cgal:y-t2-11b}
\ccPkgHowToCiteCgal{cgal:y-t2-12}
\ccPkgSummary{This package allows to build and handle
various triangulations for point sets two dimensions.
Any \cgal\ triangulation covers the convex hull of its

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Triangulation Data Structure \label{Pkg:TDS3}}
\ccPkgHowToCiteCgal{cgal:pt-tds3-11b}
\ccPkgHowToCiteCgal{cgal:pt-tds3-12}
\ccPkgSummary{
This package provides a data structure to store a three-dimensional
triangulation that has the topology of a three-dimensional sphere.

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{3D Triangulations\label{Pkg:Triangulation3}}
\ccPkgHowToCiteCgal{cgal:pt-t3-11b}
\ccPkgHowToCiteCgal{cgal:pt-t3-12}
\ccPkgSummary{
This package allows to build and handle
triangulations for point sets in three dimensions.

View File

@ -1,6 +1,6 @@
\begin{ccPkgDescription}{2D Voronoi Diagram Adaptor \label{Pkg:VoronoiDiagramAdaptor2}}
\ccPkgHowToCiteCgal{cgal:k-vda2-11b}
\ccPkgHowToCiteCgal{cgal:k-vda2-12}
\ccPkgSummary{
The 2D Voronoi diagram adaptor package provides an adaptor that adapts a
2-dimensional triangulated Delaunay graph to the corresponding

View File

@ -1,5 +1,5 @@
\begin{ccPkgDescription}{IO Streams\label{Pkg:IOstreams}}
\ccPkgHowToCiteCgal{cgal:fgk-ios-11b}
\ccPkgHowToCiteCgal{cgal:fgk-ios-12}
\ccPkgSummary{All classes in the \cgal\ kernel provide input and output operators for
IO streams.