diff --git a/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt b/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt
index 5591bf2d864..c11091505dc 100644
--- a/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt
+++ b/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt
@@ -12,7 +12,7 @@ namespace CGAL {
\author Mikhail Bogdanov, Iordan Iordanov, and Monique Teillaud
-
+
This package enables the computation of Delaunay triangulations of
@@ -33,7 +33,7 @@ are not the same as its Euclidean center and radius.
\cgalFigureAnchor{Hyperbolic_triangulation_2Poincare_disk}
-
+
\cgalFigureCaptionBegin{Hyperbolic_triangulation_2Poincare_disk}
The Poincaré disk model for the hyperbolic plane. The figure shows
@@ -68,8 +68,8 @@ edges \cgalCite{cgal:bdt-hdcvd-14}, illustrated by
\cgalFigureAnchor{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic}
-
-
+
+
\cgalFigureCaptionBegin{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic}
Left: The Euclidean (red) and hyperbolic (black) Delaunay triangulations
diff --git a/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt b/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt
index 9cc916fe4c8..3b2dc1ae1a5 100644
--- a/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt
+++ b/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt
@@ -12,7 +12,7 @@ namespace CGAL {
\author Iordan Iordanov and Monique Teillaud
-
+
@@ -64,9 +64,9 @@ by \f$\pi\f$ onto the same point of the surface \f$\mathcal M\f$.
\cgalFigureAnchor{P4HTriangulationOctagonId}
-
-
-
+
+
+
\cgalFigureCaptionBegin{P4HTriangulationOctagonId}
Left: The hyperbolic translations \f$a,b,c,d\f$ and their inverses identify opposite
@@ -92,7 +92,7 @@ D\f$ under the action of \f$\mathcal G\f$.
\cgalFigureAnchor{P4HTDoubleTorusConstruction}
-
+
\cgalFigureCaptionBegin{P4HTDoubleTorusConstruction}
Topological construction of a genus-2 surface from the original domain \f$\mathcal D\f$
@@ -165,7 +165,7 @@ translation \f$abcd\f$. The canonical representative in
\cgalFigureAnchor{P4HTriangulationCanonicalRepExample}
-
+
\cgalFigureCaptionBegin{P4HTriangulationCanonicalRepExample}
Among the three faces in the orbit that have at least one vertex in
@@ -198,7 +198,7 @@ instance, a single point does not define a triangulation of
\cgalFigureAnchor{P4HNonSimplicialExample}
-
+
\cgalFigureCaptionBegin{P4HNonSimplicialExample}
The three
@@ -220,7 +220,7 @@ complex for any set of input points \f$\mathcal{P}\f$
\cgalFigureAnchor{P4HTriangulationDummyPoints}
-
+
\cgalFigureCaptionBegin{P4HTriangulationDummyPoints}
Delaunay triangulation of \f$\mathcal M\f$ defined by the 14 dummy
@@ -361,7 +361,7 @@ the number of random points inserted. Results are shown in \cgalFigureRef{P4HDum
\cgalFigureAnchor{P4HDummyPointsHistogram}
-
+
\cgalFigureCaptionBegin{P4HDummyPointsHistogram}
Histogram of the number of random input points needed to remove all dummy points in a