// Copyright (c) 2003 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Julia Floetotto #ifndef CGAL_REGULAR_NEIGHBOR_COORDINATES_2_H #define CGAL_REGULAR_NEIGHBOR_COORDINATES_2_H #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { // In these functions, the traits class is defined via the regular triangulation. // See natural_neighbor_coordinates_2 for a proposal for signatures // that allow to pass the traits class as argument. // OutputIterator has value type // std::pair template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_vertex_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputIteratorVorVertices vor_vertices, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end) { //precondition: p must lie inside the non-empty hole // (=^ inside convex hull of neighbors) //out: the result of the coordinate computation //vor_vertices: the vertices of the power cell of p (to avoid recomputation) CGAL_precondition(rt.dimension() == 2); typedef typename Rt::Geom_traits Traits; typedef typename Traits::FT Coord_type; typedef typename Rt::Bare_point Bare_point; typedef typename Rt::Vertex_handle Vertex_handle; typedef typename Rt::Face_circulator Face_circulator; // no hole if(hole_begin == hole_end) { if(hidden_vertices_begin == hidden_vertices_end) { // No hole and nothing hidden: the point's weight is too low to appear in the triangulation. return make_triple(out, Coord_type(0), true); } // No hole but some vertices are hidden (there can be only one) *out++ = std::make_pair((*hidden_vertices_begin), Coord_type(1)); ++hidden_vertices_begin; CGAL_assertion(hidden_vertices_begin == hidden_vertices_end); return make_triple(out, Coord_type(1), true); } std::vector vor(3); Coord_type area_sum(0); //determine the last vertex of the hole: EdgeIterator hit = hole_end; --hit; // to start: prev is the "last" vertex of the hole // later: prev is the last vertex processed (previously) Vertex_handle prev = hit->first->vertex(rt.cw(hit->second)); hit = hole_begin; while(hit != hole_end) { Coord_type area(0); Vertex_handle current = hit->first->vertex(rt.cw(hit->second)); // a first Voronoi vertex of the cell of p: vor[0] = rt.geom_traits().construct_weighted_circumcenter_2_object()( current->point(), hit->first->vertex(rt.ccw(hit->second))->point(), p); *vor_vertices++= vor[0]; // triangulation of the Voronoi subcell: // a second vertex as base Face_circulator fc = rt.incident_faces(current, hit->first); ++fc; vor[1] = rt.dual(fc); // iteration over all other "old" Voronoi vertices while(!fc->has_vertex(prev)) { ++fc; vor[2] = rt.dual(fc); area += polygon_area_2(vor.begin(), vor.end(), rt.geom_traits()); vor[1] = vor[2]; } //the second Voronoi vertex of the cell of p: vor[2] = rt.geom_traits().construct_weighted_circumcenter_2_object()( prev->point(),current->point(), p); *vor_vertices++ = vor[2]; area += polygon_area_2(vor.begin(), vor.end(), rt.geom_traits()); if(area > 0) { *out++= std::make_pair(current, area); area_sum += area; } //update prev and hit: prev = current; ++hit; } // get coordinate for hidden vertices <=> the area of their Voronoi cell. // decomposition of the cell into triangles // vor1: dual of first triangle // vor2, vor 3: duals of two consecutive triangles Face_circulator fc, fc_begin; for(; hidden_vertices_begin != hidden_vertices_end; ++hidden_vertices_begin) { Coord_type area(0); fc_begin = rt.incident_faces(*hidden_vertices_begin); vor[0] = rt.dual(fc_begin); fc = fc_begin; ++fc; vor[1] = rt.dual(fc); ++fc; while(fc != fc_begin) { vor[2] = rt.dual(fc); area += polygon_area_2(vor.begin(), vor.end(), rt.geom_traits()); vor[1] = vor[2]; ++fc; } if(area > 0) { *out++ = std::make_pair((*hidden_vertices_begin), area); area_sum += area; } } return make_triple(out, area_sum, true); } // OutputIterator has value type `pair` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_vertex_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end) { return regular_neighbor_coordinates_vertex_2(rt, p, out, Emptyset_iterator(), hole_begin, hole_end, hidden_vertices_begin, hidden_vertices_end); } // vor_vertices: the vertices of the power cell (to avoid recomputation) // OutputIterator has value type `pair` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_vertex_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputIteratorVorVertices vor_vertices, typename Rt::Face_handle start) { typedef typename Rt::Geom_traits Traits; typedef typename Traits::FT Coord_type; typedef typename Rt::Vertex_handle Vertex_handle; typedef typename Rt::Face_handle Face_handle; typedef typename Rt::Edge Edge; typedef typename Rt::Locate_type Locate_type; CGAL_precondition(rt.dimension() == 2); Locate_type lt; int li; Face_handle fh = rt.locate(p, lt, li, start); // the point must lie inside the convex hull, otherwise return false: if(lt == Rt::OUTSIDE_AFFINE_HULL || lt == Rt::OUTSIDE_CONVEX_HULL || (lt == Rt::EDGE && (rt.is_infinite(fh) || rt.is_infinite(fh->neighbor(li))))) return make_triple(out, Coord_type(1), false); if(lt == Rt::VERTEX) { //the point must be in conflict: CGAL_precondition(rt.power_test(fh->vertex(li)->point(), p) != ON_NEGATIVE_SIDE); if (rt.power_test(fh->vertex(li)->point(), p) == ON_ORIENTED_BOUNDARY) { *out++ = std::make_pair(fh->vertex(li), Coord_type(1)); return make_triple(out, Coord_type(1), true); } } std::list hole; std::list hidden_vertices; rt.get_boundary_of_conflicts_and_hidden_vertices(p, std::back_inserter(hole), std::back_inserter(hidden_vertices), fh); return regular_neighbor_coordinates_vertex_2(rt, p, out, vor_vertices, hole.begin(),hole.end(), hidden_vertices.begin(), hidden_vertices.end()); } // OutputIterator has value type `pair` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_vertex_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, typename Rt::Face_handle start) { return regular_neighbor_coordinates_vertex_2(rt, p, out, Emptyset_iterator(), start); } // OutputIterator has value type `pair` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_vertex_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out) { return regular_neighbor_coordinates_vertex_2(rt, p, out, typename Rt::Face_handle()); } //////////////////////////////////////////////////////////// //the cast from vertex to point: // the following functions return an Output_iterator over // std::pair //=> OutputIterator has value type // std::pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT> ///////////////////////////////////////////////////////////// // OutputIterator has value type `pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT>` // out: the result of the coordinate computation // vor_vertices: the vertices of the power cell (to avoid recomputation) template < class Rt, class OutputIterator, class OutputFunctor, class OutputIteratorVorVertices > Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputFunctor fct, OutputIteratorVorVertices vor_vertices, typename Rt::Face_handle start) { typedef Interpolation::internal:: Project_vertex_output_iterator OutputIteratorWithFunctor; typedef typename Rt::Geom_traits::FT FT; OutputIteratorWithFunctor op(out, fct); CGAL_precondition(rt.dimension() == 2); Triple< OutputIteratorWithFunctor, FT, bool > result = regular_neighbor_coordinates_vertex_2(rt, p, op, vor_vertices, start); return make_triple(result.first.base(), result.second, result.third); } // OutputIteratorVorVertices and start are given but not OutputFunctor. template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputIteratorVorVertices vor_vertices, typename Rt::Face_handle start, std::enable_if_t< is_iterator::value >* = 0) { // Same as above but without OutputFunctor. Default to extracting the point, for backward compatibility. typedef typename Rt::Geom_traits::FT FT; typedef Interpolation::internal::Extract_point_in_pair OutputFunctor; return regular_neighbor_coordinates_2(rt, p, out, OutputFunctor(), vor_vertices, start); } // OutputFunctor and start are given but not OutputIteratorVorVertices template < class Rt, class OutputIterator, class OutputFunctor > Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputFunctor fct, typename Rt::Face_handle start, std::enable_if_t< !is_iterator::value >* = 0) { return regular_neighbor_coordinates_2(rt, p, out, fct, Emptyset_iterator(), start); } // Only the OutputFunctor is given. template < class Rt, class OutputIterator, class OutputFunctor > Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputFunctor fct, std::enable_if_t< !std::is_convertible::value >* = 0) { return regular_neighbor_coordinates_2(rt, p, out, fct, typename Rt::Face_handle()); } // Only the starting face is given. template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, typename Rt::Face_handle start) { return regular_neighbor_coordinates_2(rt, p, out, Emptyset_iterator(), start); } // Nothing is given. template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out) { return regular_neighbor_coordinates_2(rt, p, out, typename Rt::Face_handle()); } //////////////////////////////////////////////////////////// // Functions below use the conflict region //////////////////////////////////////////////////////////// // OutputIterator has value type `pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT>` // vor_vertices are the vertices of the power cell of p (to avoid recomputation) // // \pre p must lie inside the non-empty hole (=^ inside convex hull of neighbors) template < class Rt, class OutputIterator, class OutputFunctor, class EdgeIterator, class VertexIterator, class OutputIteratorVorVertices > Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputFunctor fct, OutputIteratorVorVertices vor_vertices, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end) { typedef Interpolation::internal:: Project_vertex_output_iterator OutputIteratorWithFunctor; typedef typename Rt::Geom_traits::FT FT; OutputIteratorWithFunctor op(out, fct); Triple result = regular_neighbor_coordinates_vertex_2(rt, p, op, vor_vertices, hole_begin, hole_end, hidden_vertices_begin, hidden_vertices_end); return make_triple(result.first.base(), result.second, result.third); } // Same as above but without OutputIteratorVorVertices. // OutputIterator has value type `pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT>` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputFunctor fct, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end, std::enable_if_t< !is_iterator::value >* = 0) { return regular_neighbor_coordinates_2(rt, p, out, fct, Emptyset_iterator(), hole_begin, hole_end, hidden_vertices_begin, hidden_vertices_end); } // Same as above but without OutputFunctor. Default to extracting the point, for backward compatibility. template < class Rt, class OutputIterator, class OutputIteratorVorVertices, class EdgeIterator, class VertexIterator > Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, OutputIteratorVorVertices vor_vertices, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end, std::enable_if_t< is_iterator::value >* = 0) { typedef typename Rt::Geom_traits::FT FT; typedef Interpolation::internal::Extract_point_in_pair OutputFunctor; return regular_neighbor_coordinates_2(rt, p, out, OutputFunctor(), vor_vertices, hole_begin, hole_end, hidden_vertices_begin, hidden_vertices_end); } // Same as above but without OutputFunctor nor OutputIteratorVorVertices // OutputIterator has value type `pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT>` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, const typename Rt::Weighted_point& p, OutputIterator out, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end) { return regular_neighbor_coordinates_2(rt, p, out, Emptyset_iterator(), hole_begin, hole_end, hidden_vertices_begin, hidden_vertices_end); } /**********************************************************/ // Compute the coordinates for a vertex of the triangulation // with respect to the other points in the triangulation // OutputIterator has value type `pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT>` template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, typename Rt::Vertex_handle vh, OutputIterator out, OutputFunctor fct) { // This function creates a small triangulation of the incident vertices of this vertex // and computes the natural neighbor coordinates of ch->point() w.r.t. it. typedef typename Rt::Vertex_circulator Vertex_circulator; typedef typename Rt::Vertex_handle Vertex_handle; CGAL_precondition(rt.dimension() == 2); Rt t2; Vertex_circulator vc = rt.incident_vertices(vh), done(vc); typedef std::map Correspondence_map; Correspondence_map cm; do { if(rt.is_infinite(vc)) continue; Vertex_handle t2_vh = t2.insert(vc->point()); cm[t2_vh] = vc; } while(++vc != done); // Before applying the output functor, we need to switch back from vertices of `t2` // to the vertices of `rt` typedef typename Rt::Geom_traits::FT FT; typedef Interpolation::internal::Pair_mapper Mapper; Mapper pair_mapper(cm); CGAL::Unary_compose_1 composed_fct(fct, pair_mapper); return regular_neighbor_coordinates_2(t2, vh->point(), out, composed_fct); } // Same as above but without OutputFunctor. Default to extracting the point, for backward compatibility. template Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > regular_neighbor_coordinates_2(const Rt& rt, typename Rt::Vertex_handle vh, OutputIterator out) { typedef typename Rt::Geom_traits::FT FT; typedef Interpolation::internal::Extract_point_in_pair OutputFunctor; return regular_neighbor_coordinates_2(rt, vh, out, OutputFunctor()); } // OutputIterator has value type `pair< Rt::Geom_traits::Weighted_point_2, Rt::Geom_traits::FT>` template < class Rt, class OutputIterator, class OutputFunctor > class regular_neighbor_coordinates_2_object { public: typedef OutputFunctor Function; Triple< OutputIterator, typename Rt::Geom_traits::FT , bool > operator()(const Rt& rt, typename Rt::Vertex_handle vh, OutputIterator out, OutputFunctor fct) const { return regular_neighbor_coordinates_2(rt, vh, out, fct); } }; } //namespace CGAL #endif // CGAL_REGULAR_NEIGHBOR_COORDINATES_2_H