\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous} \ccDefinition This \ccc{AdaptableFunctor} provides evaluation of a \ccc{PolynomialTraits_d::Polynomial_d} interpreted as a homogeneous polynomial {\bf in one variable}. \\ For instance the polynomial $p = 5x^2y^3 + y$ is interpreted as the homogeneous polynomial $p[x](u,v) = 5x^2u^3 + uv^2$ and evaluated as such. \ccRefines \ccc{AdaptableFunctor}\\ \ccc{CopyConstructible}\\ \ccc{DefaultConstructible}\\ \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Coefficient_type u, PolynomialTraits_d::Coefficient_type v);}{ Returns $p(u,v)$, with respect to the outermost variable. % \\ The homogeneous degree is considered as equal to the degree of $p$. } %\ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p, % PolynomialTraits_d::Coefficient_type u, % PolynomialTraits_d::Coefficient_type v, % int i);}{ % Returns $p(u,v)$, with respect to the variable $x_i$. % \\ The homogeneous degree is considered as equal to the $degree(p,i)$. % \ccPrecond $0 \leq i < d$ % } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}