\begin{ccRefConcept}{PolynomialTraits_d::Scale} \ccDefinition Given a constant $c$ this \ccc{AdaptableBinaryFunction} scales a \ccc{PolynomialTraits_d::Polynomial_d} $p$ with respect to one variable, that is, it computes $p(c\cdot x)$. Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable. \ccRefines \ccc{AdaptableBinaryFunction}\\ \ccc{CopyConstructible}\\ \ccc{DefaultConstructible}\\ \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, second_argument_type c);} { Returns $p(c\cdot x)$, with respect to the outermost variable. } \ccMethod{result_type operator()(first_argument_type p, second_argument_type c, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq i < d$ } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}