\begin{ccRefConcept}{Field} \ccDefinition A model of \ccc{Field} is an \ccc{IntegralDomain} in which every non-zero element has a multiplicative inverse. Thus, one can divide by any non-zero element. Hence division is defined for any divisor != 0. For a Field, we require this division operation to be available through operators / and /=. Moreover, \ccc{CGAL::Algebraic_structure_traits< Field >} is a model of \ccc{AlgebraicStructureTraits} providing:\\ - \ccc{CGAL::Algebraic_structure_traits< Field >::Algebraic_type} derived from \ccc{Field_tag} \\ \ccRefines \ccc{IntegralDomain} \ccOperations \ccCreationVariable{a} \ccFunction{Field operator/(const Field &a, const Field &b);}{} \ccGlue \ccMethod{Field operator/=(const Field &b);}{} \ccSeeAlso \ccRefIdfierPage{IntegralDomainWithoutDivision}\\ \ccRefIdfierPage{IntegralDomain}\\ \ccRefIdfierPage{UniqueFactorizationDomain}\\ \ccRefIdfierPage{EuclideanRing}\\ \ccRefIdfierPage{Field}\\ \ccRefIdfierPage{FieldWithSqrt}\\ \ccRefIdfierPage{FieldWithKthRoot}\\ \ccRefIdfierPage{FieldWithRootOf}\\ \ccRefIdfierPage{AlgebraicStructureTraits}\\ %\ccHasModels %\ccc{float}\\ %\ccc{double}\\ %\ccc{long_double}\\ %\ccc{CGAL::Gmpq} \\ %\ccc{mpq_class} \\ %%\ccc{mpf_class} \\ %\ccc{leda_rational} \\ %\ccc{leda_bigfloat} \\ %\ccc{leda_real} \\ %\ccc{CORE::BigRat} \\ %%\ccc{CORE::BigFloat} \\ %\ccc{CORE::Expr} \\ %%\ccc{CGAL::Interval_nt} \\ %%\ccc{CGAL::Interval_nt_advanced} \\ %\ccc{CGAL::MP_Float} (inexact version)\\ %\ccc{CGAL::Lazy_exact_nt< NT >} (depends on NT) \\ %\ccc{CGAL::Quotient< NT >} \\ %\ccc{CGAL::Sqrt_extension< NT, Root >} (depends on NT) \\ \end{ccRefConcept}