\begin{ccRefConcept}{ImplicitInteroperable} \ccDefinition Two types \ccc{A} and \ccc{B} are a model of the concept \ccc{ImplicitInteroperable}, if there is a superior type, such that binary arithmetic operations involving \ccc{A} and \ccc{B} result in this type. This type is \ccc{Coercion_traits::Type}. The type \ccc{Coercion_traits::Type} is required to be implicit constructible from \ccc{A} and \ccc{B}. %From this it follows that all binary functors (and their global functions) %provided by \ccc{Algebraic_structure_traits< Coercion_traits :: Type> } %and \ccc{Real_embeddable_traits< Coercion_traits :: Type> } also %support \ccc{A} and \ccc{B} as argument type. However, they may also %provide a more efficient specialization for \ccc{A}, \ccc{B} or both. %\\ In this case \ccc{Coercion_traits::Are_implicit_interoperable} is \ccc{Tag_true}. %Note that \ccc{Coercion_traits::Type} may be equal to \ccc{A} or \ccc{B}.\\ \ccRefines \ccc{ExplicitInteroperable} \ccSeeAlso \ccRefIdfierPage{CGAL::Coercion_traits}\\ \ccRefConceptPage{ExplicitInteroperable}\\ \ccRefConceptPage{AlgebraicStructureTraits}\\ \ccRefConceptPage{RealEmbeddableTraits}\\ \end{ccRefConcept}